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1   Introduction

Structures are often constrained to be horizontally 
irregular for architectural and functional reasons. 
The seismic vulnerability of these systems has been 
observed during past earthquakes (Hart et al., 1975; 
Chandler, 1986; Rosenblueth and Meli, 1986; Esteva, 
1987; Rutenberg, 1992; Goyal et al., 2001). Numerous 
investigations (e.g., Kan and Chopra, 1981a; Kan and 
Chopra, 1981b; Dempsey and Tso, 1982; Chopra and 
Goel, 1991; Tso and Zhu, 1992; Zhu and Tso, 1992; 
Humar and Kumar, 1998; Dutta and Das, 2002a; Dutta 
and Das, 2002b) have been carried out to achieve insight 
into the basic trend in both elastic and inelastic seismic 
behavior of asymmetric systems. These studies, which 
use a parametrically defi ned equivalent single story 
model, are well-documented elsewhere (Rutenberg, 
1992; Rutenberg and Tso, 2004; Roy, 2009), and 
generally employ a force-based design approach.

In traditional approaches, the period of a structure is 
estimated and changes in its lateral strength (achieved 
by changing the strengths of components) are assumed 
to have a negligible effect on its stiffness and period (i.e., 
constant stiffness model). In contrast, it is well known 
that the yield displacement of structures responding 
in their predominant mode is nearly invariant for 
practical purpose (Priestley, 2000; Aschheim, 2002). 

Consequently, the stiffness of a given structure changes 
almost in direct proportion to the strength assigned to it 
(i.e., constant yield displacement model). This leads to 
the concept of strength-dependent stiffness as opposed 
to the conventional strength-independent stiffness 
characteristics (refer to Fig. 1). However, the majority 
of earlier studies and some more recent research (i.e., 
Dutta and Roy, 2011) explore the seismic behavior of 
asymmetric systems by neglecting the interdependence 
between strength and stiffness.

The conventional strength distribution strategy 
(IAEE, 2000), which emerged on the basis of existing 
literature, relies on the strength independent elastic 
stiffness of structural elements. Two useful design 
philosophies are conceptualized that recognize the 
signifi cance of strength dependent stiffness. In the post-
elastic range of shaking, during severe earthquake, the 
resulting resistive forces may be envisioned to pass 
through the center of strength (CV) of the system. 
If the CV is close to center of mass (CM), i.e., for a 
small value of strength eccentricity (ev), only minor 
torque will be generated. In this circumstance, it has 
been shown (Paulay, 1998; Paulay, 2001a), based on 
plastic mechanism analyses of a number of systems, that 
displacement ductility demand may be minimized by 
minimizing the strength eccentricity, in the limit through 
‘CV-CM coinciding’ design (i.e., ev = 0). On the other 
hand, it is proposed and verifi ed elsewhere (Myslimaj 
and Tso, 2002; Tso and Myslimaj, 2003; Myslimaj, and 
Tso, 2004; Myslimaj and Tso, 2005) that an effi cient 
strength design strategy is to ensure a ‘Balanced CV-
CR’ criterion, i.e., strength should be distributed among 
the load-resisting elements so that the center of strength 
(CV) and center of resistance (CR) is located on either 
side of the center of mass (CM). However, the distance 
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of CV and CR with respect to CM depends on the 
performance states. Physically, such a strength design 
may tend to balance the elastic torque and plastic torque 
up to a given threshold. 

The state-of-the-art review also reveals that there 
is latitude to explore the seismic response of a plan-
asymmetric system by categorizing it into two classes 
depending upon the nature of prevailing stiffness 
eccentricity. Systems with eccentricity along one 
principal direction, parallel to any one side of the rigid 
deck, are designated as uni-directionally eccentric or 
mono-symmetric; whereas systems with eccentricities in 
two principal directions are referred to as bi-directionally 
eccentric. A recent study (Dutta and Roy, 2011) on low-
rise multi-story systems with arbitrary variation of 
eccentricities in different stories also follows this classical 
demarcation. This classifi cation depends on the choice 
of the reference axes only. In this context, the present 
paper examines the performance of plan-asymmetric 
systems, by accounting for interdependence between 
strength and stiffness in a unique format that precludes 
the customary distinction between uni-directional and 
bi-directional asymmetric systems. Further, the review 
has found that very few studies explicitly quantify the 
seismic demand for practical design. A recent study 
(Dutta and Roy, 2011) attempts to prepare a response 
envelope and claims the same as a design envelope. 
However, this study disregards the strength-dependent 
stiffness, and limits the demand assessment to a pair 
of spectrum compatible synthetic ground motions. 
Thus, the observations of the study may provide insight 
into the fundamental mechanics regulating demand 
amplifi cation (such as participation of higher modes, 
difference in dynamic behavior between regular and 
irregular asymmetry, etc.) and are thus indicative of the 
basic trends in demand amplifi cation. In this context, 
the current investigation revisits the seismic demand 
and accounts for strength-dependent stiffness through 
a comprehensive consideration of structural parameters 
under representative suites of ground motions. The 
conceptual framework is outlined and illustrated to 
utilize the design charts in practical design. The rationale 
and transparency of the proposed approach as well as the 
design charts furnished herein may prove useful in the 
design of plan-asymmetric systems.

