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Abstract: A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One 
particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure 
does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness 
softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic 
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for both linear elastic and nonlinear systems.
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1   Introduction

Due to its convenient implementation in testing, an 
explicit pseudodynamic algorithm (Chang, 1997; Chang, 
2000; Chang, 2001; Chang et al., 1998; Newmark, 
1959; Shing and Mahin, 1987b) is generally preferred 
over an implicit pseudodynamic algorithm (Chang and 
Mahin, 1993; Nakashima et al., 1990; Shing et al., 
1991; Thewalt and Mahin, 1995). However, among 
the currently available integration methods, there are 
only a few explicit algorithms (Chang, 1997; Chang 
and Mahin, 1993; Newmark, 1959; Shing and Mahin, 
1987b) and most are implicit algorithms (Chang, 1996; 
Chung and Hulbert, 1993; Hilber et al., 1977; Houbolt, 
1950; Newmark, 1959; Park, 1975; Wood et al., 1981). 
Although many implicit algorithms are available for 
step-by-step integration, they were not considered in 
the early development of the pseudodynamic technique. 
This is because they involve an iterative procedure in the 
step-by-step solution of a nonlinear system and it is well 
known that the behavior of a real specimen is highly path 
dependent. More recently, some implicit pseudodynamic 
algorithms have been successfully implemented for use 
in testing. However, their implementation needs some 
additional hardware or is more complex (Chang and 
Mahin, 1993; Nakashima ., 1990; Shing et al., 1991; 

Thewalt and Mahin, 1995) when compared to explicit 
pseudodynamic algorithms. 

The Newmark explicit method (Newmark, 1959) 
or central difference method is often used to perform 
pseudodynamic testing. Meanwhile, some explicit 
pseudodynamic algorithms with acceptable numerical 
dissipation have been developed to improve the 
accuracy of the test results since numerical damping 
can be used to suppress or even eliminate the spurious 
participation of high frequency responses (Shing and 
Mahin, 1987b; Chang, 1997; Chang, 2000). However, 
all the explicit pseudodynamic algorithms are only 
conditionally stable. Hence, a very small time step 
might be needed to satisfy the stability limit and thus 
the critical problem of step displacement control might 
occur when performing a pseudodynamic test. In order 
to overcome the conditional stability problem while 
maintaining the explicitness of each time step, an explicit 
pseudodynamic algorithm with unconditional stability 
was proposed by Chang (2002). This algorithm was 
shown to be unconditionally stable for any instantaneous 
stiffness softening system and any linear elastic systems, 
while it can only have conditional stability for an 
instantaneous stiffness hardening system (Chang, 2007). 
In this investigation, a new family of explicit algorithms 
is proposed for the general pseudodynamic testing. In 
addition, numerical properties and error propagation 
properties of this family of pseudodynamic algorithms 
are analytically studied and numerical experiments are 
used to confi rm the analytical predictions. Finally, actual 
pseudodynamic tests also confi rm the feasibility of this 
family of algorithms.

2   New family of pseudodynamic algorithms

In structural dynamics or earthquake engineering, 
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the equation of motion for a single degree of freedom 
(DOF) system is expressed as

mu cu ku f + + =                     (1)

where m, c, k and f are the mass, viscous damping 
coeffi cient, stiffness and external force, respectively; 
and u, u and u  are the displacement, velocity and 
acceleration, respectively. 

In performing a pseudodynamic test, the use of 
an integration method to perform the step-by-step 
integration is necessary. A family of explicit algorithms 
is proposed for the pseudodynamic testing and is 
expressed as
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where 0 0= ( ) Δt , and 0 0= k m/  is the natural 
frequency of the system determined from the initial 
stiffness of k0; ξ is a viscous damping ratio; and β and γ 
are the parameters governing the numerical properties. 
Equation (2) reveals that the proposed family algorithm 
is explicit since the next step displacement di+1 is directly 
determined from the second line of this equation, which 
only involves the data of the i-th time step. It is also 
found that  2

1
2 1= for a zero viscous damping ratio. 

