
Vol.11, No.2                             EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                      June, 2012

Earthq Eng & Eng Vib (2012) 11: 273-280                                                                   DOI: 10.1007/s11803-012-0117-1

Free vibrations of simply supported nonhomogeneous isotropic 
rectangular plates of bilinearly varying thickness and 

elastically restrained edges against rotation 
using Rayleigh-Ritz method
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Abstract: This paper addresses the free transverse vibrations of thin simply supported nonhomogeneous isotropic 
rectangular plates of bilinearly varying thickness with elastically restrained edges against rotation. The Gram-Schmidt 
process has been used to generate two-dimensional boundary characteristic orthogonal polynomials, which have been used 
in the Rayleigh-Ritz method to study the problem. The lowest three frequencies have been computed for various values of 
nonhomogeneous parameters, thickness parameters, aspect ratio and fl exibility parameters. A comparison of the results with 
those available in the literature has been made. Three-dimensional mode shapes for the specifi ed plate have been presented.
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1   Introduction

In various engineering fi elds, i.e., aeronautical, civil 
and naval engineering, the vibrations of many structures 
are analyzed by modelling them as rectangular plates 
with simply supported edges. But the condition 
of simply supportness can never be achieved as it 
experiences rotation along edges up to certain extent. 
Thus, these plates can be modelled as simply supported 
plates with elastically restrained edges against rotation. 
In this regard, free transverse vibrations of rectangular 
plates of uniform/non-uniform thickness with all 
possible classical boundary conditions up to 1985 are 
given by Leissa (1969, 1978, 1981, 1987a, 1987b). 
A survey of the work on the vibrations of rectangular 
plates of uniform/non-uniform thickness with elastically 
restrained edges against rotation and/or translation up 
to 1995 has been given by Grossi and Bhat (1995). 
Later, Zhou (1996) presented transverse vibration of 
rectangular plates with elastical restraints using the Ritz 
method. Eigenfrequencies of tapered rectangular plates 
with intermediate line supports have been studied by 
Cheung and Zhou (1999a,b) using the Rayleigh-Ritz 
approach. In another paper, Cheung and Zhou (2000) 
studied vibrations of rectangular plates with elastic 
intermediate line-supports and edge constraints using 

the Rayleigh-Ritz method. Free vibration of Mindlin 
rectangular plates with elastically restrained edges have 
been presented by Zhou (2001) using the Rayleigh-Ritz 
method. Ashour (2004) has investigated vibration of 
variable thickness plates that were elastically restrained 
against translation and rotation using the fi nite strip 
transition matrix technique. Vibrations of rectangular 
plates with general elastic boundary supports have 
been investigated by Li (2004) using the Rayleigh-Ritz 
method. Malekzadeh and Shahpari (2005) have analyzed 
free vibration of variable thickness thin and moderately 
thick plates with elastically restrained edges using the 
differential quadrature method. Li et al. (2009) presented 
an exact series solution for the transverse vibration of 
rectangular plates with general elastic boundary supports. 
Zhang and Li (2009) presented vibrations of rectangular 
plates with arbitrary non-uniform elastic edge restraints 
using the Fourier series method. The authors have found 
only a few papers dealing with vibration of isotropic 
rectangular plates in which the thickness of the plate 
varies in both directions; these are reported in Laura 
and Grossi (1979), Singh and Saxena (1996), Sakiyama 
and Huang (1998), Cheung and Zhou (1999a,b), 
Zhou (2002), Cheung and Zhou (2003), Malekzadeh 
and Shahpari (2005) and Huang et al. (2007). 