2   Conceptual framework

This study focuses on the seismic response of plan-
asymmetric systems in a unifi ed format recognizing the 
strength-dependent stiffness behavior of the lateral load-
resisting element. To this end, an analytical framework 
is established that explicitly considers the implications 
of strength-dependent stiffness. Companion symmetric 
analogues presented in Fig. 2(a) show that the lateral 
load-resisting elements are assumed to be oriented along 
two principal axes. Thus, in the related asymmetric 
model, eccentricities along one/both the principal axes 
may exist. It is customary to measure such eccentricities 
axis-wise (principal). Thus, in a uni-directionally 
eccentric system, eccentricity along one axis (erx 
or ery) is specifi ed while bi-directionally eccentric 
systems are characterized by specifying both erx and ery. 
Alternatively, system asymmetry may be completely 
defi ned by specifying the distance (err) between the 
center of mass (CM) and center of stiffness (CR) along 
the line joining CM and CR together with its angle of 
inclination (erθ) with one of the principal axes (Fig. 2b). 
This simple analogy, in contrast to the traditional one, 
combines the general class of plan-asymmetric systems 
in a unique format.

In this context, it may be reiterated that the position 
of CR cannot be established prior to the strength 
assignment. However, relative yield displacement of 
load-resisting elements may be estimated with reasonable 
accuracy based only on the architectural drawings 
(Paulay, 2001b; Aschheim, 2002). Subsequently, the 
distance of reference yield displacement center (CΔ) 
with respect to CM (CΔ^CM|x) may be estimated 
along any principal axis (i.e., x-axis) by employing the 
following analytical expression (refer to Appendix A for 
detailed derivation).

CΔ^CM|x =
1
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where γx defi nes the position of the center of mass 

                        (a) Lateral load-resisting wall               (b) Constant stiffness model                 (c) Constant yield displacement model

Fig. 1   Force-displacement relationship of wall-type elements used in Sommer and Bachmann, 2005 (extracted from 
                        De Stefano and Pintucchi, 2008)
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normalized to Dx along the x-axis; lwiy is the wall length 
of ith element oriented along the y-axis; η(j−1)^jx

 is the 
spacing between the (j-1)th and jth element measured 
along the x -axis; Dx is the plan dimension of the deck 
along the x-direction and ny is the number of elements 
oriented in the y-direction where element numbering 
increases in the positive direction of the axis (also refer 
to Fig. 2(c)). κiy is the relative strength distribution factor 
(ratio of element strength to strength of the system in the 
y-direction) and the mathematical exponent p are unity 
to compute CΔ^CM (to be independent of strength). 
Similarly, CΔ^CM|y, i.e., the distance of reference yield 
displacement center (CΔ) with respect to CM along the 
y-axis, may be estimated.

It has been recognized elsewhere (Tso and Myslimaj, 
2003) that the distance between the center of strength 
(CV) and center of resistance (CR) may be approximated 
to be equal to yield displacement eccentricity. Thus, 
CΔ^CM may be indicative of the distance of CR from 
CM where the strength distribution is prescriptively 
targeted to be CV-CM coinciding; this situation is 
also assumed in the current investigation (Fig. 2d(i)). 
Subsequently, the CR may be mathematically quantifi ed 
in terms of err and erθ as 

   err  = [(CΔ^CM|x)
2  + (CΔ^CM|y)

2]0.5            (2a) 

and        erθ = arctan[CΔ^CM|y÷ CΔ^CM|x|]                 (2b)

Thus, err and erθ may be computed at the beginning of 
the design process with reasonable accuracy. Even when 
CV is not intended to match with CM (e.g., ‘Balanced 
CV-CR’ strategy as in (Fig. 2d(ii)), presuming the relative 
strength of the elements, the actual location of CR may 
be arrived at by introducing κ and setting the exponent p 
to -1 in Eq. (1).  Since for the desired performance limit, 
strength distribution is often a perceptive choice of the 
designer, err may be estimated with reasonable precision 
relative to the inherent uncertainties in seismic design.   

