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A study of local amplifi cation effect of soil layers on ground motion
in the Kathmandu Valley using microtremor analysis
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Abstract: Past researchers have anticipated the occurrence of a great earthquake in the central Himalayas in the near 
future. This may cause serious damage in the Kathmandu Valley, which sits on an ancient lake bed zone, with lacustrine 
sediments of more than 500 m depth. In this study, the predominant frequency of ground motion is evaluated using the 
Horizontal-to-Vertical (H/V) spectral ratio technique and recordings of ambient noise. The results of the H/V ratio show two 
peaks in about 20 percent of the locations, which are distributed mainly in and around the center and northern part of the 
Kathmandu Valley. The predominant frequencies vary from 0.5 Hz to 8.9 Hz in the study area, whereas the second resonance 
frequency varies from 4 Hz to 6 Hz in the center and northern part of the valley. This indicates that the center and northern part 
of the valley have a wide range of resonance frequency due to two levels of impedance contrast − one may be from the surface 
layer and the other may be from the layer underneath. These two levels of resonance indicate the importance of considering 
the effects of surface and lower layers during the planning and designing of infrastructures in the Kathmandu Valley.
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1   Introduction

The Kathmandu Valley, where the capital of Nepal is 
located, falls in one of the most active tectonic zones of 
the Himalayan belt and has experienced many recurring 
destructive earthquakes in the past (Pandey et al., 1995). 
Major historical earthquake damage in the valley was 
reported in 1255, 1408, 1681, 1803, 1810, 1833 and 
1866 (Bilham et al., 1995; Chitrakar and Pandey, 1986; 
Pandey et al., 1995), while the latest strong shaking 
was experienced on 15 January 1934 during an Mw = 
8.1 earthquake (Hough and Bilham, 2008). The 1934 
earthquake had a maximum intensity of X on the MMI 
scale in the Kathmandu Valley and destroyed about 19% 
and damaged about 38% of the buildings in the valley 
(Pandey and Molnar, 1988; Rana, 1935). On the other 
hand, the historical record of earthquake occurrences in 
the Himalayan region reveals that four major destructive 
earthquakes of greater than M8.0 have occurred in the 
region in 1897, 1905, 1934 and 1950 (Ambraseys and 
Douglas, 2004; Seeber and Armbruster, 1981; Khattri, 
1987; Molnar, 1990; Molnar and Pandey, 1989; Hough 
and Bilham, 2008; Yeats and Lillie, 1991; and Yeats 

et al., 1992). As shown in Fig. 1, however, the central 
part of the Himalayas has had no release of energy for 
a long period of time, which Khattri (1987) identifi ed as 
a region of a seismic gap. Many other researchers, such 
as Bilham et al. (1995), Pandey et al. (1995), Pandey et 
al. (1999), have also warned that this particular region 
is a potential location for the next big earthquake in the 
Himalayas. Although the available historical record is 
inadequate for an accurate prediction of the recurrence 
period of great earthquakes in Nepal, the accessible data 
indicate that an earthquake of greater than M8.0 occurs 
at an interval of about 100 years. As it is already about 
80 years from the 1934 Great Earthquake in Nepal, the 
threat of a major earthquake in the region, particularly 
in the Nepal Himalaya, in the next few decades is 
increasing. In 2002, the Japan International Cooperation 
Agency (JICA) conducted a loss estimation study in the 
Kathmandu Valley and predicted that the next major 
earthquake in Nepal might cause tens of thousands 
of deaths and nearly a hundred thousand injuries in 
the valley alone, particularly due to the potential for 
complete destruction of 59,000 houses and buildings.

