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Abstract: The dynamic inhomogeneous fi nite element method is studied for use in the transient analysis of one-
dimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based 
on the shape function. In order to research the advantages of this method, it is compared with the general fi nite element 
method. A linear bar element is chosen for the discretization tests of material parameters with two fi ctitious distributions. 
And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics 
of the dynamic inhomogeneous fi nite element method that demonstrate its advantages are obtained through comparison with 
the general fi nite element method. It is found that the method can be used to solve elastic wave motion problems with a large 
element scale and a large number of iteration steps.
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1   Introduction 

Most natural substances, even man-made materials, 
are heterogeneous and inhomogeneous. With the 
development of science and technology, research about 
the behaviors of inhomogeneous media has become 
increasingly necessary. The dynamics of inhomogeneous 
media is an important research topic in this fi eld.

Currently, the approaches to homogeneous media 
are highly developed and widely applied. For example, 
the general fi nite element method is based on the 
homogeneous media theory, where all of the material 
parameters are uniform in the element. In region Ω, all 
of the material parameters are assumed to be constant.
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where E  , and  are the material parameters in 
region Ω. E0 0 0, and  are all constant.

In order to study inhomogeneous media problems, 
where the material parameters are related to coordinates, 
the region Ω is divided into n pieces of homogeneous 
subregions in common.
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where  Ωi is the subregion;  E
i i i  , and  are the 

material parameters of subregion  Ωi; and Ei ,  i  and 
 i are the equivalent constant material parameters in 
subregion Ωi.

The approaches of homogeneous media can be used 
to compute and analyze inhomogeneous models after 
the above division and homogenization operations have 
been carried out.

As the diffi culty can be greatly decreased by the 
processed model, these operations have been widely 
applied to inhomogeneous media mechanics, especially 
dynamics (Tarau and Otugen, 2002; Pei and Mu, 
2003; Luo et al., 2004; Fu et al., 2010). However, in 
a continuous transitional inhomogeneous zone, the 
processed model is sometimes too different from the 
original problem, so that the resulting precision may be 
questionable. In order to improve the precision of the 
results, inordinate amounts of computing resources are 
needed. Even so, the results may still lack precision.
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Accordingly, several different methods have been 
established. Two special methods are of interest here, 
namely the exact element method and the inhomogeneous 
fi nite element method.

In 1992, Ji (1992) presented the exact element 
method for constructing fi nite elements to solve the 
bending of an inhomogeneous thin plate, and achieved a 
high precision. As there are only nine particular solutions 
in total for the analytic solutions of the inhomogeneous 
media wave motion (Yang and Chen, 2007), it is very 
diffi cult to widely use the exact element method in this 
fi eld.

The inhomogeneous fi nite element method was 
established in 1985 (Zhang and Leech, 1985; 1987). 
The stiffness matrix of the fi nite element is modifi ed by 
the inhomogeneous elastic matrix. The inhomogeneous 
isoparametric element has been introduced to 
composites for accurate static stress analysis. Li and Zou 
(1998) analyzed a static problem of functionally graded 
materials based on the inhomogeneous isoparametric 
element. Compared with the general fi nite element 
method, their results have greater precision and more 
smoothness with the same number of elements. Thus, 
the computational scale can be greatly decreased by 
this element with the same accuracy. Zhao et al. (2002) 
obtained great success in the fracture of functionally 
graded material by the inhomogeneous fi nite element 
method. Thus far, this method has mainly been used in 
static analysis, and only the stiffness matrix has been 
constructed.

In this study, the inhomogeneous fi nite element 
method is developed for dynamic analysis. The mass 
matrix of an inhomogeneous fi nite element is constructed, 
so it can now be used to achieve the transient response of 
inhomogeneous media. A numerical example is solved 
by the dynamic inhomogeneous fi nite element method. 
The results are compared with those obtained by the 
general fi nite element method, and demonstrate the 
many advantages of the dynamic inhomogeneous fi nite 
element method.

2  General fi nite element

2.1 Governing equations

Assume that the deformation is small enough. The 
strain of elasticity can be written as the derivative of 
displacement in the following form.

 = Lu                                 (3)
where u is the displacement vector of elasticity; and L is 
the differential operator. They are expressed as follows.
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In generalized Hooke’s law, the stress-strain 
relationship is described as the following form.

 = =D DLu                           (6)

Considering the equilibrium conditions of force, the 
equilibrium equation of 3D elastodynamics can be given 
in the absence of damping.

L DLu b = uT +                          (7)

There are two types of material parameters in Eq. (7): 
elastic coeffi cients and inertia coeffi cients. Elastic 
modulus and Poisson’s ratio are two commonly used 
elastic coeffi cients. The structural stiffness can be 
affected by these coeffi cients. In the case of no damping, 
only the density of the inertia coeffi cient is of interest.

To obtain the solution for an elastodynamics 
problem, Eq. (7) is solved with the given boundary 
conditions and the given initial conditions.

