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Abstract: A simplifi ed multisupport response spectrum method is presented. The structural response is a sum of 
two components of a structure with a fi rst natural period less than 2 s. The fi rst component is the pseudostatic response 
caused by the inconsistent motions of the structural supports, and the second is the structural dynamic response to ground 
motion accelerations. This method is formally consistent with the classical response spectrum method, and the effects of 
multisupport excitation are considered for any modal response spectrum or modal superposition. If the seismic inputs at each 
support are the same, the support displacements caused by the pseudostatic response become rigid body displacements. The 
response spectrum in the case of multisupport excitations then reduces to that for uniform excitations. In other words, this 
multisupport response spectrum method is a modifi cation and extension of the existing response spectrum method under 
uniform excitation. Moreover, most of the coherency coeffi cients in this formulation are simplifi ed by approximating the 
ground motion excitation as white noise. The results indicate that this simplifi cation can reduce the calculation time while 
maintaining accuracy. Furthermore, the internal forces obtained by the multisupport response spectrum method are compared 
with those produced by the traditional response spectrum method in two case studies of existing long-span structures. Because 
the effects of inconsistent support displacements are not considered in the traditional response spectrum method, the values of 
internal forces near the supports are underestimated. These regions are important potential failure points and deserve special 
attention in the seismic design of reticulated structures.
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1   Introduction

In 1941, the concept of a response spectrum was 
proposed by Biot. Without suffi cient records of strong 
earthquakes, the response spectrum method had no 
practical application at that time. Nonetheless, the 
number of strong motion records has increased greatly 
over the past thirty years, so the response spectrum 
method can now be used to evaluate current designs. 
Because the classical response spectrum method has 
a clear physical interpretation, a concise form, and 
convenient applications, it has been more and more 
widely applied to structural seismic design. 

The classical response spectrum method based on 

uniform excitation has been widely applied in seismic 
design codes in many countries and has suffi cient 
precision for most structures. Nevertheless, current 
response spectrum theory results in large errors for long-
span structures because of the time–space variation of 
seismic ground motion. Hence, it is necessary to propose 
a modifi ed response spectrum method for use in cases of 
multiple support excitations.

Berrah and Kausel (1992, 1993) modifi ed the 
traditional CQC (Complete Quadratic Combination) 
method by introducing two coeffi cients to simulate 
multisupport seismic excitation. Their method, however, 
cannot consider pseudostatic effects. One coeffi cient 
is used to adjust each spectrum value of the supports 
and the other is used to modify the mode correlation 
coeffi cients to consider the time–space variation of 
seismic ground motion. Yamumura and Tanaka (1990) 

divided supports into several groups based on their 
location and local soil layer. Supports in the same group 
were assumed to be completely coherent, while different 
groups were assumed to be noncoherent with each 
other. An approximate response spectrum method was 
then suggested. This method, however, cannot take into 
account the wave passage effect or loss of coherence. 
Trifunac and Todorovska (1997) treated the stiffness 
of columns as weights to determine a reference point 
for each column’s movement. Hence, multiple support 
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inputs were translated into a uniform seismic input, and 
the traditional response spectrum method was extended 
to solve the problem for multisupport excitation. In 
line with random vibration theory, Kiureghian and 
Neuenhofer (1992) presented an exact derivation of a 
new response spectrum method that can consider the 
wave passage effect, coherence loss and the local soil 
layer effect. This method is the most rigorous, but it 
involves the cross-power spectral density function 
and numerical integration and thus requires long 
computational times. This method is too cumbersome to 
be accepted by designers.