Several studies reaffi rm the fact that comparatively 
heavy earthquake damage in the Kathmandu Valley 
is associated with the valley ground structure (Hough 
and Bilham, 2008; Pandey and Molnar, 1988; Mugnier 
et al., 2011). Geological exploration has revealed that 
the Kathmandu Valley is an ancient lake deposit, which 
measures several hundred meters at the deepest point and 
is made up of thick layers of clay, silt, sand, and gravel 
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in irregular layers of deposition ranging in age from the 
late Pliocene era to the present (Dongol, 1985; Fujii and 
Sakai, 2002; Moribayashi and Maruo, 1980; Sakai et 
al., 2001; Yoshida and Igarashi, 1984; and Dahal and 
Aryal, 2002). Based on a gravity measurement study, 
Moribayashi and Maruo (1980) have estimated the 
maximum depth of the Kathmandu basin-fi ll sediments to 
be about 650 m. In the central part of the valley, however, 
a drill-well was found to hit the basement rock at a depth 
of about 550 m (Fujii and Sakai, 2002). On the other 
hand, based on previous studies as well as paleoclimatic 
study of the Kathmandu Basin conducted by Sakai et al. 
(2001), Sakai (2001) has divided the valley sediments 
into three groups: (1) marginal fl uvio-deltaic facies in 
the northern part, (2) open lacustrine facies in the central 
part, and (3) alluvial fan facies in the southern part, as 
shown in Fig. 2. Based on the evidence of buildings 
damaged in the valley during past earthquakes, Dixit et 
al. (1998), Hough and Bilham (2008), and Mugnier et al. 
(2011) have mentioned that the valley is characterized 
by strong site effects. The basin sediment thickness and 
material properties vary from place to place, which may 
cause trapping and focusing of seismic waves during an 
earthquake, leading to an evident change in resonant 
frequency over short distances. The resonant frequency 
of a site is particularly important because it indicates the 
frequency of the spectrum under which the near-surface 
soft sediment amplifi es the earthquake ground motion. 
This particular phenomenon is known as the site effect, 
which is generally studied through borehole with PS 
logging, strong ground motion analysis, microtremor 
data analysis, etc. In the context of the Kathmandu 
Valley, however, boreholes with PS logging method 
and strong ground motion analysis are not feasible, 
mainly because of the cost involved and unavailability 
of the strong ground motion data recording system in the 
required site. In this situation, the microtremor analysis 
may be a good option for the study of site effects in the 

Kathmandu Valley.
The microtremor analysis-based method for the 

site effects study was fi rst introduced by Kanai (1957). 
Later, Nakamura (1989) improved this method, and 
now it has become widespread as a low-cost and 
effective tool to estimate the fundamental resonant 
frequency of sediments by measuring the microtremors 
at a single station. According to Nakamura (1989), the 
Horizontal-to-Vertical spectral (H/V) ratio is the Quasi 
Transfer Spectra (Transfer Function) of the soil strata 
over bedrock, which is obtained by taking the spectral 
ratio of the horizontal to vertical component of ground 
motion at a single station. In his paper, Nakamura (1989) 
brilliantly explains the use of this technique and gives a 
detailed explanation of the subsequent assumptions.

The Horizontal-to-Vertical spectral (H/V) ratio 
method has been widely applied in the last two decades 
for the study of site effects in different geographical 
and geological regions of the world. The elaborated 
discussion, applications, validations and limitations 
about the H/V method have come from many 
researchers, such as Bonnefoy-Claudet et al. (2006a, 
2006b), Delgado et al. (2000), Field and Jacob (1993), 
Field et al. (1995), Gosar (2007), Gosar and Martinec 
(2009), Guo et al. (2002), Hardesty et al. (2010), Hung 
and Teng (1999), Lachet et al. (1996), Langston et al. 
(2009), Lermo and Chávez-García (1993), Lermo and 
Chávez-García (1994), Mucciarelli (2011), Parolai et al. 
(2004), Sánchez-Sesma et al. (2011), Toshinawa et al. 
(1997), Theodualidis et al. (2005), Tuan et al. (2011), 
Walling et al. (2009), Wen et al. (2011), Woolery et al. 
(2009), and Zandieh and Pezeshk (2011). These studies 
conclude that the microtremor H/V spectral ratios 
provide a reliable estimate of the resonance frequencies 
of soft soil deposits. Moreover, D’Amcio et al. (2004), 
Delgardo et al. (2000), Dinesh et al. (2010), Gosar and 
Lenart (2010), Ibs-von Seht and Wohlenberg (1999), 
Özalaybey et al. (2011), Parolai et al. (2002), Sukumaran 

Fig.1   Distribution of probable rupture zones of the 1897, 1905, 1934 and 1950 earthquakes along the Himalayan arc. Modifi ed 
              after Yeats and Lillie (1991) and Yeats et al. (1992) and base map is taken from Google Terrain Map (2011)
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et al. (2011) have demonstrated that there is a strong 
correlation between shear wave velocity, resonance 
frequency and thickness of the sediments. They also 
give a very useful relationship between these parameters 
using the H/V method for different geographical and 
geological regions of the world.