2.2   Stiffness matrix and mass matrix

Assume that the displacement fi eld u is in the 
following form.

u Na= e                                     (8)

where N is the shape function matrix, and ae is the nodal 
displacement vector of the element.

By the Galerkin method, the dynamic equilibrium 
equation of every fi nite element can be conducted in the 
following form from Eq. (7).

ka ma r+ = ( )t                     (9)

where k is the element stiffness matrix; m is the element 
mass matrix; a is the nodal displacement vector of 
the element; a is the nodal acceleration vector of 
the element; and r(t) is the body force vector of the 
element.

Equation (10) is the expression of k. Equation (11) 
is the expression of m, and gives the formula of the 
consistent mass matrix.

k = LN D LN( ) ( )T
ed

e


∫          (10)

m = N NT
ed

e

 
∫                 (11)

Considering a one-dimensional linear bar element, 
Eq. (12) is its stiffness matrix, and Eq. (13) is its 
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consistent mass matrix.
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Because all the material parameters are constant in 
the matrix, it is apparent that the general fi nite element 
method relies on homogeneous media theory.

3   Inhomogeneous fi nite element 

3.1 Stiffness matrix and mass matrix

The inhomogeneous fi nite element can be constructed 
by introducing the shape function for interpretation. The 
material parameters are not uniform in the element, but 
follow a determinate form of distribution.

The distributions of material parameters are 
expressed as the form of approximated polynomial.
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where Ee is the nodal elastic modulus array; Ve is the 
nodal Poisson’s ratio array; and ρe is the nodal density 
array.

Similar to the general fi nite element, the element 
stiffness matrix and element mass matrix of the 
inhomogeneous fi nite element can be given as follows 
by using the Galerkin method.

  k = LN D LN( ) ( )T
ed

e

′∫ 
                 (15)

   
m = N NT

ed
e

 
∫                       (16)

Considering a one-dimensional linear bar element, 

Eq. (17) is its stiffness matrix, and Eq. (18) is its 
consistent mass matrix.
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where E1 and E2 are the nodal elastic modulus, and ρ1 
and ρ2 are the nodal density.

Obviously, the inhomogeneous stiffness matrix 
and inhomogeneous mass matrix all are symmetric. In 
addition, if the nodal values of each parameter are equal, 
Eqs. (17) and (18) transform to Eqs. (12) and (13).

3.2 Discretization test of parameter

In order to discuss the errors in parameter distribution 
introduced by different methods, a discretization test of 
the parameters has been done to compare the effect of 
discretization.

Two fi ctitious distributions as follows are used to 
express the heterogeneity of the material parameter of 
one-dimensional media.

P x x x( ) ( )= + ≤ ≤400 1000 0 12                (19)

P x xx x( ) ( )( . ) ( . )= + + ≤ ≤− − − −e e160 0 3 90 0 72 2

2 5 0 1     (20)

The linear bar element is chosen for discretization. 
The model is divided into 20 elements with the same 
length. The densities of every general fi nite element are 
obtained based on the coordinate of element centroid. 
And the nodal densities of every inhomogeneous fi nite 
element are obtained based on the nodal coordinate.

The effect of discretization is shown in Figs. 1(a) and 
1(b). Through these curves, it is seen that there are more 
errors between the actual distribution and the discrete 
results obtained by the general fi nite element method.

For example, the distribution of the parameters in 
Case 1 is a typical parabola. The error amplitude of 

* / @ {|} ß ∑ ∫

Fig. 1 Effect of discretization
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the general fi nite element is about 20. However, the 
error of the inhomogeneous fi nite element is almost 0, 
and can even be ignored. Of course, if the quadratic 
bar element is chosen for discretization, the error 
of the inhomogeneous fi nite element is 0. Then, the 
distribution of the parameters in Case 2 is a combination 
of two Gaussian functions. The error amplitude of the 
general fi nite element is about 0.4; however, the error of 
the inhomogeneous fi nite element is less than 0.1. 

From a sensory point of view, the general fi nite 
element brings more errors into the fi nite element model 
than the inhomogeneous fi nite element. Actually, the 
model error is fi nally decided by integration (Eqs. (10) 
and (11); Eqs. (15) and (16)). Of course, the general fi nite 
element still brings more errors. If the quadratic element 
or higher order element is chosen for discretization, 
there will be much better performance with the errors 
introduced by the inhomogeneous fi nite element. Thus, 
it is better to use the inhomogeneous fi nite element 
for discretization when dealing with the problem of 
inhomogeneous media. 

4   Numerical example

In order to verify the advantages of the dynamic 
inhomogeneous fi nite element method, a numerical 
example is used for simulation and analysis.

4.1  Model description

There are two layers in this model as shown in Fig.  2(a). 
Layer B is a semi-infi nite medium covered with the 
vertical inhomogeneous Layer A, and the upper surface 
is free. Layer A is infi nite in the horizontal direction.