3   Modeling of the system

A single story rigid diaphragm model with three 
degrees of freedom, two translations in two mutually 
orthogonal directions and one in-plane rotation, is used 
in this study. A representative dynamic model is shown 
in Fig. 3 for reference. A rigid diaphragm is assumed 
to be supported by axially inextensible load-resisting 

                           (a) Reference symmetric system                                                  (b) Generic representation of asymmetry

(c) Location of yield displacement center (CΔ)                                                               (d) Strength distribution 

(i) CV-CM coinciding                                       (ii) Balanced CV-CR

Fig. 2  Unifi ed representation of equivalent single story system and associated strength distribution, i.e., CV-CM coinciding and 
             Balanced CV-CR
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elements with stiffness and strength in their planes only. 
Mass (M) is assumed to be distributed at the fl oor as 
regulated by the radius of gyration rg. Under seismic 
excitation, standard equations of motion are used to 
model the system using well-known procedures (refer 
to Clough and Penzien, 1993). Two typical structural 
plan confi gurations with different torsional stiffness 
are considered (Fig. 2(a)). The implication of plan-wise 
distribution, explained elsewhere (Dutta, 2001), is also 
summarized herein. In the relevant asymmetric system, 
the stipulated amount of eccentricity is introduced in 
the parametric study by increasing the stiffness of the 
lateral load-resisting element of one edge by a calculated 
amount and decreasing it at the opposite edge by an 
equal amount. This does not cause any change in the 
overall stiffness of the idealized system. The lateral load-
resisting edge element with lesser stiffness is designated 
as the fl exible element and the opposite edge element 
with greater stiffness is referred to as the stiff element. 

4   Ground motions

During bi-directional seismic shaking in bi-
directionally eccentric structures, eccentricities along 
two principal directions result in two torsional moments. 
The effect of torsion seems to be amplifi ed if the moments 
generated due to eccentricities in each direction are 
additive in nature, while the mutually cancelling nature 
of such moments tend to reduce the impact of torsion. 
Such addition or cancellation of two torsional moments 
depends on the relative sense of eccentricities regulated 
by the quadrant-wise location of resistance centers. 
For instance, in a seismic event, two systems with 
resistance centers in the fi rst and second quadrant (e.g., 
systems located on either side of a road intersection 
where the street facing sides may be considered as 
fl exible elements because of larger openings) should 
be subjected to different torques (two torques induced 
due to a pair of ground motion will be additive in one 
case and subtractive in the other). Further, interaction 

between such a pair of torsional moments (additive/
cancelling) on a bi-directionally eccentric system may 
be additive or cancelling depending upon the ground 
motion characteristics (in phase or out of phase) and 
hence the maximum response considering both types of 
eccentricities are considered for design.

Seismic response may be sensitive to ground 
motion characteristics such as frequency content, 
pattern of pulses, duration of shaking, fault-rupture 
mechanism, etc. In this context, three suites of ground 
motions (short duration, SD; long duration, LD 
and forward directive, FD), each comprising three 
representative ground motion records, are used in the 
present study. Details of the ground motion records, 
selected from a related work (Aschheim and Black, 
1999), are provided in Table 1. The ground motion 
histories and associated spectra are given in Fig. 4. 
Further, two uncorrelated synthetic ground motions 
consistent with the spectrum depicted in the Indian 
standard (IS 1893: 1984) are employed herein. Code-
specifi ed design spectrum and the response spectrum 
regenerated using this synthetic ground acceleration data 
(PGA = 0.1g) and presented elsewhere (Roy, 2009), are 
shown to have good agreement.

In this study, elastic strength demand of the reference 
symmetric system due to each ground motion is computed. 
The initial strength of the related symmetric system, 
recognizing apparent stability of yield displacement, 
may be conveniently estimated using yield displacement 
spectra (Aschheim, 2002). System strength computed in 
this way is distributed among the elements in proportion 
to the tributary area so that the center of strength (CV) 
coincides with center of mass (CM), which is a desirable 
strength distribution criterion particularly at the Life 
safety/Collapse Prevention state (Fig. 2d(i)). Limited 
case studies have been conducted that distribute strength 
so that CV and CR lie on either side of CM at an equal 
distance (a special case of ‘Balanced CV-CR’ design) 
as shown in Fig. 2d(ii). The response reduction factor, 
R, is considered to evaluate the seismic demand under 
different seismic hazards. R is defi ned as the factor by 
which the force demand generated if the structure were 
to remain elastic is reduced to obtain the design lateral 
force. This R can hence be used as a measure of the 
likely inelastic seismic hazard of a given structure. In the 
parametric study, to achieve a specifi c inelastic action 
defi ned by R, ground motion is appropriately scaled up 
without altering element strength. In the event of an 
earthquake, seismic demand depends on the degree of 
inelastic activity. Thus, the choice of PGA that the elastic 
strength is decided for is only of relative signifi cance. 
Hence, although the choice of PGA value depends on 
the seismic activity of a particular region, the results 
provided herein are generic in nature.