Most of the past studies have revealed that the 
distribution of earthquake damage in a particular area is 
correlated with its fundamental frequency (e.g., Gosar, 
2007; Teves-Costa et al., 2007). However, some studies 
also indicate that depending upon the soil conditions 
of underlain strata, a second amplifi ed frequency is 

locally revealed, which can play an important role in 
creating a resonance with the structures built over the 
ground during an earthquake (such as Fäh et al., 1994; 
Toshinawa et al., 1997; Guéguen et al., 1998, 2000). 
As mentioned previously, the geological structure and 
sediment depositional environment in the Kathmandu 
Valley consists of many strata of sand, silt and clay 
sediments, which bring forward a possibility that two or 
more amplifi ed frequencies occur during an earthquake. 
As the valley accommodates a number of low-rise to 
medium-rise buildings, historically important places and 
monuments, there are possibilities during an earthquake 

Fig. 2  Location map of the study area, (a) Map of Nepal and location of the Kathmandu Valley; (b) Geology of the Kathmandu 
            Valley (redrawn after Shakai et al., 2001) and microtremor observation points.
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that the multiple amplifi ed frequency may cause a 
resonance with structures in a broad frequency range, 
leading to an enhanced vibration of the structures and 
possible collapse. Therefore, in this study, an attempt 
has been made to investigate the response of the surface 
and the underneath layer during earthquakes using the 
Horizontal-to-Vertical spectral (H/V) ratio method. 
The main objective of this work is to delineate the 
area of single and multiple resonance frequencies in 
the Kathmandu Valley. More specifi cally, the paper 
focuses on the ground response in the areas which show 
multiple amplifi ed frequencies and the thickness of 
the responsible surface soil layer is calculated for the 
amplifi cation of seismic waves.

2 Data acquisition and analysis

The microtremor observations were made at a total 
of 172 nodal points in a 1-km grid covering about 210 
km2 area in the Kathmandu Valley, as shown in Fig. 2. 
The main source of microtremors in the valley could 
be vehicular movement that takes place almost 24 h in 
the cities of Kathmandu, Lalitpur and Bhaktapur, and 
the industrial facilities in and around the valley. Other 
possible sources of microtremors could also be human 
activities (construction activities, etc.), and the effects of 
winds on trees and buildings within the valley. A portable 
velocity sensor called New PIC was used to measure 
the microtremors, which is capable of recording three 
components of vibration: two horizontal, i.e., east-west 
and north-south, and one vertical. At each grid node, the 
microtremor data were recorded for 300 s at a sampling 
frequency of 100 Hz (i.e., 30,000 samples at each point), 
and were then plotted in terms of velocity-time histories. 
Each component of the recorded signal was corrected 

by the base line and divided into 15 windows of 2,048 
samples (i.e., equivalent to 20.48 s), as illustrated in Fig. 3.

The infl uence of transient signals was minimized 
by taking 10–14 windows, with little or no transient 
signals, and Fourier analysis was carried out separately 
for each window using the Fast Fourier Transform 
(FFT) computer program to obtain the Fourier spectra. 
Then, the Fourier spectra were smoothed by the Parzen 
window at a bandwidth of 0.5 Hz. The average spectral 
ratio of the horizontal component of vibration to vertical 
(i.e., H/V) in each window was derived from Eq. (1) 
(Delgado et al., 2000).

H V F F F/ = +( ) ( )NS EW UD
2 2 22                (1)

Here, FNS, FEW and FUD are the Fourier amplitude spectra 
in the North-South (NS), East-West (EW) and Up-Down 
(UD) directions, respectively.