Based on the fundamental theory of structural 
dynamics, 0  and 0

2 can be rewritten in terms of the 
initial structural properties and the step size. In fact, the 
relationship of  = ( )c m0 02/  and 0 0= ( )k m t/ Δ  
are used. As a result, β1 and β2 in Eq. (3) are rewritten as 
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where c0 is introduced to represent an initial viscous 
damping coeffi cient and remains invariant for an entire 
step-by-step integration procedure. It is found that the 
determinations of the coeffi cients β1 and β2 using Eq. (4) 
is much easier than Eq. (3) since the expressions of 0  
and 0

2 involve solving an eigenvalue problem, which 
is very time consuming for a multiple DOF system with 
matrices of larger order. Note that β1 and β2 are assumed 

to be invariant in an entire step-by-step integration 
procedure. 

3   Step-by-step computing procedure

In conducting a pseudodynamic test, the proposed 
family algorithm can be used to perform the step-by-step 
integration after determining the coeffi cients of β1 and 
β2 . In order to formulate the step-by-step integration 
procedure in a matrix form for subsequent analysis, 
the computing procedure for the (i+1)-th time step is 
described next. 

At fi rst, the displacement di+1 can be calculated from 
the second line of Eq. (2) since the acceleration, velocity 
and displacement at the i-th time step are available at the 
beginning of the (i+1)-th time step. Hence, the restoring 
force ri–1 corresponding to the displacement di+1 can 
be determined from a mathematically assumed force-
displacement relationship and expressed as ri+1 =ki+1di+1, 
where ri+1 and ki+1 are used to represent the restoring 
force and stiffness at the end of the (i+1)-th time step. 
Subsequently, after the substitution of the acceleration  
ai+1, which can be expressed as a function of vi+1 by using 
the third line of Eq. (2), into the fi rst line of Eq. (2), the 
velocity at the end of the (i+1)-th time step is found to 
be 
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Finally, the fi rst line of Eq. (2) can be used to compute 
the acceleration ai+1. This computing procedure to obtain 
di+1, vi+1 and ai+1 for the (i+1)-th time step can be written 
in a recursive matrix form as

X A X Li i i i if+ + + += +1 1 1 1                     (6)

where X i i i id t v t a+ + + += ( ) ( )⎡
⎣

⎤
⎦1 1 1

2
1Δ Δ

T
; Ai+1 and  Li+1 

are the amplifi cation matrix and the load vector for the 
(i+1)-th time step, respectively. 

4  Numerical properties

 In order to realistically refl ect the stiffness change 
in the step-by-step solution of a nonlinear system, the 
instantaneous degree of nonlinearity  i+1

 is defi ned to be 
the ratio of the secant stiffness at the end of the  (i+1)-th 
time step over the initial tangent stiffness and is

 i
ik
k+

+=1
1

0

                             (7)

This parameter is used in the subsequent basic 
analysis and error propagation analysis for the proposed 
family algorithm. Apparently,   i+1

= 1 implies the 
instantaneous stiffness at the end of the (i+1)-th time 
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step is equal to the initial stiffness. Whereas,  i+1  > 
1 can be used to represent the case of instantaneous 
stiffness hardening at the end of the (i+1)-th time step 
and the case of instantaneous stiffness softening can be 
represented by 0 <  i+1  < 1. 

After introducing the instantaneous degree of 
nonlinearity  i+1  and assuming a zero viscous damping 
ratio, the explicit expression of the amplifi cation matrix 
Ai+1 is found to be
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The characteristic equation for this matrix can be derived 
from the equation of  A Ii+ − =1 0  and is found to be 

  3
1

2
2 3 0− + − =A A A                (9)

where λ is an eigenvalue of the matrix Ai+1 ; and the 
explicit expressions of A1 , A2 and A3 are found to be
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Since a linear elastic system is a special case 
of nonlinear systems, after taking   0 1= =+i , 
this equation is reduced to be exactly the same as 
that of the Newmark family method for linear elastic 
systems (Hughes, 1987). Therefore, it is implied 
that the numerical properties of the proposed family 
algorithm are the same as those of the Newmark 
family method for linear elastic systems. However, 
different numerical properties for nonlinear systems 
may occur, and will be thoroughly explored next.