Nonhomogeneous elastic plates fi nd their applications 
in the design of space vehicles, modern missiles and 
aircraft wings. Various models for the nonhomogeneity 
of the plate material have been assumed by researchers 
and a brief review has been given in Lal et al. (2010). 
Very recently, in a series of papers, Kumar and Lal 
(2011a,b) and Lal and Kumar (2011c,d,e) studied free 
transverse vibrations of nonhomogeneous rectangular 
plates of uniform/varying thickness.
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The present paper deals with the free transverse 
vibrations of thin simply supported nonhomogeneous 
rectangular plates of varying thickness and elastically 
restrained against rotation using two-dimensional 
boundary characteristic orthogonal polynomials in the 
Rayleigh-Ritz method on the basis of classical plate 
theory. Polynomials, which are a product of boundary 
polynomials (that represent geometric boundary 
conditions and kinematics) with a complete two-
dimensional simple polynomial, are obtained and used 
in the Gram-Schmidt process to generate orthogonal 
polynomials. These orthogonal polynomials can be 
generated once for various values of aspect ratio and 
the use of orthonormal polynomials in the Rayleigh-Ritz 
method leads to a standard eigenvalue problem instead 
of a generalized eigenvalue problem. Nonhomogeneity 
of the plate is assumed to arise due to linear variations 
in Young’s modulus and the density of the plate material 
with the in-plane variables. The thickness of the plate 
varies bidirectionally and is the Cartesian product of 
linear variations along the two concurrent edges of 
the plate. The effect of nonhomogeneity parameters, 
fl exibility parameters, aspect ratio and thickness on the 
lowest three natural frequencies of the rectangular plates 
has been studied. Mode shapes for different values of 
fl exibility parameters have been plotted. Comparison 
of results with those available in the literature has been 
presented. 

2    Formulation 

Consider a simply supported nonhomogeneous 
isotropic rectangular plate {0 ≤ x ≤ a, 0 ≤ y ≤ b} of varying 
thickness h (x, y) with elastically restrained edges against 
rotation, where a and b are the length and the breadth 
of the plate, respectively. The x– and y– axes are taken 
along the edges of the plate and z–axis  is perpendicular 
to the xy– plane. The middle surface is z=0 and its origin 
is at one of the corners of the plate as shown in Fig. 1.  

The expressions for strain energy and kinetic energy 
of the plate are given by  
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 is the fl exural rigidity, E (x, y) 

is the Young’s modulus, ρ (x,y) is the density, υ is the 
Poisson’s ratio  and t is the time.

For a harmonic solution, the defl ection function  
w(x,y,t) is assumed to be 

 w x y t W x y t( , , ) ( , )sin=                     (3)

where ω is the circular frequency.
Using Eq. (3) in Eqs. (1) and (2), the expressions for 

maximum strain energy and kinetic energy of the plate 
become
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The maximum strain energy associated with the 
rotational restraints in the edges is given as follows:
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here W x y( , )  represents the maximum transverse 
displacement at the point (x, y), subscripts denote the 
partial derivative and r ii ( ,..., )= 1 4  are the rotational 
spring constants.

The Rayleigh quotient is given as
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Introducing the non-dimensional variables 
X x a Y y b W W a= = =/ , / , /  together with the 

assumption that the variation of Young’s modulus, 
density of the plate material and thickness of the plate 
is 
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Fig. 1   Geometry of the plate
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where N is the order of approximation to obtain 
the desired accuracy, dk are unknowns and 


k are 

orthonormal polynomials which are generated using the 
Gram-Schmidt process (Singh and Chakraverty, 1994) 
as follows:

Orthogonal polynomials k  over the region 0≤x≤1, 
0≤y≤1 have been generated with the help of linearly 
independent set of functions L l l kk k= =, , , ,........,1 2 3  
with
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The inner product of the functions say, 1  and 2  is 

defi ned as
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where ( ) ( )( )1 1 11 2 1 2+ + + +   X Y X Y is the weight 
function and the norm of  the function 1  is given by
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The normalization can be done by using 
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Using Eqs. (8) and (9) into Eq. (7) and minimization 
of the resulting expression for ω2 with respect to dk leads 
to the standard eigenvalue problem 
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The integrals involved in Eq. (15) have been 
evaluated using the formula (Singh and Chakraverty, 
1994)
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3   Results and discussion

In this study the edges of the plate are simply 
supported and elastically restrained against rotation. 
The numerical values of the frequency parameter Ω 
have been obtained by solving Eq. (14) employing the 
Jacobi method. The lowest three eigenvalues have been 
reported. The values of various plate parameters are 
taken as follows:

Nonhomogeneity parameters:  1 2 0 5 0 3, . , . ,= − −
0 1 0 1 0 3 0 5, . , . , . , .− ; density parameters:  1 2 0 5, . ,= −
0 3 0 1 0 1 0 3 0 5. , . , . , . , .− − ; thickness parameters:  1 2, =
0 5 0 3 0 1 0 1 0 3 0 5. , . , . , . , . , .− − − ; aspect ratio: a b/ . , . ,= 0 5 1 0
. , .1 5 2 0 ; fl exibility parameters: R1 = R2 = R3 = R4 = R = 10, 

100, 1000, 10000, 1000000 and υ = 0.3.
To choose the appropriate value of the order of 

approximation N, a computer program developed in 
C++ to evaluate the frequency parameter Ω was run 
for different values of N. The accuracy of the results 
increases as the value of N increases. In all the above 
computations, N = 56 has been fi xed. The use of 
polynomials in the Rayleigh-Ritz method leads to an 
instability condition but no such problem occurred 
up to N=56 as the calculations have been performed 
using double precision arithmetic. Table 1 shows the 
convergence of the frequency parameter Ω with N for 
a particular set of plate parameters, where a maximum 
value of N was required. 

The results are presented in Figs. 2–7. Figure 2 
shows the effect of the nonhomogeneity parameter α1 
on the frequency parameter Ω for α2= 0.5, β1=±0.5, 
β2=0.5, γ1=γ1=0.5, R=10,1000, a/b=1 for fi rst two modes 
of vibration. It is observed that it increases as the values 
of α1 increase. Further, it decreases as the values of β1 
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increase and increases as the values of R increase. Figure 
3 depicts the behavior of the frequency parameter Ω with 
the density parameter β1 for α1=α2=0.5,  β2=0.5, γ1=±0.5, 
γ2=0.5, R=10, 1000, a/b=1 for the fi rst two modes of 
vibration. It is observed that it decreases as the values 
of β1 increase and increases as the values of thickness 
parameter γ1 and fl exibility parameters represented by 
R increase. The effect of the thickness parameter γ1 on 
frequency parameter Ω is shown in Fig. 4 for α1=±0.5, 
α2=0.5,  β1=β2=0.5. γ2=0.5, R=10, 1000, a/b=1. It is 
observed that it increases as the values of γ1, α1 and R 
increase. Figure 5 shows the behavior of the frequency 
parameter Ω with an aspect ratio a/b for α1=α2=0.5, 

β1=±0.5, β2=0.5, γ1=γ1=0.5, R=10,1000, for the fi rst two 
modes of vibration. It is observed that the frequency 
parameter Ω increases as the values of the aspect ratio 
a/b and R increase, while it decreases as the values of β1 
increase. Further, it is noticed that the rate of increase of 
Ω with a/b is more pronounced for a/b>1 as compared to 
a/b<1 in the case of the fi rst mode, while it is reversed in 
the case of the second mode, i.e., the rate of increase of 
Ω  with a/b is more pronounced for a/b<1 as compared 
to a/b>1. Figure 6 demonstrates the effect of R on the 
frequency parameter Ω for α1=±0.5, α2=0.5,  β1=β2=0.5, 
γ1=±0.5,  γ2=0.5, a/b=1 for the fi rst two modes of 
vibration. It is observed that the frequency parameter Ω 

Table 1  Convergence of frequency parameter Ω of nonhomo-
geneous simply supported square plates with 
elastically restraint edges against rotation for 
R=1000000

     

        N

                          a/b=1  
α1=α2=β1=β2=γ1=γ2=−0.5

                         Mode
     I                    I I                       I I I  

10 3679.59 7627.05 36469.3
20 20.6893 47.4579 52.8973
30 19.6699 39.9854 43.1367
40 19.3877 39.4130 39.9418
50 19.3330 38.7145 39.3875
53 19.3234 38.4439 39.3860
54 19.3228 38.4430 39.3859
55 19.3228 38.4430 39.3859
56 19.3228 38.4430 39.3859