Current research has focused on simplifying the 
multisupport response spectrum method. Based on 
theoretical results by Burdisso and Singh (1987a,b), 
Loh and Ku (1995) proposed an approximate response 
spectrum method that translates the integral of the 
coherence function into a sum of a series of elementary 
functions. Based on random vibration theory, Li and 
Li (2005) developed a response spectrum method for 
seismic response analysis of linear, multi-degree-of-
freedom structures under multisupport excitations. 
Various response quantities are obtained from proposed 
combination rules in terms of the mean response 
spectrum. This method makes it possible to apply the 
response spectrum to seismic reliability analysis of 
structures. Furthermore, simplifi ed procedures that can 
dramatically enhance the effi ciency of computing the 
spectral parameters and correlation coeffi cients in the 
combination rules are also given in Li and Li (2005). 
Kahan et al. (1996) simplify the coherency function given 
the condition of small spatial variations in the seismic 
motion, and their results show that the simplifi ed method 
can maintain suffi cient accuracy when the coherence loss 
ratio is less than 2×10-3 s/m and the apparent velocity is 
more than 200 m/s. Yu and Zhou (2008) developed a 
complex multisupport response spectrum (CMSRS) 
method for seismic analysis of a nonclassically damped 
linear system. The CMSRS method can properly account 
for the effects of correlation between the support motions 
as well as between the modal displacement and velocity 
responses of the structure. It also provides reasonable 
and acceptable estimates of the peak response, the 
response spectra at the support points and the coherency 
function.

In the multisupport response spectrum method, 
several effects should be considered, including the wave 
passage effect, the dispersion effect and the local soil 
effect. The spans of buildings, however, are spatially 
confi ned, so it is rare for buildings to be located on 
several different soil layers. Thus, the effects of soil 
layers local to individual supports are not considered in 
this paper. A simplifi ed multisupport response spectrum 
method with a clear physical interpretation is presented. 
In this method, the structural response consists of two 
components for a structure whose fi rst natural period 
is less than 2 s. One component is the pseudostatic 
response caused by the inconsistent motions of the 

structural supports, and the other is the structural 
dynamic response due to ground motion accelerations. 
If the seismic inputs at each support are the same, 
the support displacements caused by the pseudostatic 
response become rigid body displacements and do not 
lead to any strains and stresses on the structure. The 
response spectrum for multisupport excitations then 
reduces to that for uniform excitations. Moreover, most 
of the coherency coeffi cients in the formulation are 
simplifi ed in this paper by approximating the ground 
motion excitation as white noise. This approximation is 
justifi able in light of the frequency response function. 
Furthermore, the internal forces from the multisupport 
response spectrum method and the traditional response 
spectrum method are compared for two case studies 
of existing long-span structures. The numerical results 
show that the magnitudes of the internal forces near the 
supports are underestimated by the traditional response 
spectrum method. These regions are always important 
in the overall performance of the structure and are 
deserving of special attention in reticulated structure 
design.

2  Equations of motion under multiple support 
    excitations (Clough and Penzien, 1993)

Under the absolute coordinate system relative to the 
center of the earth, the dynamic equation for a discrete, 
n-degree-of-freedom linear system subjected to m 
support motions can be described in matrix form
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(1)
where u is the m-vector of prescribed support 
displacements; x is the n-vector of the displacements 
of the unconstrained degrees of freedom; F is the m-
vector of the reaction forces in the supported degrees 
of freedom; M, C, and  K represent the N×N mass 
matrix, the damping matrix, and the stiffness matrix of 
the unconstrained degrees of freedom, respectively; Mg, 
Cg, and Kg represent the M×M mass matrix, the damping 
matrix, and the stiffness matrix of the support degrees 
of freedom; and MC, CC, KC represent the N×M mass 
matrix, the damping matrix, and the stiffness matrix of 
the couplings between the unconstrained and the support 
degrees of freedom, respectively. In the general case, MC 
is assumed to be a zero matrix. 

It is common to decompose x into the quasi-static 
displacement xs and the dynamic relative displacement 
xd, namely,                       

x x x= +d s                               (2)

Setting the dynamic term of Eq. (1) equal to zero, the 
quasi-static displacement xs can be obtained as                  

x K K u Rus
c= − =−1                        (3)
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the superscript p indicates multiple support excitation; 
Gui ( )  is the spectral density function of the ground 
exciting ui (Eq. (9b)); Hi(ω) is a transfer function with 

the expression H
ii

i i i
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Based on the defi nition of the coherency function, 
one obtains
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in which Gu uk l  ( )  is the cross-power spectral density 
function between points k and l.