4.1  Stability

It is manifested from Eq. (9) that the coeffi cient of 
A3 = 0 implies that there is a zero eigenvalue, i.e., λ3 = 0. 
The third eigenvalue λ3 is the spurious root since it 
does not represent a realistic numerical solution of free 
vibration. Hence, in order to have a bounded oscillatory 
response, two stability conditions must be satisfi ed. One 
is that there are two complex conjugate eigenvalues, and 
the other is that  3 1 2 1< ≤, . As a result, these two 
stability conditions lead to
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2
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After substituting Eq. (10) into Eq. (11), the stability 
conditions for the proposed family algorithm are found 

to be
0 0< ≤ ∞                                            

   if          and   

  

1
4   

  

≥ +( ) ≥

< ≤ =
+( ) −

+

+

1
2

2
1

1
2

0 0
1
4

1
2

2
1

0 1

i

i

  u       

   if         and   1
4   < +( ) ≥+

1
2

2
1

1
2i

     (12)

where 0
u( ) represents the upper stability limit. Equation 

(12) shows that unconditional stability can be achieved 
as   ≥ +( ) +

1
4

1
2

2
1i  and  ≥ 1

2  while the proposed 
family algorithm only has conditional stability as 
  < +( ) +

1
4

1
2

2
1i and  ≥ 1

2 . Apparently, it is also 
manifested from this equation that the stability depends 
upon the instantaneous degree of nonlinearity. 

Since the proposed family algorithm has exactly the 
same characteristic equation as that of the Newmark 
family method, there is a corresponding member in 
the proposed family algorithm for any member of 
the Newmark family method. It is well recognized 
that the Newmark family method can have at least 
the second order accuracy for linear elastic systems if 
 = 1

2  is chosen (Belytschko and Hughes, 1983). Since 
integration methods with the second order accuracy are 
of interest in practice, some well-known members in the 
subfamily of the Newmark family method with  = 1

2   
and its corresponding members in the proposed family 
algorithm are listed in Table 1 for comparison. Note that 
the unconditional stability range increases as the value of 
β increases. M1 is the Newmark explicit method. Since 
M2 and M3 can only have unconditional stability in the 
range of  i+ ≤1

1
3 and  i+ ≤1

2
3 , respectively, their general 

applications are very limited. Whereas, M4 to M7 seem 
promising from a stability point of view since they have 
unconditional stability for any instantaneous stiffness 
softening systems and linear elastic systems. It is very 
interesting to fi nd that M5 to M7 can have unconditional 
stability for instantaneous stiffness hardening systems in 
a given range, in addition to any instantaneous stiffness 
softening systems and any linear elastic systems. In 
order to gain an insight into the stability properties 
of the proposed family algorithms, Eq. (12) is plotted 
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in Fig. 1. Each curve decreases from infi nity to zero 
as  i+1  increases from a certain value to infi nity. For 
example, the upper stability limit is infi nity in the range 
of  i+ ≤1 1  for M4, and it decreases from infi nity to zero 
as  i+1  increases from 1 to infi nity. Note that M4 has 
been previously published (Chang, 2002; Chang, 2007). 
Apparently, there is no unconditional stability range for 
M1, i.e., the Newmark explicit method.

4.2  Accuracy verifi cation

In order to evaluate the period distortion of the 
proposed family algorithm introduced at the  (i+1)-th 
time step, the two complex conjugate eigenvalues 
of the characteristic equation can be expressed in an 
exponential form as
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where j = −1  and i i t+ += ( )1 1 Δ . This expression 
can be applied to determine the phase shift of i+1  and 
the numerical damping ratio of i+1  at the (i+1)-th time 
step. As a result, they can be computed by
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where i+1  is a measure of numerical dissipation. The 
relative period error is often used to measure period 
distortion and is defi ned as 
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where Ti i+ += ( )1 12π /  and Ti i+ += ( )1 12π /  are used to 
represent the computed and true periods of the system, 
respectively. In general, i+1  and i+1  are considered 
as the quantities corresponding to i+1  and ωi+1 in a 
numerical solution. 

Using Eq. (14) with the coeffi cients of A1, A2 and 
A3 found in Eq. (10), it is very straightforward to fi nd 
that i+1

= 0 for M1 to M7. This is because  = 1
2  was 

adopted for M1 to M7 and thus leads to A2=1, which 
implies that there is a zero numerical damping ratio if 
Eq. (14) is applied.