5   Methodology

This section outlines the general framework of the 

Fig. 3   Schematic diagram of reference dynamic model
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fi nite element-based computational scheme used herein 
for three-dimensional frame analyses in the nonlinear 
range. Standard system parameters such as mass, mass 
moment of inertia; stiffness, strength of the elements 
etc. are given as basic input to the program. The entire 
time domain is divided into a large number of time 
steps. In the parametric simulation, mass of the system 
is adjusted to achieve a target lateral uncoupled period, 
while different torsional periods are set to regulate 
the distribution of the mass by varying the radius of 
gyration. A simple elasto-plastic hysteresis model is 
used as constitutive characteristics of the load-resisting 
elements. For each time step, the global displacement 
vector at the end of the previous step is a known input 
(initialized as null). The displacement vector for each 
individual element is obtained with this input. The 

element displacement vector is fed as an input to the 
hysteresis subroutine and the elemental spring force 
vector is computed. These elemental spring force 
vectors for all elements are then assembled to obtain the 
global force vector. Under specifi ed ground acceleration 
histories, standard equations of motion are solved in 
the time domain using Newmark’s β-γ scheme, which 
considers constant average acceleration over each 
incremental time step. While Newmark’s parameters γ 
and β are chosen, respectively, as 0.5 and 0.25, iterations 
are performed in each incremental time step using the 
modifi ed Newton-Raphson technique. The time step 
of integration is taken as less than Tl/1000 second to 
ensure convergence (Tl is the lateral natural period of 
the system). Thus, the global incremental displacement 
vectors for the current step are calculated. 2% of critical 

Table 1   Details of ground motions used (Aschheim and Black, 1999) 

Identifi er Date of 
occurrence Magnitude Station Component PGA (g) Epicentral 

distance (km)

Sh
or

t d
ur

at
io

n 
(S

D
)

IV79ELCN.140 Imperial valley 
15 Oct 1979

ML = 6.5 El Centro 
Array #7

140 0.338 28
IV79ELCN.230 230 0.415

LP89CORR.090 Loma Prieta 
17 Oct 1989

MW = 6.3 Corralitos 
Eureka 

Cayon Road

90 0.463 8
LP89CORR.000 0 0.644

NR94CENT.360 Northridge   
17 Jan 1994

MW = 6.7 Century 
City

360 0.222 19
NR94CENT.090 90 0.583

Lo
ng

 d
ur

at
io

n 
(L

D
)

CH85LLEO.010 Central Chile 
3 Mar 1985

ML = 7.8 Llolleo-
Basement 
1-Storey 
Building

10 0.712 60
CH85LLEO.100 100 0.445

LN92JOSH.360 Landers        
28 Jun 1992

MW = 7.4 Joshua Tree 360 0.274 15
LN92JOSH.090 90 0.284

TA78TABS.000 Tabas, Iran 
16 Sep 1978

ML = 7.4 Tabas 0 0.836 75
TA78TABS.090 90 0.852

Fo
rw

ar
d 

di
re

ct
iv

e 
(F

D
)

LN92LUCN.000 Landers        
28 Jun 1992

MW = 7.4 Lucerne 0 0.785 42
LN92LUCN.275 275 0.721

  
LP89SARA.000 Loma Prieta 

17 Oct 1989
MW = 6.9 Saratoga 

Aloha 
Avenue

0 0.512 28
LP89SARA.090 90 0.324

IV79BRAW.225 Imperial valley 
15 Oct 1979

ML = 6.5 Brawley 
Airport

225 0.160 43
IV79BRAW.315 315 0.220

            Mw: Moment magnitude, ML: Richter magnitude and PGA: Peak ground acceleration 
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damping in each mode of vibration is considered to 
constitute the damping matrix.

6   Details of parametric studies

Systems with varying period (Tl), i.e., 0.2 s, 1.0 s and 
3.0 s, representative of short, medium and long period 
ranges, are examined. Response reduction factor R is 
considered to vary as 1, 2, 4 and 6 to systematically cover 
the entire feasible range. The response of asymmetric 
structures normalized due to dynamically equivalent 
reference symmetric systems is presented to identify 
the impact of asymmetry alone. In view of the strong 

dependence of seismic torsional behavior on fundamental 
torsional-to-lateral period ratio (τ) of the corresponding 
uncoupled system, response quantities are estimated for 
different τ in the range of 0.25 to 2.0 representative of 
torsionally stiff and fl exible systems, respectively. These 
parameters refl ect the relative proximity of torsional and 
lateral period and are likely to capture the interdependent 
coupled behavior between lateral earthquake force and 
earthquake-induced torsion. Note that mass distribution 
is quantifi ed through the variation of the radius of 
gyration (rg), while the distribution of stiffness is 
expressed in terms of the parameter Kθ /K. Thus, the 
period ratio τ can be expressed as rg/( Kθ /K)0.5. However, 
it is obvious that several combinations of rg and Kθ/K are 

Fig. 4  Typical ground motion histories and associated spectra (a) Short duration (SD), (b) Long duration and (c) Forward directive 
(FD)
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possible corresponding to a unique value of rg/(Kθ /K)0.5. 
This implies that more than one structure with identical τ 
and Tl may exist corresponding to different combinations 
of mass and stiffness distribution. In order to distinguish 
these structures, the Kθ /K ratio is therefore specifi ed. In 
this context, the current investigation primarily considers 
normalized stiffness parameter Kθ /(KD2) as 0.5, while a 
few cases with Kθ /(KD2) equals to 0.25 are analyzed for 
comparison. In numerical simulation, uncoupled lateral 
periods of these systems are set by suitable adjustment of 
mass; meanwhile, the mass moment of inertia is varied 
by specifying rg to achieve different torsional periods.