After deriving the H/V spectral ratios for all windows 
of record on a point, the H/V ratio for each particular 
point was obtained by averaging all those spectral 
ratios. The frequency of the site was obtained based 
on the observed peak in the H/V spectral ratio, which 
according to Bonnefoy-Claudet et al. (2006b), Field and 
Jacob (1993), and SESAME (2004), corresponds to the 
fundamental frequency or fi rst resonant frequency of the 
site. 

In order to calculate the thickness of a sediment 
layer over the bedrock or the thickness of the top soil 
layer, Kramer (1996) has derived an equation for one 
dimensional (1D) ground response analysis. According 
to his derivation, the 1D resonance frequency, denoted 
by f0, is defi ned as the function of S-wave velocity (Vs) 
and the thickness H of the soil deposit, as in Eq. (2).

Fig. 3   Typical pattern of measured microtremor data (a) in east-west direction (X-axis); (b) in north-south direction (Y-axis); (c) in 
            up-down direction (Z-axis)
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In the case of a multi-stratifi ed half-space (n layers), 
resonance frequency f0 can be easily expressed by 
considering a single equivalent layer as follows.
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In this study, the thickness of the uppermost soil layer 
at an area of known shear wave velocity and resonance 
frequency is obtained through Eqs. (2) and (3).

3   Results and discussion

3.1  Frequency distribution in the Kathmandu Valley

The results of the microtremor survey are expressed 
in terms of resonance frequency of the ground at each 
survey point, as typically shown in Figs. 4 (a) and 4(b). 
As seen in the fi gures, microtremor observation point 
P91 has a single amplifi ed frequency, while microtremor 
observation point P82 has two amplifi ed frequencies 
(refer to Fig. 6). Likewise, Fig. 5 shows the H/V spectral 
ratio versus frequency graphs and the multiple amplifi ed 
frequencies for different areas in the Kathmandu Valley. 
Variations in the shapes of H/V curves can be easily 

Fig. 4  (a) A typical single peak H/V spectral ratio; (b) A typical multiple peak H/V spectral ratio

Fig. 5  Example of H/V spectral ratios with multiple amplifi ed frequencies, triangles indicate the fi rst and second resonant 
                  frequencies respectively
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noticed in this fi gure. The fi rst resonant frequency can be 
easily identifi ed because the fi rst peak is smoother than 
the second peak, but it may be diffi cult to exactly identify 
the second resonant frequency in the multiple-peak H/V 
spectral ratio curves. In order to identify the second 
resonant frequency at a particular location, a midpoint 
in the H/V curve with maximum amplitude is taken, but 
in some cases, the midpoint of the curve may not lie in 
the position of maximum amplitude. Both frequencies, 
i.e., fi rst resonant frequency or predominant frequency 
and second resonant frequency as indicated by f0 and f1, 
as shown in Fig. 5, are representative of a particular site 
condition. The occurrence of the multiple peaks may be 
due to the presence of vertical heterogeneity in the soil 
column at that location, and they describe the overall 
seismic site response at two scales, including the deep 
and the upper soil profi le response.

The microtremor analysis results show that about 
80% of the measurement points in the study area exhibit 
single amplifi ed frequencies that vary from 0.58 Hz to 
8.9 Hz, whereas the remaining sites exhibit two amplifi ed 
frequencies, in which the fi rst amplifi ed frequencies 
vary from 0.48 Hz to 1.52 Hz and the second amplifi ed 
frequencies vary from 3.1 Hz to 7.5 Hz. Most of the 
H/V spectral ratios with multiple amplifi ed frequencies 
lie in and around the central and northern part of the 
basin, which is dominated by the marginal fl uvio-deltaic 
facies (river bed materials) (Sakai, 2001), and a few of 
them are found near the bank of the river and also in the 