Figure 2 shows the variations of relative period 
errors with Δt T/ 0  for  i+1 = 0.5, 1 , 1.5 and 2 for the 
seven members of the proposed family algorithm listed 
in Table 1.  In general, the absolute relative period error 
increases as Δt T/ 0  increases as  i+1  and β are given. In 
Fig. 2(a), the case of instantaneous stiffness softening 
is considered, where M1 shows period shrinkage while 
period elongation is found for the rest of the members.  
In Fig. 2(b), the case of instantaneous stiffness invariant 
is considered, where the period is shrunk for M1 and 
M2; and the relative period error is almost zero for M2 
as  i+1 =1.  This is because for linear elastic systems, 
M2 has a third order accuracy for a linear elastic 
system.  Both Figs. 2(c) and 2(d) consider the case of 
instantaneous stiffness hardening.  In Fig. 2(c), M1 and 
M2 lead to period shrinkage while M3 to M7 results in 
period elongation.  Meanwhile, the period is shortened 
in Fig. 2(d) for M1 to M3 and the rest of the members 
show period elongation.  It is important to note that M2 
has a third order accuracy for linear elastic systems; and 
for nonlinear systems, its accuracy reduces to be roughly 
the same as the other second-order accurate algorithms.  

Fig. 2   Variations of relative period errors with Δt/T0 for different δ
i+1 
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In each plot of Fig. 2, the relative period error of each 
algorithm seems negligible as Δt T/ 0  ≤ 0.05 except that 
M7 shows more signifi cant period distortion.  Thus, 
these members of the proposed family algorithm except 
for M7 can provide a reliable solution with comparable 
accuracy for nonlinear systems, if the condition  Δt T/ 0
≤ 0.05 is met for the modes of interest. This may 
be considered as a rough guideline for selecting an 
appropriate time step.

As a summary of this numerical property study, it 
seems that M1 to M3 are of no interest for practical 
applications since they cannot have unconditional 
stability for any instantaneous stiffness systems, which 
are very commonly experienced in structural dynamics 
or earthquake engineering.  Although M7 has the best 
stability property, its very signifi cant period distortion 
might greatly limit its application. Hence, M4 to M6 are 
the most signifi cant in this study.

5   Error propagation properties

Error propagation analysis of a pseudodynamic 
algorithm is generally needed in its developing stage 
(Peek and Yi, 1990a; Peek and Yi, 1990b; Shing and 
Mahin, 1987a; Shing and Mahin, 1990; Shing and 
Manivannan, 1990). In the following error propagation 
analysis, a general nonlinear system is considered and 
the evaluation technique proposed by Chang (2003 
and 2005) is used. To mathematically model the error 
propagation procedure in the pseudodynamic testing of a 
nonlinear system, the following notations are defi ned.
 di = exact numerically computed displacement at step 
          i without errors.
 di

e = exact displacement at step i, including the effects 
            of errors at previous steps.
 di

a = actual displacement at step i, including the 
effects of previous errors and errors introduced 
at the current step.

 ri = exact numerically computed restoring force at 
          step i without errors.
 ri

e  = exact restoring force at step i, including the 
            effects of errors at previous steps.
 ri

a = actual restoring force at step i, including the 
effects of previous errors and errors introduced at 
the current step.

 ei
d  = displacement error introduced at step i.

 ei
r  = force error introduced at step i.

5.1  Error propagation equation

By using the above notations, the following 
relationships can be formulated:
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where the restoring force error ei+1
r  can be further 

expressed as

e k ei i i+ + +=1 1 1
r rd                             (17)

where ei+1
rd  is the amount of displacement error 

corresponding to the restoring force error ei+1
r  at the 

(i+1)-th time step. Using the actual displacement and 
actual restoring force as shown in Eq. (16), which 
includes the current step errors ei+1

d  and ei+1
r , Eq. (6) can 

be reformulated as follows
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Subtracting Eq. (6) from Eq. (18) yields the error 
propagation equation:
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           (21)

Note that  i ie+ +=1
1

1
( ) d  and is the cumulative displacement 

error for the (i+1)-th time step. 
The amplifi cation matrix of Ai+1 and the vectors 

of Mi+1 and Ni+1 might vary for each time step for 
a nonlinear system. Hence, in this study, the error 
propagation analysis of a nonlinear system is conducted 
for a few consecutive time steps but not for an entire 
pseudodynamic test procedure. However, it still provides 
valuable information for a pseudodynamic algorithm. For 
this purpose, the pseudodynamic error propagated from 
the previous one and two time steps to the current time 
step is mathematically derived next. At fi rst, after repeated 
substitutions of εi−1 and εi into εi+1 through Eq. (20), 
the cumulative equation is formulated as:
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        (22)

The cumulative error vector εi+1 consists of i+
( )

1
d  and i+

( )
1

r , 
where i+

( )
1

d  is the error vector caused by displacement 
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feedback errors and i+
( )