7   Results and discussions

The response of systems with different eccentricities 
is computed under bi-directional ground motion applied 
along two principal directions of the system. Maximum 
in-plane deformation of the edge elements (U* as in Fig. 3) 
due to the coupled effect of translation and torsion 
over the entire earthquake history is normalized by 
those of the reference symmetric model. The quantities 
computed for load-resisting elements orientated in both 
the principal directions are compared for fl exible and 
stiff sides separately and the greatest ones are referred 
to herein as maximum normalized element displacement 

Fig. 5  Variation of maximum normalized displacement response with change of erθ
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of the respective side. Figure 5 describes the variation of 
the maximum normalized element displacement for both 
fl exible and stiff sides as a function of erθ, while a similar 
variation with change of err/D is presented in Fig. 6. 
These curves describe the variation of the mean of 
responses under a set of ground motions belonging to a 
predefi ned category, i.e., LD, SD and FD.  The results also 
include the coeffi cient of variation (COV) of the relevant 
response parameter with reference to the categories of 
ground motion records used. Combinations of other 
infl uential parameters are chosen to cover torsionally 
fl exible to stiff systems with various lateral periods and 
different degrees of inelastic excitation defi ned by R. On 
the basis of the exhaustive case studies, it is shown that 
the impact of asymmetry, for short period system, seems 

to be paramount under LD ground motion (Mean:  1.4 to 
1.70 and COV:  0.25), while the same generally attains 
the peak under the FD type of record for medium (Mean: 
1.5 to 2.0 and COV: 0.25) and long period (Mean: 1.7 to 
3.0, COV: 0.25 to 0.32) systems.

It is perceived that the accumulated plastic strain in 
load-resisting structural elements during several cycles 
of repetitive loading may be a more rational parameter 
to assess damage. To this end, the infl uence of lateral-
torsional coupling on the inelastic range response is 
also assessed through normalized hysteretic energy 
ductility demand (NHEDD denoted as μH) (Mahin 
and Bertero 1981). Physically, this implies the ratio 
between the equivalent displacements required by 
a similar elasto-plastic system to dissipate an equal 

Fig. 6  Variation of maximum normalized displacement response with change of err/D
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amount of energy as that in the original system under 
a monotonic loading and the yield displacement. The 
variation of the maximum normalized hysteretic energy 
ductility demand, normalized by the same quantity from 
an associated symmetric system (μH0), i.e., μH/μHo, is 
presented in Fig. 7 and Fig. 8. Variation in response, to 
a lesser extent, appears to be sensitive to the parameter 
erθ and generally refl ects an increasing trend as err/D is 
increased for stiff sides. A comparison of Fig. 5 and Fig. 
6 with Fig. 7 and Fig. 8 shows a greater sensitivity of 
the accumulated damage index (μH/μHo) relative to the 
maximum normalized element displacement with the 
change of the system eccentricity, i.e., erθ and err/D.

Recognizing the sensitivity of seismic response of 
asymmetric systems to the plan-wise distribution of 

load-resisting elements, response for similar systems 
with Kθ/(KD2) equals to 0.5 and 0.25 over a wide range 
of variation of τ (0.25–2.0) is examined under synthetic 
ground motions and furnished in Fig. 9. Response 
arising out of such plan-wise distribution, though not 
consistent, seems to be infl uenced particularly at low 
response reduction factor and tends to be less sensitive 
for higher response reduction factor (R). 

In this perspective, it may be interesting to examine 
the effi cacy of the ‘Balanced CV-CR’ design technique 
using the ‘CV-CM coinciding’ design strategy. In this 
type of parametric study, strength and stiffness centers 
are spaced at a distance of 0.025 D on either side of the 
CM in the ‘Balanced CV-CR’ design, resulting in err = 
0.025 D and erθ = 900. However,  the equal distance of CV 

Fig. 7  Variation of maximum normalized hysteretic energy ductility demand with change of erθ
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and CR with respect to CM as chosen herein is a typical 
one and actually depends on the performance state. On 
the other hand, err = 0.5D and erθ = 90º is assumed in the 
‘CV-CM coinciding’ design approach. These systems 
are analyzed under code-compatible synthetic ground 
motion for a wide range of τ and representative R. 
The results are presented in Fig. 10 and reveal a better 
performance of the ‘CV-CM coinciding’ design strategy 
relative to the ‘Balanced CV-CR’ for higher R factors, 
which indicates higher seismic hazards. However, the 
performance of the ‘Balanced CV-CR’ design appears 
to be comparable under minor earthquakes. In the 
framework of performance based design, this implies 
that for design performance states such as Life safety 

or Collapse prevention, The ‘CV-CM coinciding’ 
design may be preferred; while the performance of the 
‘Balanced CV-CR’ design appears to be comparable at 
the Immediate Occupancy Level (Vision 2000, 1995). 
This observation is physically intuitive. In the Life 
Safety and Collapse Prevention Level, the load-resisting 
elements have a propensity to be more in the plastic 
domain during the seismic event and hence minimizing 
strength eccentricity leads to a better performance under 
these circumstances,. 