areas consisting of organic clay with a sandy soil layer. 
A spatial distribution of single and multiple amplifi ed 
frequencies in the study area is shown in Fig. 6. Only 
two multiple amplifi ed frequency points (5 and 18) lie 
in Lalitpur City and 6 points (29, 43, 50, 53, 62 and 85) 
lie in the Bhaktapur City area. The remaining points 
lie in the Kathmandu City area where the population 
density is comparatively high (about 19,000 per km2). 
This indicates that the Kathmandu City area has a 
wide range of resonance frequencies (i.e., 0.48 Hz to 
8.9 Hz) than other areas of the valley. The Kathmandu 
Durbar Square area (a UNESCO cultural heritage site) 
is situated close to points 95 and 114. Similarly, the 
Bhaktapur Durbar Square area (an another UNESCO 
cultural heritage site) is situated very close to point 50. 
Both areas encompass temples of historical and cultural 
importance, archeologically important palace buildings, 
and the UNESCO-recognized world cultural heritage 
sites. Moreover, points 50, 79, 93, 94, 95, 96, 98, 114, 
115, 116, 125, 127, 128, 136, 137, 149 and 150 (refer 
to Fig. 6) lie in highly commercial areas, and consist of 
very important structures such as multistory apartments, 
department stores, public places, government offi ces and 
old residential areas of the Kathmandu Valley. Similarly, 
points 131, 142, 143, 152, 153, 159, 160 and 170 (refer to 
Fig. 6) lie in the recently-urbanized area of the valley.

The distribution of the second peak resonant 
frequencies is mostly observed in the frequency range of 
4 Hz to 6 Hz, as shown in Figs. 6 and 7(a), in the central 

Fig. 6  Distribution of single and multiple resonance frequencies in the study area
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and northern part of the valley, and also near the bank of 
the river. The ratio of second resonant frequencies to the 
fi rst resonant frequencies is found to be approximately 5. 
The amplitude of the second peak frequencies vary from 
place to place, but are found higher than the amplitude 
of the fi rst peak frequencies in most of the locations (Fig. 
7b). These frequencies are linked with the presence of 
the surface layer. This indicates that the bottom strata 
of the surface layer should have a suffi cient impedance 
contrast compared to the layer underneath. Most of the 
measurements in those locations were carried out in the 
night and morning times when the vehicle movement 
was very low, in order to minimize the effects of nearby 
noise. The distribution pattern of the H/V spectral 
ratios in the above areas shows that these second peak 
frequencies were not simply due to vehicle movement 
near the microtremor observation points. It consolidates 
the possibility that the second frequency peak could be 
due to the thin surface layer corresponding to the old 
alluvial deposits, which may behave as an independent 
structure in the soil column. This could have resulted 
from the presence of a stiff sediment layer, mainly 
composed of gravel and sand and presenting spatial and 
vertical heterogeneities. These results show two scales 
of amplifi cation effects: (1) at low frequencies due to 
the global effect of the deep sedimentary basin, and (2) 
at high frequencies due to the uppermost surface layers 
(i.e., the consequences of the lacustrine and fl uviatile 
deposit processes).

3.2   Estimation of soil layer thickness

Except for a countable number of boreholes drilled 
for the purpose of ground water exploration and 
investigation of soil parameters during building design, 
detailed geotechnical information of the deep structure 
of the Kathmandu Valley is not available. The shear 
wave velocity profi le up to the basement rock is also 
not available. As a result, the correlation of fundamental 
frequency with sediment depth is not possible. However, 
there are fi ve boreholes, as denoted by BH1, BH2, BH3, 
BH4 and BH5 in Fig. 8, in the valley where shear wave 
velocities were measured up to a depth of 30 m using PS 
logging by the Japan International Cooperation Agency 
in 2002 (JICA, 2002) during its study on Earthquake 
Risk Disaster Mitigation in the Kathmandu Valley. 

In order to understand the level of impedance 
contrast and to determine the depth of the uppermost 
layer, which is responsible for the amplifi cation of soil, 
a specifi c analysis was carried out of the soil profi le and 
shear wave velocity of the boreholes, which are close to 
the two-peak H/V spectral ratio sites. As shown in Fig. 8, 
two double-peak H/V spectral ratio sites (i.e., point 50 
and point 95) were found close to the JICA PS logging 
sites (i.e., BH5 and BH1). The H/V spectrum of Point 
50, as shown in Fig. 5(a), has two peaks, which represent 
the multiple amplifi ed frequencies at this point. Fig. 9(a) 
shows a soil profi le, shear wave velocity profi le and 