Fig. 2 Frequency parameter Ω —:Mode I; ----:Mode 
II; for α2=β2=γ1=γ2=0.5, a/b=1: □, β1=−0.5, R=10; o, 
β1=−0.5, R=1000; Δ, β1=0.5, R=10; ×, β1=0.5, R=1000
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Fig. 3 Frequency parameter Ω—:Mode I; ----:Mode 
II; for α1=α2=β2=γ2=0.5, a/b=1: □, γ1=−0.5, R=10; o, 
γ1=−0.5, R=1000; Δ, γ1=0.5, R=10; ×, γ1=0.5, R=1000
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Fig. 4 Frequency parameter Ω —:Mode I; ----:Mode 
II; for α2=β1=β2=γ2=0.5, a/b=1: □, α1=−0.5, R=10; o, 
α1=−0.5, R=1000; Δ, α1=0.5, R=10; ×, α1=0.5, R=1000
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increases as the values of α1 , γ1 and R increase. It is also 
observed that in the case of the fi rst and second modes, 
the value of the frequency parameter Ω  becomes almost 
constant in the neighborhood of R=100 for  α1=γ1=−0.5, 
while for α1=−0.5,  γ1=0.5, α1=0.5,  γ1=−0.5, α1=0.5, 
γ1=0.5, it becomes constant in the neighborhood of 
R=1000 Further, as the value of R approaches infi nity, 
the value of the frequency parameter  Ω  approaches 
that of the fully clamped plate. As the taper ratio γ1/γ2 
(γ1=0.25) increases from 0.5 to 2.0, the value of the 
frequency parameter  Ω  decreases for α1=α2=β1=β2=0.5, 
R=1000, a/b=1  for the fi rst three modes of vibration as 
seen in Fig. 7. A comparison of the frequency parameter 

Ω  for simply supported homogeneous isotropic square 
plates of uniform/non-uniform thickness with elastically 
restrained edges against rotation is shown in Table 2. 
Further, a comparison of the frequency parameter Ω  for 
the limiting case of rotational stiffness tending to infi nity 
for nonhomogeneous simply supported isotropic square 
plates of uniform/non-uniform thickness is shown in 
Table 3. In the computer program, the number 1,000,000 
is considered to represent infi nity. Three-dimensional 
mode shapes for different values of fl exibility parameters 
have been plotted using MATLAB software and are 
shown in Figs. 8–12.

Fig. 5  Frequency parameter  Ω —:Mode I; ----:Mode 
II; for α1=α2=β2=γ1=γ2=0.5: □, β1=−0.5, R=10; o, 
β1=−0.5, R=1000; Δ, β1=0.5, R=10; ×, β1=0.5, R=1000
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Fig. 7  Frequency parameter Ω for α1=α2=β1=β2=0.5, γ1=0.25, 
R=1000, a/b=1: □, γ1/γ2=0.5; o, γ1/γ2=0.75; Δ, γ1/γ2=1.0; 
×, γ1/γ2=2.0
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Fig. 6  Frequency parameter Ω —:Mode I; ----:Mode 
II; for α2=β1=β2=γ2=0.5, a/b=1: □, α1=−0.5, γ1=−0.5; o, 
α1=−0.5, γ1=0.5; Δ, α1=0.5, γ1=−0.5; ×, α1=0.5, γ1=0.5
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Fig. 8  Mode shapes of simply supported square (a/b=1) plate 
          for α1=α2=β1=β2=γ1=γ2=0.5, R=0
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Table 2   Comparison of frequency parameter Ω of homogeneous (α1=α2=β1=β2=0) simply supported square 
                                   (a/b=1) plates with elastically restraint edges against rotation for γ2=0 and υ=0.3

Reference γ1
     R1      R2       R3      R4 Mode I Mode II Mode III

Grossi and Bhat (1985) 0.2 1 0 0 0 22.27 - -
Present 22.1344 - -
Grossi and Bhat (1985) 0.2 10 0 0 0 24.23 - -
Present 23.9692 - -
Grossi and Bhat (1985) 0.2 100 0 0 0 25.86 - -
Present 25.5538 - -
Grossi and Bhat (1985) 0.2 1000 0 0 0 26.14 - -
Present 25.8389 - -
Huang et al. (2007) 0.0 1 1 0 0 20.639 49.721 50.830
Kobayashi and Sonoda 
(1991)

20.639 49.721 50.830

Hung et al. (1993) 20.639 49.721 50.829
Present 20.6394 49.7207 50.8295
Huang et al. (2007) 0 100 100 0 0 28.165 54.109 67.133
Kobayashi and Sonoda 
(1991)