1
r  is caused by restoring force 

feedback errors. 
Substituting Ak, for k = i and i+1, and Mk and Nk, for  

k = i–1, i and i+1, into Eq. (22), yields the cumulative 
displacement error at the (i+1) time step:

e D e D e D e R e R ei i i i i i i i i i i+ − − − − − −= + +( ) − +( )1 1 1 2 2 1 1
d d d d rd rd   (23)
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Using the same evaluation technique proposed by 
Chang (2003 and 2005), Eq. (23) can be rewritten in the 
following form 
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where αi+1 and βi+1 are phase angles; and the explicit 
expressions of E(d) and E(r) are found to be

E

E

i i

i i

i

d

r

( ) +

+ +

( )

= +
−( )

+ −( )

=
+

⎛

⎝

1
1

1

1
2 1

2 2 2

1
2

0
2 1

4 1
2

2

0
2

 

  






⎜⎜
⎞

⎠
⎟ +

+ −( ) − + −( )⎡
⎣

⎤
⎦− +

+

2
1

2
0
2 1

2
2 2

0
2 1

2 1
2

2

1
2

2 1 1

1

     



i i i i

i

 

++( ) + −( )+   0
2 2

0
2 1

4 1
21 i

(27)

where E(d) and E(r) are the error amplifi cation factors 
for the displacement and restoring force feedback 
errors from the previous one and two time steps to the 
cumulative displacement error ei+1

d  for the current time 
step. 

5.2  Characteristics of error propagation equation

Equation (23) shows that the error contribution 
from the displacement feedback errors ei

d  and ei−1
d  to 

the cumulative displacement error ei+1
d  depends upon 

the error amplifi cation factor of E(d). Whereas, the error 
contribution from the restoring force feedback errors 
ei

rd and ei−1
rd  to the cumulative displacement error ei+1

d  
is dependent upon the error amplifi cation factor of 
E(r). Thus, the error propagation characteristics of the 
proposed family algorithm can be revealed by plotting 

Eq. (24). For this purpose, three cases of different values 
of δi-1, δi and δi+1 are considered and are chosen to be
                   Case A          i i i− += = =1 1 0 75.

for instantaneous stiffness softening
 Case B         i i i− += = =1 1 1 00.             (28)

for instantaneous stiffness invariant                          
                   Case C         i i i− += = =1 1 1 25.

for instantaneous stiffness hardening
Variations of E(d) and E(r) with 0  are shown in Figs. 

3 and 4, respectively. Note that the error amplifi cation 
factor E(d) increases with the instantaneous degree of 
nonlinearity for a specifi ed 0 for the four members 
of the proposed family algorithm and it tends to infi nity 
as its upper stability limit is approached. However, for 
the Case A of M4 and all the three cases of M5 and M6, 
each curve increases gradually from 1 to a larger value 
and then seemingly levels up as 0 increases from 0 to 
10. On the other hand, the error amplifi cation factor E(d)  
increases as the β value decreases for a given case with 
a given 0 . This implies that M1 has the worst error 
propagation properties for the displacement feedback 
error while M6 has the best error propagation properties, 
among the four members. Very similar phenomena 
can also be observed from Fig. 4 except that the error 
amplifi cation factor E(r)  no longer starts from 1 but 
instead begins near its origin. 

Fig. 4   Error amplifi cation factor for restoring force 
                    feedback error
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6    General pseudodynamic testing

After investigating the numerical and error 
propagation properties of the proposed family algorithm 
in the pseudodynamic testing of a nonlinear system, it 
is found that some members of the subfamily of  = 1

2  
seem very promising for use in general pseudodynamic 
testing. This is concluded after the cautious 
considerations of implementation, stability, accuracy 
and error propagation.

Due to the explicitness of each time step, any member 
of the proposed family algorithm can have an explicit 
implementation when performing a pseudodynamic test. 
In fact, any member of this family can be implemented 
to be the same as that of the Newmark explicit method 
except that it is especially necessary to determine 
the constant coeffi cients as shown in Eq. (4). For the 
proposed family algorithm, it is found that the larger 
the β value, the more likely it is that the unconditional 
stability is  = 1

2 . This implies that a member with a large 
value of β is preferred based on stability consideration. 
However, based on accuracy consideration, Fig. 2 
reveals that a large β value will lead to a more signifi cant 
period distortion. Hence, after considering stability and 
accuracy, M5 and M6 might be selected for the general 
pseudodynamic testing. This is explained as follows. 
In practical applications, it is very rare to experience a 
test specimen whose instantaneous stiffness hardening 
property can be as large as  i+ >1

4
3  or  i+ >1 2 . 