Fig. 7  (a) Distribution of multiple amplifi ed frequencies in the study area; (b) Distribution of amplitude of multiple amplifi ed 
               frequencies in the study area

5    18    29   43   50   53    62  79    82   85   92   93   94   95   96    98   99  114 115  116  125 127 128  131 136 137  142 143 149  150 152 153  159 160 170
Microtremor observation points

(b)

5    18    29   43   50   53    62  79    82   85   92   93   94   95   96    98   99  114 115  116  125 127 128  131 136 137  142 143 149  150 152 153  159 160 170
Microtremor observation points

(a)

8

6

4

2

0

A
m

pl
ifi 

ed
 fr

eq
ue

nc
ie

s (
H

z)

12

10

8

6

4

2

0

A
m

pl
itu

de
 o

f t
he

 H
/V

 p
ea

ks

First resonant frequency (f0)
Second resonant frequency (f1)

Amplitude of fi rst resonant frequency (A0)
Amplitude of second resonant frequency (A1)



264                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.11

impedance ratio of the borehole BH5, which is close to 
the microtremor observation point 50 (refer to Fig. 8). 
Using 252.93 m/s as an average shear wave velocity in 
borehole BH5 (refer to Fig. 9(a); JICA, 2002) and the 
frequency of the second peak at microtremor observation 
point 50 (f1=5.0 Hz), Eq. (2) yields a thickness of H1 = 
12.64 m, which is equal to the thickness of the uppermost 
layer in that area. The change in impedance contrast at 
various levels along the soil profi le is clearly seen in Fig. 
9(a), in which the maximum change in the impedance 
ratio is seen at a level of about 12.6 m from the surface 
and hence the strong impedance contrast (greater than 
4) can be expected at that level. The calculated depth 
of the uppermost soil layer from the microtremor data 
analysis is found to be nearly equal to the depth of 
impedance contrast (refer to Fig. 9(a)), which shows 
good agreement between the calculated depth and the 
observed depth. Similarly, Fig. 5(b)) shows the H/V 
spectral ratio of Point 95, in which two peaks are seen, 
which represent the multiple amplifi ed frequencies at 
this point. Using 188.86 m/s as an average shear wave 
velocity from the shear wave velocity profi le for BH1 
(Fig. 9(b); JICA, 2002) and the frequency (f1 = 3.1 Hz) 
(refer to Fig. 5(b)) of the second peak observed near the 
borehole profi le, Eq. (2) yields a thickness H1 = 15.23 m, 
which is equal to the thickness of the uppermost layer in 
that location. Figure 9(b) shows the level of impedance 
contrast in which the change in impedance ratio is seen 
at about 17 m from the surface, which is nearly equal to 
the above calculated depth of the uppermost layer. The 

microtremor observation point 95 is about 300 m south 
of the borehole (i.e., BH1) location, and that may be the 
cause for the difference in calculated depth based on the 
microtremor data analysis with the depth of impedance 
contrast in the borehole profi le.

Additionally, based on the shear wave velocity 
profi le in all fi ve sites (refer to Fig. 8), an average shear 
wave velocity up to a depth of 30 m for the Kathmandu 
Valley soil was obtained to be 246.87 m/s (JICA, 2002), 
while the second resonance frequency of the valley soil 
was mostly found to vary from 4 Hz to 6 Hz. Using this 
average shear wave velocity and the frequency of the 
second peak, the Eq. (2) yields a thickness of 10 m to 16 
m, which is equal to the thickness of the uppermost layer 
of the Kathmandu Valley.