It may be envisioned that the performance of both 
the proposed strength design techniques seems sensitive 
to the pre-yield and post-yield duration of load-resisting 
elements and hence on ground motion characteristics. 

Fig. 8  Variation of maximum normalized hysteretic energy ductility demand with change of err/D
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Fig. 9  Comparison of response of systems with different plan-wise distribution
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Fig. 10  Performance of ‘Balanced CV-CR’ and ‘CV-CM coinciding’ strength distribution
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The relative performance of these two design strategies, 
therefore, deserves further investigation using ensembles 
of ground motion records.

8   Design recommendations

Upon closer scrutiny of the variation in response 
(Fig. 5 to Fig. 10), it is recognized that a defi nitive 
trend in the inelastic seismic response does not appear 
possible. Rather, a compilation of the comprehensive 
case studies covering different system parameters 
and representative ground motions reveals potential 
dispersion in the computed results (COV ranges 
between 0.01 to 1.51). In this context, the response of 
systems with different dynamic characteristics (i.e., Tl 
and τ) and degree of asymmetry (quantifi ed by err and 
erθ) is computed for various R under the three sets of 
ground motions (SD, LD and FD) considered herein. 
these response quantity is normalized by that due to the 
corresponding symmetric counterpart to evaluate the 
amplifi cation in response for both fl exible and stiff sides. 
Observing the trendless variation in response and also 
in view of uncertainties of the characteristics of future 
earthquakes, for the purpose of design, normalized 
response quantities are averaged without regard to the 
distinction among SD, LD and FD characteristics of 
ground motion data. Thus, the mean of such normalized 
amplifi cation factors are presented in Fig. 11 to Fig. 13 
in the form of concentric semi-circles. Radial distances 
physically represent normalized err, while the erθ value 
is provided on the radial lines. The amplifi cation factor 
is presented at the intersection between the radial and 
semi-circular lines. Design charts for short, medium 
and long period systems corresponding to τ = 0.5, 1.0 
and 1.5 are given in Fig. 11 and Fig. 12 under different 
performance states (R = 2, 4). The quantities for τ = 
0.5 and 1.5 are also presented in Fig. 13 under severe 
seismic hazards (R = 6). It may be observed that these 
magnifi cation factors for erθ equals to 0º and 90º, both 
representing so-called mono-symmetric systems, are 
different due to the difference in characteristics of 
ground motion components and the maximum should 
be taken for design. The mean amplifi cation factor 
read from the design curves may be modifi ed, at the 
discretion of the designer, by adding Iσ where I is the 
importance factor and σ is the standard deviation. To 
this end, the importance factor recommended in seismic 
design codes may be used and standard deviation may be 
computed using COV as 0.25. These curves are believed 
to be useful to readily assess the seismic demand of a 
system if the values of Tl, τ and design R are known. The 
seismic demand can be estimated from the uncoupled 
lateral and torsional periods of the structure using the 
simple procedure outlined in Appendix A and defi ned in 
a recent study (Dutta and Roy, 2011). The parameters 
that defi ne system asymmetry (i.e., err and erθ) may be 
estimated using formulations outlined in Eqs. (1) and 
(2). It may, however, be noted that after evaluation of 

the seismic demand from the design chart, it is necessary 
to trace back the fl exible and stiff sides of the systems 
by simple physical inspection. This may also be arrived 
at by locating CΔ following Eq. (1) as CR should be 
located at an equal distance (CΔ^CM) apart from CM 
on the extension of the line joining CM and CΔ to the 
diagonally opposite quadrant. For example, if CΔ is 
located in the fi rst quadrant, CR should be in the third 
quadrant and vice-versa. The actual location of CR may 
also be obtained, in general, by equation (1) substituting 
suitable values of κ (using p = -1). 

A single-story building consisting of a square 
concrete deck of dimension Dx (= Dy =10 m) and weight 
W of 900 kN is used to further explain the use of the 
design charts. The building is supported by reinforced 
concrete fl exural walls oriented in the x-direction and y-
direction, respectively (see Fig. 14). All the walls have 
a height of 7.5 m and thickness of 0.3 m. The length of 
the x-direction walls are 2.5 m and 3.0 m (E 3 and E4), 
respectively. The length of the y-direction walls are 
2.0 m and 3.5 m (E 1 and E 2), respectively. The nominal 
design strength in both directions is 0.19 W, i.e., 171 
kN (say for R = 4). The yield strength of the reinforcing 
bar is 300 MPa and the Young’s modulus of concrete is 
2×105 MPa. The amplifi cation of the seismic demand is 
estimated step-by-step and is provided in Table 2(a) and 
Table 2(b). For the present problem, mean amplifi cation 
is estimated to be 1.56 and 1.55 for the fl exible and stiff 
sides, respectively. Thus, in design, magnifi cation in 
demand, assuming an importance factor I of the structure 
as unity, may be taken as 1.95 and 1.94 for fl exible and 
stiff sides (taking COV = 0.25).