Hence, there is no need to worry about the stability 
problem if M5 or M6 is applied to perform a general 
pseudodynamic test. Furthermore, both members can 
have commensurate period distortion as the Newmark 
explicit method for a small value of Δt T/ 0 , say Δt T/ 0
≤0.05. On the other hand, error propagation analysis 
reveals that error amplifi cation factors of displacement 
feedback error E(d) and restoring force feedback factor 
E(r) decrease as the β value increases for a given 0  and 
converge to specifi c limited values for a large value of  
0  within the unconditional stability range. Thus, M5 
and M6 are also preferred due to less error propagation 
when compared to the other members except for M7. 

In this study, only some specifi c members of 
the proposed family algorithm are considered for 
illustration purposes, such as the members shown in 
Table 1. However, it is clear that members with a β value 
in the range of 1

3
1
2≤ ≤  or 1

3
2
3≤ ≤  and  = 1

2  of the 
proposed family algorithm are also promising for use in 
the general pseudodynamic testing, not only the members 
of M5 and M6. The most important characteristic of these 
members is that they are unconditionally stable for a 
certain range of instantaneous stiffness hardening, which 
might be actually experienced in the pseudodynamic 
testing of an actual structure, in addition to any linear 
elastic systems and any instantaneous stiffness softening 
systems. As a result, there is no need to consider the 
stability problem in practice. 

7   Implementation for an MDOF system

It is shown that the numerical properties of the 
proposed family algorithm are the same as those of 
the Newmark family method for linear elastic systems. 
However, drastic differences in numerical properties for 
nonlinear systems are found between these two families. 
Therefore, it is important to examine the performance 
of the proposed family algorithm in the solution of a 
nonlinear system and in performing a pseudodynamic 
test. For this purpose, it is implemented for a MDOF 
system, and can be expressed as

Ma C v r f
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where C0 is the initial damping coeffi cient matrix 
and is generally determined from the initial structural 
properties; the restoring force vector can be expressed 
r K di i i+ + +=1 1 1 , and Ki+1 is the stiffness matrix at the end 
of the (i+1)-th time step. Note that the stiffness matrix 
is not determined during a pseudodynamic test. The 
coeffi cients become
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where K0 is the initial stiffness matrix. Since the 
coeffi cient matrices of β1 and β2 must be determined 
before performing a pseudodynamic test, it is necessary 
to obtain the initial stiffness matrix. This initial 
stiffness matrix can be experimentally obtained by the 
direct stiffness method. This method imposes a unit 
displacement for the specifi ed DOF by using a hydraulic 
actuator, and then the restoring forces developed by 
the specimen in each DOF are measured by load cells. 
As a result, these restoring forces provide the stiffness 
coeffi cients of the correspondent column. This procedure 
can be repeated until the initial stiffness is achieved. 

In performing a pseudodynamic test, the second 
line of Eq. (29) is applied to calculate the displacement 
vector, and subsequently servo-hydraulic actuators are 
used to impose the computed displacement vector upon 
the test specimen. After measuring the restoring force 
vector through load cells, the acceleration vector can be 
expressed in terms of ri+1 and vi+1 by using the fi rst line 
of Eq. (29). Hence, substituting this result into the third 
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line of Eq. (29) yields the velocity vector:
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(31)

Finally, the acceleration vector can be calculated by using 
the equation of motion, i.e., the fi rst line of Eq. (29). 

8   Numerical examples

To confi rm the analytically determined numerical 
properties of the proposed family algorithm for both 
linear elastic and nonlinear systems, some numerical 
examples are illustrated. In particular, the stability 
problem and the use of the rough guideline Δt T/ 0 ≤0.05 
to select an appropriate time step for the step-by-step 
integration are addressed. In the following numerical 
study, a two-story shear building is considered and the 
stiffness for each story is assumed to be in the form of

k k u= +⎡
⎣

⎤
⎦0 1  Δ                    (32)

where k0 is the initial stiffness and Δu is a interstory 
drift. Apparently, the structural nonlinearity arises 
from the interstory drift if α ≠ 0 is chosen. The case of 
instantaneous stiffness softening can be simulated if α <0 
is chosen while α>0 can be used to mimic the case of 
instantaneous stiffness hardening.