The thickness of Layer A is 1. Assume that Layer B 
can be regarded as a rigid wall, so the lower surface of 
layer A is bounded. The material parameters are defi ned 
as follows.
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If the upper surface of Layer A is subjected to a 
uniform vertical impact load Q, a series of responses can 
be generated in this layer. The displacement fi eld (0 ≤ T 
≤ 0.5) in Layer A and the displacement history curve at 
the central section are solved and analyzed.

The original model is then simplifi ed according to the 
known conditions. The simplifi ed 1D model is shown in 
Fig. 2(b). The impact force is defi ned as follows.

F t
t
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4.2 Results

To solve this problem, the linear bar element is 
chosen for the fi nite element analysis. This model is 
divided into 50, 100, 200 and 400 elements with the 
same element length. Then, the Newmark Method is 
used to solve these cases. The results are described in 
the following paragraphs.

The dynamic inhomogeneous fi nite element method 
has a good convergence as seen in Fig. 3 and Fig. 4. And, 
the dynamic behavior of inhomogeneous media looks 
very different from homogeneous media. 

4.3 Comparison

There is an apparent difference in the stiffness matrix 
and mass matrix between the general fi nite element and 
inhomogeneous fi nite element methods. To observe 
the advantages of the dynamic inhomogeneous fi nite 
element method, a comparison was carried out using 
the same conditions. The resulting differences between 
the dynamic inhomogeneous fi nite element and general 
fi nite element methods are shown in Figs. 5 and 6.

(a) Original model                                                                   (b) Simplifi ed model

Fig. 2 Modeling
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Fig. 4  Displacement history curve (0 ≤ T ≤ 0.5) at the central section
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Three characteristics can be observed from these 
differences.

First, the difference of the nodal displacement at 
the free end is obviously larger than those at the other 
positions.

Second, the difference in the nodal displacements 
increases with iteration step by step. On the one hand, the 
resulting difference increases slowly and approximately 
linearly in the same step. On the other hand, the resulting 
difference suddenly lifts to a larger amplitude when the 
wave front arrives.

Third, the resulting difference decreases as the 
element number increases (see Table 1). This is a typical 
feature of the fi nite element method.

Table 1 Maximum differences of displacement in Figs. 5 and 6

Number  Dmax(Fig. 5) (10-17)  Dmax(Fig. 6) (10-17)
50 18.20 4.44
100 9.32 1.69
200 6.20 0.798
400 3.36 0.237

The fi rst characteristic is caused by the difference in 
the stiffness and mass matrices. Since the stiffness and 
mass related to the constrained node are meaningless to 
the process of solving the fi nite element equation, only 
unconstrained nodes need to be taken into account. 

Through the dynamic inhomogeneous fi nite element 
method, the element values of the assembled mass matrix 
associated with node m at the free end and internal node 
n are as follows.
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By using the general fi nite element method, the 
coeffi cients of the assembled mass matrix associated 
with the free end node m and internal node n are as 
follows.
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Thus, the differences seen in the mass matrix 
coeffi cients by these two different methods are given as 
follows.
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Substituting Eq. (21) for the material parameter in 
Eqs. (27) and (28) gives
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where L is the length of the linear bar element.
In addition, the differences of the stiffness matrix 

coeffi cients associated to free end node m and internal 
node n are given as follows.
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The length of the bar element is far less than 1, 
so the nodal stiffness differences are very small, and 
are uniformly distributed in the discrete model in this 
example. Then, the nodal mass differences of the internal 
nodes are small, and are also uniformly distributed. 
However, the nodal mass difference at the free end 
is larger than at the other position. This larger mass 
difference leads to the fi rst observed characteristic.

The second characteristic is also caused by the 
differences of the assembled stiffness and mass matrices. 
As the time increases, the differences in the results 
continually accumulate and gradually enlarge. And, a 
step appears when the wave front arrives. In addition, 
the wave front propagates back at the free end node, 
where the associated difference of the mass coeffi cient 
is largest. Therefore, these two reasons together lead to 
the increased difference with iteration step by step.
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5    Conclusions

Several conclusions can be obtained from the results 
of this study.

First, the dynamic inhomogeneous fi nite element 
method proposed herein can be used to solve the 
large element scale of the discrete model. In the same 
conditions, it is more accurate than the general fi nite 
element method when the element scale of the model 
is very large, such as in crustal structure analysis. 
Certainly, the results of these two methods can be close 
or even almost the same when the element scale of the 
model is small enough.

Second, it is found that as the number of iterative 
steps increase, the advantages of the dynamic 
inhomogeneous fi nite element method also increases. 
Because the dynamic inhomogeneous fi nite element is 
superior in discretization effect, this method can be used 
to improve the resulting reliability of transient analysis 
with a long time history or a large number of iterative 
steps.

The inhomogeneous fi nite element method has been 
extended to solve dynamics problems in this study, 
and a high degree of accuracy and high effi ciency has 
been obtained. This method can be expanded into 2D 
problems, 3D problems and axisymmetric problems. 
Hence, this achievement can be valuable in engineering 
applications and further research.
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