In general, the spans of long-span spatial structures 
are less than 300 m. Therefore, all supports can be 
assumed to stand on the same soil layers. Also, the 
distance of the seismic wave from the bedrock to the 
surface is generally much longer than the separation 
between the structural supports. Hence,  the auto-power 
spectral density Gug ( )  can be supposed to be the the 
same at each support, and Eq. (11) can be translated 
into

G Gu u kl uk l  ( ) ( ) ( )   =
g

            (12)

Based on Eq. (12) and Eq. (9b), one gets (Berrah and 
Kausel, 1992)  
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Substituting Eq. (13) into Eq. (10), Eq. (10) becomes
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The relationship of the spectral density function to 
the structural response under uniform excitation and the 
ground motion can be expressed as

G H Gy i i ui ( ) ( ) ( )   = 2 2
g

               (15)

According to random process theory, the variances 
of the structural response under uniform excitation and 
multisupport excitation are
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Using Eq. (14), Eq. (15), Eq. (16a) and Eq. (16b), 
one gets
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in which

in which R = −K-1Kc and is called the infl uence matrix.
Substituting Eq. (2) and Eq. (3) into Eq. (1) results 

in

Mx Cx Kx MR M u R u   d d d
c c+ + = − + − +( ) ( )C C  (4)

The damping term on the right-hand side of Eq. (4) is 
omitted because it is small compared to the inertial force 
term. Noting that Mc=0, Eq. (4) becomes

Mx Cx Kx MRu  d d d+ + = −       (5)

3   Analysis of the i-th mode

Equation (5) can be uncoupled by the mode-
superposition method. Setting

x y( ) ( )t t=                          (6)

and multiplying by   on both sides of Eq. (5) results in

      T T T TM y C y K y MRu  + + = − ( )t     (7)

and a set of n-uncoupled equations

  y t y t y t u ti i i i i i i i( ) ( ) ( ) ( )+ + = −2 2   

(i=1,2……n)        (8)

in which βi is the participation coeffi cient for the ith 
vibration mode under simple support excitation.
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where Ai is a row vector with m elements, m is the number 
of supports, and H is a column vector with n elements 
indicating the direction of the earthquake excitation. The 
values of the elements in H  are either 1 or 0 depending 
on whether or not the direction of excitation is consistent 
with the direction of the degree of freedom in M.

Equation (8) is quite similar to the equation of 
motion under uniform excitation. Thus, the spectral 
density function can be used to relate the structural 
dynamic response to the ground motion, as shown in 
Eq. (10)

G H Gy i i ui i 
p ( ) ( ) ( )   = 2 2              (10)

where Gyi
p ( ) is the spectral density function of the 

structure’s response yi  under multisupport excitation; 



246                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.11


    

  
ikl

kl i u

i u

H G

H G
2

2

0
2

0

=

+∞

+∞
∫

∫

Re( ( ) ( ) ( ))

( ) ( )





g

g

d

d
     (18)

D i i( , )  denotes the response spectrum in the case of 
uniform excitation, while D i i

p ( , )   is the response 
spectrum in the case of multisupport excitation. The 
maximum responses and the response variances of 
stationary random processes are related as follows 
(Berrah and Kausel, 1993)

D pi i y yi i

p p p( , )  =                         (19a) 

D pi i y yi i
( , )  =                          (19b) 

For practical considerations, the peak factors are 
simplifi ed by assuming that the peak factors of the 
nodal responses are the same (Berrah and Kausel, 
1993; Kiureghian, 1981; Smeby and Kiureghian, 1985). 
Substituting Eq. 19(a) and Eq. 19(b) into Eq. (17) results 
in
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Equation (20) relates the response spectrum of mode 
i under uniform excitation to that of mode i under 
multisupport excitation.