The lumped mass for the bottom story is taken to 
be m1=103 kg while that for the top story is taken as 
m2=6×103 kg. In order to confi rm the correctness of the 
above analytically obtained numerical properties for 
general nonlinear systems, three structural systems with 
different stiffness types are considered. The stiffness 
types include instantaneous stiffness softening, invariant 
and hardening. In general, the initial stiffness is chosen 
to be k0-1 = 107 N/m and  k0-2 = 105 N/m for the bottom 
and top stories, respectively. Hence, the three systems 
with different stiffness types can be simulated by taking 
different coeffi cients of α for the nonlinear term. 

                    Sys-1      α1= 0                α2= 0
instantaneous stiffness invariant system

                    Sys-2      α1= −0.1           α2= −0.2
instantaneous stiffness softening system

                    Sys-3      α1= 1                α2= 2
instantaneous stiffness hardening system

where α1 and α2 are the constant coeffi cients of the 
nonlinear stiffness terms for the bottom and top stories, 
respectively. The natural frequencies of the structure 
are found to be 4.06 and 100.5 rad/s based on the initial 
stiffness matrix. This structure is excited by a ground 

acceleration of 20sin(t) at its base. For the three systems, 
the numerical result of each system obtained from the 
Newmark explicit method (i.e., M1) with Δt = 0.0001 s
is considered as an  “exact”  solution for comparison. 
Meanwhile, M1 with Δt = 0.02 s, and M4, M5 and M6 
with Δt = 0.07 s are also used to compute numerical 
solutions. 

8.1  Example 1 — Sys-1

It is clear that Sys-1 is a linear elastic system, and 
its numerical solutions are shown in Fig. 5. Note that 
the results for M1 with Δt = 0.02s become unstable 
in the early response while those for M4, M5 and M6 
with Δt = 0.07 s are reliable. Apparently, the instability 
that occurred in M1 is due to the violation of the upper 
stability limit for the second mode since for Δt = 0.02 s, 
the value of 0

2( ) is as large as 2.01, which is slightly 
larger than the upper stability limit of 2. Unconditional 
stability is indicated by the results for M4, M5 and M6 
with Δt = 0.07 s since it remains stable for the value of  
0

2( ) as large as 7.04 for the second mode. The response 
contribution from the second mode to the total response 
is insignifi cant since reliable solutions can be obtained 
for M4, M5 and M6 with  Δt = 0.07 s, where the fi rst 
mode is reliably integrated while a very signifi cant period 
distortion is found in the second mode. This is because 
Δt T/ 0

1 1
22

( ) =  for the fi rst mode and Δt T/ .0
2 1 12( ) =  for 

the second mode. Note that Δt T/ 0
1 1

22
( ) =  is close to 

the rough guideline of Δt T/ .0 0 05<  for the mode of 
interest. Hence, the fi rst mode is reliably integrated for 
M4, M5 and M6.

8.2  Example 2 — Sys-2

Figure 6 shows the displacement responses for Sys-
2. In addition, the response time histories of relative 
period error, instantaneous degree of nonlinearity and 
upper stability limit are plotted in Fig. 7. Note that 
reliable solutions are obtained for M4, M5 and M6 
with  Δt = 0.07 s since the relative period error is small 

Fig. 5   Displacement response time histories for Sys-1
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for the fi rst mode, as shown in Fig. 7(a), although the 
second mode shows a very signifi cant period distortion, 
as shown in Fig. 7(b). Figures 7(c) and 7(d) reveal that 
the instantaneous degree of nonlinearity of both modes 
are always less than or equal to 1, i.e., in the ranges of 
0 7 11. ( )≤ ≤ i and 0 98 12. ( )≤ ≤ i . Therefore, a stable 
computation can be achieved for M4, M5 and M6 since 
they behave in an unconditional stability state for any 
instantaneous stiffness softening system. It is interesting 
to fi nd that the top story response of M1 with  Δt = 0.02 s 
is accurate while the bottom story response shows very 
signifi cant high frequency fl uctuation with respect to the 
exact solution. This might be due to the slight violation 
of the upper stability limit for the second mode at the 
beginning of the motion while the stability is regained 
after the stiffness is softening. Note that there is no Fig. 6   Displacement response time histories for Sys-2
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signifi cant high frequency fl uctuation with respect to 
the exact solution for the top story, since the response 
contribution from the second mode to the top story 
response is insignifi cant.