9   Summary and conclusions

In the perspective of performance-based design 
(Priestley, 2000) and recognition of strength dependent 
stiffness attributes of structural elements, existing 
codifi ed provisions for the design of plan asymmetric 
systems does not appear conceptually sound. In this 
context, the present study attempts to comprehensively 
assess the amplifi cation in response induced due to 
torsion in a rational framework. Observations presented 
in the form of design charts are useful without regard to 
the uni-directional or bi-directional nature of eccentricity 
of the system. The study may be summarized into the 
following broad conclusions:

(1) In light of the interdependence between strength 
and stiffness, in many design contexts, the location 
of CR may be estimated with reasonable accuracy 
employing the formulation developed herein in systems 
where CV coincides with CM; which is often a desirable 
strategy in Life Safety and Collapse Prevention design 
levels. A thoughtful application of the same technique is 
perceived to yield adequate results for systems designed 
with the ‘Balanced CV-CR’ technique.

(2) The study proposes a generic yet simple format 
to evaluate the seismic response of plan-asymmetric 
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(a)  Short period system

(b)  Medium period system

Fig. 11   Design chart for systems with varying torsional resistance under minor seismic hazard (R = 2)
(c)  Long period system
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Fig. 12   Design chart for systems with varying torsional resistance under moderate seismic hazard (R = 4)

(a)  Short period system

(b)  Medium period system

(c)  Long period system



Fig. 13   Design chart for systems with varying torsional resistance under severe seismic hazard (R = 6)

(a)  Short period system

(b)  Medium period system

(c)  Long period system

Fig. 14   Layout of example building frame with asymmetry

Unit: mm

systems in lieu of the conventional approach that 
distinguishes systems as uni-directionally and bi-
directionally asymmetric. It is advocated that the choice 
of one reference axis aligned along a line joining the CM 
and CR of the system and the other normal to it, always 
leads to a unique representation of all categories of the 
plan-asymmetric system.

(3) Seismic vulnerability of plan-asymmetric 
structures appears to be sensitive to the characteristics 
of ground motions. The effect of asymmetry for short 
period systems seems to be paramount under LD ground 
motion; while these systems generally attain their peak 
under FD type records for medium and long period 
systems. 

(4) Seismic response, albeit sensitive to the plan-
wise distribution of lateral load-resisting elements, 
appears to bear marginal relevance for greater R, i.e., in 
Life Safety and Collapse Prevention levels.

(5) The ‘CM-CV coinciding’ strength design 
strategy tends to offer superior performance, particularly 
in the Life Safety and Collapse Prevention levels. 
However, the performance of this strength design seems 

No.1                                                      Rana Roy et al.: Seismic demand of plan-asymmetric structures: a revisit                                                                            113

Y

X



comparable to the particular case of ‘Balanced CV-CR 
design’ adopted herein for the Immediate Occupancy 
level.

(6) Combining the preceding two conclusions, 
it is shown that in regions of severe seismic activity, 
the observations presented herein tend to be generic 
irrespective of the plan-wise distribution of the load-
resisting elements. 

(7) The design charts presented herein for various 
edge elements cover a wide range of variation in the 
dynamic characteristics of systems and performance 
states may be judiciously used as convenient design-
aids. For important structures and zone-specifi c 
characteristics of ground motion, these guidelines may 
offer preliminary information relevant to the seismic 
vulnerability of the system. To this end, the torsional-to 
lateral period ratio of the system may be conveniently 
evaluated using the formulation outlined in Appendix 
A.  

To summarize, this study evaluates the seismic 
behavior of plan-asymmetric systems while recognizing 
the strength-dependent stiffness behavior of lateral 
load-resisting elements. Design charts are prepared in 
a unique format and developed through comprehensive 
case studies that cover representative system parameters. 
Observing the variation in response, in the opinion of the 

authors, the ‘CV-CM coinciding’ strength design strategy 
may be employed for structures located in regions of 
moderate to high seismic activity. The observations 
made herein are also believed to be applicable to 
torsionally coupled multistory systems with regular 
asymmetry. Fundamental uncoupled lateral and torsional 
periods of these systems, assuming uniform distribution 
of mass and stiffness over stories,  may be estimated 
by multiplying the relevant expressions in Eqs. (A 2.1) 

and (A 2.2) by a factor equal to 
N N× +⎡

⎣⎢
⎤
⎦⎥

( ) .1
2

0 5

, 

where N represents the number of stories (Dutta and 
Roy, 2011).
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Appendix A: fundamental derivations

A1: Yield displacement eccentricity (CΔ^CM) and 
stiffness eccentricity (CR^CM)
Part-I: Yield displacement eccentricity (CΔ^CM)