4   Modal combination rules

Using the derivation method in Berrah (1992) and 
defi ning  v t u ti i i( ) ( )= − , Eq. (8) can be expressed in 
another form 

  y t y t y t v ti i i i i i i( ) ( ) ( ) ( )+ + =2 2         (21)

From random vibration theory, the power spectral 
density function of the acceleration response z t( )  
associated with the zth structural degree is
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Then, the variance of  z t( )  can be expressed as
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Random vibration theory allows the maximum 
responses and the response variances of a stationary 
random process to be related by the peak factors (Berrah 
and Kausel, 1993). For practical considerations, the peak 
factors are simplifi ed by assuming they are coincident 
for the various modes (Berrah and Kausel, 1993; 
Kiureghian, 1981; Smeby and Kiureghian, 1985 ), so 
one gets
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Combining Eq. (9b) and Eq. (21) results in the 
following equation:
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In the case of multiple support excitation, substituting 
Eq. (28) into Eq. (24a) gives
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while in the case of uniform excitation, we have
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and noting Eq. (30), Eq. (29) can be rewritten as
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Substituting Eq. (16) and Eq. (32) into Eq. (25) 
results in
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Defi ning 
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excitation, Eq. (33) becomes 
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Equation (34) shows the relationship between the 
combination rules in the cases of multiple support 
excitation and uniform excitation.

5  Simplifi ed response spectrum of multiple 
    support excitations

Kiureghian and Neuenhofer (1992) show that 
the coupling between the pseudostatic and dynamic 
responses almost vanishes for structures with fi rst 
vibration periods less than 2 s. In fact, the fi rst vibration 
periods of most spatially latticed structures are less 
than 2 s, and the coupling term can consequently 
be neglected in practical considerations. Hence, a 
simplifi ed acceleration response spectrum for multiple 
support excitations can be expressed as follows 
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where rzk and rzl are the components of matrix R (see 
Eq. (3)) associated with row z and column k and with 
row z and column l, respectively, and uk ,max and ul ,max  
denote the peak acceleration inputs for supports k and 
l, respectively. The pseudostatic displacement coupling 

coeffi cient is          u u kl u uk l
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The derivation of the fi rst term in Eq. (35) is not the focus 
of this paper, but it can be seen in detail in Kiureghian 
and Neuenhofer (1992). The expressions for Di

p and Dj
p 

are shown in Eq. (20).
There is a clear physical interpretation of Eq. 

(35): the maximum structural response includes two 
parts—the pseudostatic response and the dynamic 
response. The expression for the pseudostatic response 
given in Kiureghian and Neuenhofer (1992) is adopted 
in this paper. The pseudostatic response is caused by 
different displacements of the support points and differs 

from uniform excitation. It is easy to predict that if the 
seismic input were a uniform excitation, the pseudostatic 
displacement associated with the fi rst term in Eq. (35) 
would become a rigid body displacement and would not 
cause any internal forces in the structure. The maximum 
structural response would then be caused only by 
the action of ground acceleration on the structure, 
and the response spectrum method for multisupport 
excitation would reduce to that for uniform excitation. 
The multiple support excitation method can thus be 
regarded as a modifi cation of the traditional uniform 
excitation method. Furthermore, the response spectrum 
method under multisupport excitation can be taken as 
an extension of the modal combination rules of the 
traditional response spectrum method.

6   Discussions on the simplifi cation of 
     coherency coeffi cients

Equation (35) shows that both the pseudostatic 
response and the dynamic response are accounted for 
by the coherency coeffi cients, such as  u uk l

, ikl and ij . 
All of the values of these coeffi cients were obtained by 
integration. As more vibration modes and supports are 
included in the combination, it takes longer to compute 
 u uk l , ikl and ij . To enable the use of the multisupport 
response spectrum method in practical engineering 
applications, simplifi cations of the coherency coeffi cients 
are investigated.

The Kanai-Tajimi spectrum is used as the auto-
power spectral density function Gug

( )

G Gug
g g g

g g g

( )
   

    
=

+

−( ) +

4 2 2 2

2 2 2 2 0

4
4

              (36)

where G0 stands for a scale factor. The values of ωg and 
ξg are listed in Table 1 (Sun and Jiang, 1991).