28.165 54.109 67.133

Hung et al. (1993) 28.165 54.109 67.133
Present 28.1650 54.1090 67.1331
Li et al. (2009) 1 1 1 1 21.500 51.187 51.187
Present 21.5019 51.1914 51.1914
Li (2004) 0 10 10 10 10 28.50 60.22 60.22
Li et al. (2009) 28.501 60.215 60.215
Present 28.5022 60.2166 60.2166
Li (2004) 20 20 20 20 31.08 64.31 64.31
Present 31.0812 64.3061 64.3071
Li (2004) 100 100 100 100 34.67 70.78 70.78
Present 34.6716 70.7881 70.7881
Li et al. (2009) 1000 1000 1000 1000 35.842 73.103 73.103
Present 35.8449 73.1235 73.1235

 

Table 3   Comparison of frequency parameter Ω of nonhomogeneous simply supported square (a/b=1)plates with elastically 
                     restrained edges against rotation for R=1000000

 (R1=R2=1000000, R3=R4=0)
Reference α1=α2 β1 = β2 γ1=γ2 Mode I Mode II Mode III
Lal et al. (2010) -0.5 -0.5 0 28.3295 54.2284 68.4010
Present 28.3295 54.2281 68.4008
Lal et al. (2010) 0.5 0.5 0 28.8934 54.7060 69.2490
Present 28.8933 54.7055 69.2486
Lal and Kumar (2011b) -0.5 -0.5 -0.5 15.8288 29.6139 36.5592
Present 15.8292 29.6153 36.5555
Lal and Kumar (2011b) 0.5 0.5 0.5 44.7632 84.3274 105.8450
Present 44.7624 84.3271 105.8420

                              (R1=R2=R3=R4=1000000)
Lal et al. (2010) -0.5 -0.5 0 35.1734 72.0304 72.6703
Present 35.1753 72.0364 72.6747
Lal et al. (2010) 0.5 0.5 0 35.9133 73.2942 73.3265
Present 35.9131 73.2938 73.3260
Lal and Kumar (2011b) -0.5 -0.5 -0.5 19.3194 38.3353 39.3757
Present 19.3228 38.4430 39.3859
Lal and Kumar (2011b) 0.5 0.5 0.5 55.3822 111.9460 112.8270
Present 55.3863 111.9530 112.8410

Hung et al. (1993) 0 0 5 5 22.965 50.811 55.066
Present 22.9650 50.811 55.0659
Kobayashi and Sonoda 
(1991)

0 0 100 100 28.165 54.109 67.133

Grossi and Bhat (1995) 28.168 54.122 67.140
Present 28.1650 54.1091 67.1331
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4   Conclusions

The effect of nonhomogeneity caused by the 
dependence of Young’s modulus and the density of the 
plate material on both the variables x and y on the natural 
frequencies of simply supported isotropic rectangular 
plates of thickness varying bidirectionally and elastically 
restrained edges against rotation has been studied using 
boundary characteristic orthogonal polynomials in the 
Rayleigh-Ritz method on the basis of classical plate 
theory. It is observed that the frequency parameter Ω 
increases as the plate becomes  more and more stiff 
towards the edge x=a and y=b due to the increasing 
values of the parameters α1,α2, and it is the reverse with 
the increasing values of density parameters β1 and β2 . 
This also increases as the plate becomes thicker and 
thicker towards the edges x=a and y=b. Further, an 
increase in the value of a/b and the fl exibility parameters 
R increases the frequency. The percentage variations 
in the value of the frequency parameter Ω for the fi rst 
mode of vibration are -11.6 to 8.8, -13.9 to 11.0 and 
-13.9 to 11.0, respectively, for R=100,10000,1000000 
and γ1=γ2=0.5 when the nonhomogeneity arises due to 
the change in only α1 from -0.5 to 0.5. These variations 
are -14.6 to 10.3, -14.2 to 10.1 and -14.2 to 10.1, 
respectively, for R=100,10000,1000000 and γ1=γ2=0.5 
when the nonhomogeneity arises due to the change in 
only β1 from -0.5 to 0.5. The present analysis will be 
very useful to design engineers in obtaining the desired 
frequency by varying one or more of the plate parameters 
considered here.
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