Δiy : Yield displacement of structural element 
oriented along y-direction 

∝
1

l
c

lw wiy iy

=                           (A1.1)

where  lwiy = Length of the ith element and c = Constant.  
Taking fi rst moment of yield displacements of all 

elements about element line 1 (refer to Fig. 2(c)), results 
in, 
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Thus, dividing Eq. (A1.2) by sum of the yield 
displacement of all elements, the distance of yield 
displacement center (CΔ) w.r.t. element line 1 may be 
expressed as 
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Hence, the distance between the yield displacement 
center (CΔ) w.r.t. CM, i.e., yield displacement 

eccentricity (CΔ^CM|x) along the x-direction may be 
expressed as 
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where γx defi nes the position of the center of mass 
normalized to Dx along the x-axis (Refer to Fig. 2c)

Part-II: Stiffness eccentricity (CR^CM)

Kiy : Stiffness of the structural element along the y-

direction =
V V

c
l

V
c
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y
iy wiy

n n n

Δ
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                    (A1.5)

where  Vniy = Nominal strength of ith element is oriented 
along the y-direction;

   Vny = Nominal strength of the system in the y-
direction;

    κiy  = Relative strength distribution factor (ratio 
of strength of ith element to system strength in the y-
direction)

Taking the fi rst moment of stiffness of all elements 
about element line 1 (refer to Fig. 2(c)), results in
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Thus, dividing Eq. (A1.6) by the sum of the stiffness 
of all elements, the distance of the center of resistance 
(CR) w.r.t. element line 1 may be expressed as 
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Hence, the distance between the center of resistance 
(CR) w.r.t. CM, i.e., stiffness eccentricity (CR^CM|x) 
along the x-direction may be expressed as 
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R.H. S. of Eqs. (A.1.4) and (A.1.8), for mathematical 
convenience, may be combined as 
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where  p = A mathematical exponent 
For CΔ^CM    p = 1 and κiy = 1;
For CR^CM,   p = -1 and κiy = ratio of strength of the 

ith element to the system strength

A2: Fundamental uncoupled lateral and 
torsional period

The fundamental uncoupled lateral period (Tl) may 
be estimated as under:

 Tl =  2π M
K

                          (A2.1)

where  M = Mass lumped at story; K  = Total lateral story 
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Vnix, Vnjy = Nominal strength of elements in the x and 
y directions, respectively;

Δix, Δjy = Yield displacement of structural elements in 
the x and y directions, respectively, and may be estimated 
using the procedure outlined by Paulay (2001b) and 
Aschheim (2002);

nx, ny = Number of elements in the x and y 
directions;

Analogously, the fundamental uncoupled torsional 
period (Tθ) may be estimated as follows:

Tθ = 2π
I
K
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where  IM = Mass moment of inertia about the reference 
center; 

Kθ = Total torsional story stiffness =  x
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From Eqs. (AI2) ÷ (AI1), the ratio of uncoupled 
torsional-to-lateral period, τ may be estimated as 
follows:
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where xj, yi = distance of the elements from the reference 
center;  rg = Radius of gyration

APPENDIX B: Notations

Following symbols are used:
CV: center of strength of the system
CM: center of mass of the system
CR: center of resistance of the system
CΔ: yield displacement center
CΔ^CM|x: distance between yield displacement 

center and center of mass in x direction
COV: co-effi cient of variation
Dx, Dy: plan dimension of deck in x and y direction 

(taken here as equal to D)
ev: distance between center of strength and center of 

mass
erx or ery: distance of CR from CM along x axis or y 

axis
err: shortest distance between center of mass and 

center of stiffness
erθ:angle of the joining CM and CR with x-axis
FD: earthquake having forward directivity
I: importance factor
IM : mass moment of inertia about reference center
K: lateral stiffness of system
Kθ: torsional stiffness of system
lwiy: length of ith wall oriented along y axis
LD: long duration earthquake
M: mass lumped at story
N: number of story
nx, ny: number of elements oriented in x and y 

direction 
NHEDD: normalized hysteretic energy ductility 

demand
p: a mathematical exponent
PGA: peak ground acceleration
R: Response reduction factor, i.e., ratio of elastic 

strength demand to strength allocated to element
rg: radius of gyration defi ning mass distribution
SD: short duration earthquake
T1: lateral natural period of the system
Tθ: fundamental uncoupled torsional period
UX

*: Deformation of element oriented in x-direction
UY

*: Deformation of element oriented in y-direction
U(i): Displacement in ith degree of freedom
Vnix, Vnjy: nominal strength of element in x and y 

direction
η(j-1)^jx

: distance between (j-1)th and jth element 
along x axis

γx: ratio of center of mass to plan dimension of deck 
along x axis

τ: fundamental uncoupled torsional-to-lateral period
κiy: ratio of ith element strength to strength of system 

in y direction
σ: standard deviation
μH: normalized hysteretic energy ductility demand
μH0: normalized hysteretic energy ductility demand 

for symmetric system
Δiy : yield displacement of element oriented along y 

direction
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