The following coherency function model is adopted 
in this paper (Liu et al., 2004): 

   

 


kl x y x y

x y

( , , ) exp( )

exp(( )( ) )ex

d d d d

d d

= − −

− −

1 2

1

1
2

2

1
2 2

2



π
pp( )i d

app

 y
V

       
(37)

where 1 = + +a f bf c/ , 2 = + +d f ef g/ , β1 =
0.0014, β2 = 0.001951, a = 0.0686, b = 0.0026, c = 
0.0316,  d = 0.0015, e = 0.0001, g = 0.0018, and dx and 
dy are the projection distances between points k and 
l perpendicular to and parallel to the wave direction, 
respectively.

Table 1   Values of ωg and ξg corresponding to different site conditions

Stiff soils Middle stiff soils Soft soils
ωg 17.9 13.3 8.8
ξg 0.45 0.49 0.54
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6.1  Simplifi cation of coeffi cient  u uk l

In traditional simplifi ed calculations, the Kanai-
Tajimi spectrum model, which is used to describe 
seismic ground motion, is usually replaced with white 
noise. Figure 1 shows a comparison between white noise 
and the Kanai-Tajimi spectrum model for three kinds of 
soils: stiff soils, moderately stiff soils and soft soils.

Figure 1 indicates that as the distance between two 
points increases, the value of  u uk l

decreases gradually, 
which is similar to the trend of the coherency function of 
seismic ground motion. As shown in Fig. 1, the values of  
 u uk l

 are higher for soft soils and moderately stiff soils 
than for stiff soils, because the coherency function of the 
ground motion decreases with increasing frequency, and 
so the low frequency components have greater infl uences 
on  u uk l

. Consequently, it is invalid to use white noise 
for the ground acceleration model. Otherwise, the values 
of  u uk l  will be overestimated, especially for stiff soils, 
for which the maximum error can reach 100%.

6.2  Simplifi cation of coeffi cient ρikl

The coeffi cient ikl  is simplifi ed by approximating 
the ground motion excitation as white noise. This 
approximation is justifi able in light of the frequency 
response function. The procedure is as follows:

The Kanai-Tajimi spectrum model (i.e., the 
ground motion model) is replaced by white noise, and 
comparisons are made for stiff soils, moderately stiff 
soils, and soft soils (see Fig. 2). As shown in Fig. 2, 
the errors introduced by replacing the Kanai-Tajimi 
spectrum model with white noise are very small for stiff 
soils and moderately stiff soils. Nevertheless, there are 
large errors in soft soils when the frequency is above 1.5 
Hz. These errors are acceptable, however, in practical 
applications because the structural response caused by 
the high frequency components is small.

It follows from Eq. (18) that the frequency response 
function Hi ( )

2
(see Eq. (38)) can be regarded as a 

fi lter on each modal response. Concretely speaking,  
Hi ( )

2 indicates what fraction of the excitation energy 
in a given frequency is transferred to mode i. In other 
words, ( ( ) )1

2
− Hi  stands for the fi ltered energy, as 

shown in Fig. 3.

H H Hi i i i i i( ) ( ) * ( ) [( ) ( ) ]*      
2 2 2 2 2 12= = − + −

(38)

where ωi and ζi denote the circular frequency and the 
damping ratio of mode i, respectively.

Since the value of  ζi is far less than 1.0, the function 
Hi ( )

2 has a sharp peak value (i.e., ( )2 2 i i
− )

at the frequency ωi, and ( )2 2 i i
− decreases to 

1
2

( )2 2 i i
−  within a small change in frequency  

ζiωi (see Fig. 3). Thus, the main contributions from 

Re( ( ) ( ) ( ))H Gi kl u    
2

0

+∞
∫ g d  and H Gi u( ) ( )  2

0

+∞
∫ g d  

arise at frequencies near  ωi , and the contributions 
from other frequencies are small.