From the above results, it can be said that the valley 
areas, especially in the central and northern part, have a 
wider range of frequency than the other part of the valley. 
Based on the theoretical and numerical investigations, 
SESAME (2004), Toshinawa et al. (1997), and Guéguen 
et al. (1998) mention that two-peak H/V spectral ratio 
occurs due to two impedance contrasts, at two different 
scales: one for a thick structure, and the other for a 
shallow structure. Moreover, Lebrun et al. (2001) have 
shown in Grenoble (France) that the seismic ground 
motion is amplifi ed in a wide frequency range due to the 
2D or 3D effects and/or to the presence of an uppermost 
sediment layer. They also mention that the wide 
frequency range is due to the fl uviatile deposits in the 
area and that the lateral variability can be strong from one 

Fig. 8  Distribution of multiple amplifi ed frequencies and location of JICA PS logging sites in study area, red dash boundary 
            indicates the borehole and microtremor point taken for the analysis of depth of impedance contrast
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point to another. In the Kathmandu Valley, the northern 
part generally consists of riverbed materials (Sakai, 
2001). Due to the impedance contrast at a shallow depth, 
the uppermost layer behaves independently from the rest 
of the sediment-fi lled column. This assumption was also 
confi rmed by simulation (2D-model) and experimental 
data (using Standard Spectral Ratio method) performed 
by Fäh et al. (1994) in the case of the Mexico Basin, 
where the second peak was attributed to the presence of 
a very soft uppermost clay layer resting on semi-infi nite 
media.

The Kathmandu Valley accommodates a variety of 
buildings, especially in terms of building materials used 
and height (i.e., number of stories) of the structures. 
Most of the places consist of low-rise (1–5 stories) to 
medium-rise (6–10 stories) buildings. In general, Kramer 
(1996) has proposed that the fundamental frequency of 
an N-story building is approximately 10/N Hz, which 
results in an estimated predominant frequency of the 
Kathmandu Valley buildings to be around 1 Hz to 10 Hz. 
Moreover, the urban area mostly consists of 3 to 7 story 
buildings made of adobe, brick masonry and reinforced 
cement concrete. When the frequency of a building is 
equal or close to the frequency of the ground, resonance 
will take place, leading to an enhanced vibration of the 
structure and higher possibilities of collapse.

Finally, it can be said that the sediments in the 
Kathmandu Valley may cause two kinds of problems for 
the valley buildings during an earthquakes, especially 
in the central and northern part of the valley. One 
may be from the surface layer and other from the 
layer underneath. As higher resonant frequencies are 
characteristic to the surface sediment layer, this may 
mostly affect low-rise to medium-rise buildings, while 

the lower frequencies are characteristic of the layer 
underneath, which may affect medium-rise to high-rise 
buildings during an earthquake event.

4   Conclusion

Being a lacustrine basin with a complex depositional 
environment, the Kathmandu Valley has a wide range of 
sediment layers. As a result, there are inhomogeneities 
in the sediments, and their responses to seismic waves 
are different. In this study, the response of the surface 
and the underneath layer during an earthquake have been 
investigated using the Horizontal-to-Vertical spectral 
(H/V) ratio method of microtremor analysis. Single and 
multiple amplifi ed frequencies were delineated based 
on the results of the microtremor observations at 172 
points covering about 210 km2. The investigation results 
have shown that two amplifi ed frequencies appear on 
about 20% of the sites, which are mainly distributed 
in the central and the northern part of the basin. The 
predominant frequencies vary from 0.5 Hz to 8.9 Hz, 
whereas the second resonant frequencies vary mostly 
from 4 Hz to 6 Hz. These two resonance frequencies 
are characteristic of particular site conditions, and they 
describe the overall seismic site response in two scales, 
including the deep and surface soil layer. Depending 
upon the area, especially in the central and northern part, 
the top 10–20 m of the sediment layer plays an important 
role in making the second resonant effect in the basin.

The urban area of the Kathmandu Valley is mainly 
composed of low-rise to medium-rise buildings and/
or improperly designed houses with high resonance 
frequencies as well as tall buildings with low resonance 
frequencies. The multiple amplifi ed frequencies in a 

Fig. 9  Borehole profi le, velocity profi le and impedance ratio (a) in site BH5, and (b) in site BH1. Green downward arrows in (a) and 
(b) indicate the calculated depth of the top soil layer based on microtremor observation at Point 50 and Point 95 respectively 
(refer to Fig. 8)
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particular area can create a resonance effect both for low-
rise as well as tall buildings. Therefore, the behavior of 
the surface layer as well as the layer underneath should 
be taken into consideration for seismic risk studies in 
the valley.
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