Because of the small value of the structural damping 
ratio (for example, the damping ratio of spatially latticed 
structures is always within 0.05, far less than 1.0), 
structures have strong frequency selectivity for seismic 
waves. It is a fair approximation that only the frequency 

Fig. 1  Simplifi cation of  u uk l
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Fig. 2  Simplifi cation of the ground motion model for ρikl
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component of a seismic wave that is coincident with the 
structural frequency will contribute to the response of a 
particular vibration mode and will make no contribution 
to the responses of other vibration modes. In other 
words, the other frequency components of the seismic 
wave will not contribute to the response corresponding 
to this vibration mode. Therefore, Eq. (18) can be 
transformed into

        
   

 
ikl

i i kl i u i

i i u i

H G

H G
==

Re( ( ) ( ) ( ))

( ) ( )

2

2





g

g

          (39)

Comparisons are made with four kinds of soil to 
verify the precision of Eq. (39), and the results are 
shown in Fig. 4.

Figures 4(a) to 4(d) show that the errors caused by 
simplifying the frequency response function are small 
enough to be ignored in stiff soils, moderately stiff soils 
and white noise. In soft soils, the errors introduced by this 
simplifi cation are large at high frequencies. Nonetheless, 
the response caused by the high frequencies contributes 
only a small amount of the total structural response, 
and the values of ikl  are low at high frequencies, so 
the global errors can be neglected. As a result, this 
simplifi cation of ikl  is acceptable.

Fig. 4   Simplifi cation of the frequency response function for ρikl
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(c) Soft soils
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(b) Moderately stiff soils
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6.3   Simplifi cation of coeffi cient ρij

ρij is the combination coeffi cient for mode i and 
mode j under uniform excitation. In the simplifi ed 
calculation, the ground motion spectrum is assumed to 
be white noise rather than the Kanai-Tajimi spectrum 
model. Comparisons are made based on four kinds of 
soils (see Fig. 5).

It can be seen from Fig. 5 that it is feasible to 
simplify the seismic excitations as white noise for 
stiff and moderately stiff soils. In soft soils, the errors 
introduced by this simplifi cation are small when the 
frequencies of two modes are close to each other, but 
become large when the two frequencies are far from each 
other. In present design codes, this simplifi ed method is 
widely used for practical analysis with simple support 
excitations. Figure 5 shows that this simplifi cation is 
generally acceptable. 

7  Application of the multisupport response 
      spectrum method in practical engineering

7.1   AMECO (aircraft maintenance engineering 
        company) hangar

The Capital International Airport hangar is 306 m 

Simplifi ed result

Exact result

Simplifi ed result
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long (153 m+153 m), 90 m wide and 40 m tall. The total 
area is 35,993 m2, and the total weight is 5,500 t. This 
structure is the largest hangar in China and one of the 
largest hangars in the world. The steel roof of the hangar 
is composed of three substructures: the gate bridge, the 
middle-beam truss, and the diagonal square pyramid grid 
structure. The whole structure is supported by reinforced 
concrete columns.

Photos of the hangar structure and the structural 
plane arrangements are shown in Figs. 6 through 8. 
Figure 8 shows that only one column is located on the 
axis of the door, and there are no inner columns so that 
four 747-400-type airplanes can be repaired inside the 
hangar structure.

The structural model (see Fig. 7) possesses 24 
supports, 4,318 joints, and 14,902 members. The 
representative gravity load value is 21.0 kN on each 
joint. The fi rst 90 natural frequencies of the system 

 Fig. 5   Simplifi cation of the combination coeffi cient ρij
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are included. The damping ratios are assumed to be a 
constant 0.02 in this paper. The Kanai-Tajimi spectrum 
model (i.e., Eq. (36)) with g = 2 33. rad s ,g = 0.42
and G0

2 236 8= . cm s  is adopted for the ground 
acceleration. Vertical earthquake excitation is considered, 
and Eq. (37) is used as the vertical coherency function. 
The maximum vertical seismic coeffi cient v max  is 
0.137, in accordance with the Chinese seismic design 
code for buildings. The apparent velocity V

app
is set to 

500 m/s. Table 2 shows the calculation results.
The magnitudes and distributions of internal forces 

obtained from the response spectrum method and the 
time history analysis are compared in Figs. 9 and 10.

The ratios of the axial forces from the two methods 
are illustrated in Fig. 9. There are 1,192 members with 
the ratio less than 1, and 2,184 members with a ratio 
the ratio at around 1. Members with the ratio at about 
1.2 and 1.4 are 3,281 and 814, respectively. For ratios 
around 1.6 and 1.8, the corresponding members are 563 
and 310, respectively. In addition, fi ve members possess 
a ratio larger than 2. Obviously, the number of members 
with a ratio around 1.2 is the largest, which accounted 
for 38.9 percent of the total members. The members 
with a ratio smaller than 1 are fewer, accounting for 14.1 
percent. Nearly 85.9 percent of the total members have 
ratios that fall between 1 and 2. 

The distributions for ratios of axial forces are shown 
in Fig. 10. For the top and bottom layers, members with 
ratios around 1 are greater than those with ratios larger 
than 1. Members with ratios greater than 1 are more 
common in the middle layer. However, their axial forces 
are smaller and have little infl uence on the integral safety 
degree of the structure. For most web members of the 
upper and lower layers, ratios are around 1 or less. It is 
concluded that for the space trusses, the results obtained 
from the multi-support response spectrum method are 
approximate to and slightly larger than those from the 
multi-support time history method.

The numerical results using multiple support 
excitation and simple support excitation are compared 
(see Fig. 11). This paper also attempts to explain the 
differences between them to provide some guidance for 
future designs.

These results indicate that the seismic responses 
under multiple support excitations are larger than 
those under simple support excitation in the upper and 
lower layers near the supports. In the middle layer, the 
values of the internal forces of most members under 
multiple support excitations are higher than those 
under simple support excitation. The internal forces on 
some members are more than doubled. The responses 
of the web members located in the peripheral areas of 

Table 2   Number of members subjected to different ranges of internal forces

Range
(kN) Top layer Middle layer Bottom layer Upper 

web members
Lower 

web members
0–10 2 105 1 1228 1179
10–30 483 439 607 552 589
30–50 749 127 671 23 32
50–70 194 4 137 3 4
≥70 0 0 12 5 6
Total 1428 675 1428 1811 1810

Fig. 9  Comparisons of axial force amplitude between response 
           spectrum and time history methods
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the roof under multisupport excitations are stronger 
than those under uniform excitation. The main reason 
for this phenomenon is the inconsistent movements of 
the supports, which lead to a large pseudostatic effect. 
Thus, it can be concluded that the internal forces of the 
space truss structure members near the supports are 
underestimated under simple support excitation. These 
regions are always weak locations in seismic design, so 
they merit special attention.

7.2   Stadium at the Harbin Institute of Technology

Figures 12 and 13 show the stadium at the Harbin 
Institute of Technology. Its main body is a double-layer 
shell 168.3 m long, 35.12 m wide, and 4,300 m2 in area, 
and the span in the direction of wave propagation is 
151.2 m. There are 86 supports (see Fig. 14), 847 joints, 
and 3,134 members. The representative gravity load 
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                                             (a) Top layer                                                                                          (b) Bottom layer  

                                          (c) Middle layer                                                                                       (d) Upper web members

(e) Lower web members

Fig. 10   Distribution of axial force ratios (ratio = response spectrum / time history)

                    (a) Top layer                                                                                  (b) Bottom layer

Fig. 11   Distribution of axial force ratios (ratio = multisupport / simple support)
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value is 0.42 kN/m2. The fi rst 60 natural frequencies 
of the system are selected according to an iterative trial 
calculation. The mode damping ratios are 0.02. The 
power spectral density of the ground acceleration and 
the coherency function model are the same as those in 
Section 7.1. The results are shown in Table 3.

A comparison of the internal forces and their 
distributions from the response spectrum method and 
the time history analysis method was still performed, as 
shown in Figs. 15 and 16.

Figure 15 shows the ratios of axial forces from the 

                (c) Middle layer                                                                        (d) Upper web members

(e) Lower web members

Fig. 11   Continued

Table 3    Number of members subjected to different ranges of internal forces

Range (kN) Top layer Web members Bottom layer
0–10 595 1277 625
10–20 259 211 82
20–30 12 55 23
30–40 0 28 16
≥40 0 17 4
Total 866 1588 750

Fig. 12  Stadium at the Harbin Institute of Technology

Fig. 13   Structural model 

Fig. 14   Layout of the stadium supports
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two methods. Note that members with ratios of less 
than 1 are 219, and those around 1 are 492. Members 
with ratios close to 1.2 and 1.4 are 1,024 and 785, 
respectively. Members corresponding to ratios around 
1.6 and 1.8 are 308 and 365, respectively. In addition, 
there are 11 members which have a ratio larger than 
2. It can be seen that members with a ratio around 1.2 
account for the greatest number, which is about 31.96% 
of the total. The proportion of members with a ratio of 
less than 1 is 6.84%. Members with a ratio between 1 
and 2 are nearly 93% of the total amount.

Figure 16(a) indicates that the ratios of axial forces 
for the most top chords are close to 1. For some members 
at the two longitudinal ends of the reticulated shell, the 
ratios are less than 1. However, the internal forces of 
these members are so small that the selected sections 
always have enough safety margins and the whole 
structure is confi rmed to be safe. The same case is also 
observed in Fig. 16(b). In Fig. 16(c), the ratios of axial 
forces for most web members are close to or slightly 
larger than 1. Therefore, the multi-support response 
spectrum method can provide results that are close to 
and a little larger than those of the multi-support time 
history method for the reticulated shells.

The numerical results using multiple support 
excitation and simple support excitation are compared 
in Fig. 17.

It is clear from Fig. 17 that the structural responses 
under multiple support excitations are larger than those 
under uniform excitation in the upper layer, lower 
layer and web members near the supports because 
multisupport excitations account for the effects of the 
inconsistent motions of each support. In the central part 
of the structure, the responses under multiple support 
excitations are similar to those under simple support 
excitation. The internal forces in the reticulated shell 
members near the supports are underestimated under 
simple support excitation. The areas near the supports 
are important but weak regions that deserve special 
emphasis in the design of reticulated structures. 

Fig. 15   Comparisons of axial force amplitude between 
                    response spectrum and time history methods
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Fig. 16   Distribution of axial force ratios (ratio = response spectrum / time history)
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8    Conclusions

(1) A simplifi ed response spectrum method for 
multisupport excitations is proposed. This method 
provides a clear physical interpretation, i.e., the 
structural response is the sum of two components. The 
fi rst component is the pseudostatic response caused 
by inconsistent support movements, and the second 
is the dynamic response caused by ground motion 
acceleration. This method is formally consistent with 
simple support excitation; however, the effects of 
multisupport excitations are considered for any modal 
response spectrum or modal combination. Under uniform 
excitation, the support motions are the same, and the 
displacements due to the pseudostatic response become 
rigid body displacements. These displacements do not 
result in any structural internal forces, and dynamic 
coherency coeffi cients under multisupport excitations 
become 1.0. Hence, the multisupport response 
spectrum method reduces to the traditional response 
spectrum method. From this perspective, multisupport 
excitation is a modifi cation of uniform excitation, and 
the corresponding response spectrum method can be 
considered to be an extension of the combination rules 
of vibration modes under simple support excitation.

(2) Most of the coherency coeffi cients in the 
formulation of the response spectrum are simplifi ed in 
this paper. In Eq. (35), it is found that the pseudostatic 
response and the dynamic response are obtained 
from a combination of these coherency coeffi cients. 
Nonetheless, calculating these coeffi cients requires a 
long computation time. This is especially true when 
a large number of supports and modes are included, 
because the coeffi cients’ values must be obtained by 
integration. The simplifi cation is accomplished by 
approximating the ground motion excitation as white 
noise. This approximation is justifi able in light of the 
frequency response function. Several numerical results 
indicate that the simplifi ed method is valid under 
appropriate conditions.

(3) Based on comparisons of the structural internal 
forces predicted by the response spectrum method 
under multisupport and simple support excitation, it 
is concluded that the effects of inconsistent support 
movements cannot be ignored. The internal forces 
of the layer and web members near the supports are 
underestimated under simple support excitation. The 
areas near the support are always important regions, so 
they deserve special attention in the seismic design of 
grid structures and reticulated shells.
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Fig. 17   Distribution of axial force ratios (ratio = multisupport / simple support)
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