8.3  Example 3 — Sys-3

Analytical results reveal that M4, M5 and M6 

will become conditionally stable as  i+1 >1, 4
3  and 2, 

respectively. Hence, it is of great interest to explore 
their performance in the solution of an instantaneous 
stiffness hardening system. As a result, the displacement 
responses for Sys-3 are shown in Fig. 8 and the response 
time histories of relative period error, instantaneous 
degree of nonlinearity and upper stability limit are 
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plotted in Fig. 9. Figure 8 shows that for both M5 and 
M6 with Δt = 0.07 s, the results are acceptable; while for 
M1 with Δt = 0.02 s and M4 with Δt = 0.07 s, numerical 
instability occurs. This might be explained by Fig. 9. The 
system experiences instantaneous stiffness hardening 
since  i

1 1( ) ≥ and  i
2 1( ) ≥  are found from Figs. 9(c) and 

9(d) for both modes. Thus, the upper stability limit for 
M1 is shrunk and the use of Δt = 0.02s lead to instability 
due to the violation of the upper stability limit as shown 
in Figs. 9(e) and 9(f). A similar phenomenon is found 
for M4 with Δt = 0.07 s. It is apparent that a stable 
computation is responsible for M5 and M6 achieving 
reliable solutions since the conditional stability limits 
are satisfi ed. This is manifested from Figs. 9(c) and 9(e). 

9   Numerical simulations

To numerically illustrate that the subfamily of the 
proposed family algorithm, whose β value is selected 
to be in the range of 1

3
1
2≤ ≤  or 1

3
2
3≤ ≤  and  = 1

2 , 
such as M5 and M6, have better error propagation 
properties than those of the currently available explicit 
pseudodynamic algorithms, a series of computer 
simulations of the pseudodynamic tests are studied 

Fig. 8   Displacement response time histories for Sys-3
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Fig. 9   Response time histories for Sys-3

next. In these numerical simulations, the displacement 
error introduced into the imposed displacement in each 
DOF per time step is considered as a random variable, 
whose distribution is assumed to be a truncated normal 
distribution. Simulation details can be found in Chang 
SY (2002) and are not elaborated here. In order to 
simulate a properly adjusted test, the mean value of 
the truncated normal distribution is taken to be zero. In 
addition, its standard deviation is assumed to be 1/3 of 
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the tolerance limit, which is taken to be 0.2 mm in all 
numerical simulations. This implies that the random error 
simulated in each time step might be as large as 0.2 mm. 

The structural systems of Sys-1, Sys-2 and Sys-3 
subjected to the same ground acceleration of 20sin(t) at 
their base were also adopted for computer simulations. 
Simulation results for the bottom story are plotted in 
Figs. 10 to 12 for Sys-1, Sys-2 and Sys-3, respectively. 
Since the displacement responses of the top story are 
much larger than the simulation errors introduced into 
the computed displacements, they are almost unaffected 
by these simulation errors and thus the response time 
histories of the top story will not be discussed here. 
The solution for M4 with a time step of Δt = 0.0001 s is 
considered as an  exact  solution for comparison. Note 
that no simulation errors are introduced into the system 
to obtain the exact solution. M4, M5 and M6 with a time 
step of Δt = 0.07 s are used to perform the computer 
simulations where the simulated errors are introduced 
into each DOF per time step. In each fi gure, the top plot 
shows the displacement response time histories while 
the time histories of cumulative error and step error are 
shown in the middle and bottom plots, respectively. 

After the comparisons of the bottom plots of Figs. 
10 to 12, it is found that all the computer simulations 
have the same time history of step error. This implies 
that each simulation will have the same simulation errors 
for exploring the error propagation effect. In Fig 10, the 
simulation results for M4, M5 and M6 are, in general, 
consistent with the exact solution for the linear elastic 
system. However, it seems that the simulation result 
for M4 has more signifi cant high frequency fl uctuation 
when compared to the results for M5 and M6. This is 
also manifested from the middle plot of this fi gure. 

Furthermore, this phenomenon is in good agreement 
with the error propagation results shown in Figs. 3 and 
4, where M4 possesses the largest error amplifi cation 
factors while M6 has the smallest ones for a given value 
of 0 . Similar phenomena can be also observed in Figs. 
11 and 12. This implies that the cases of instantaneous 
stiffness softening and hardening will show similar error 
propagation characteristics as in the case of a linear 
elastic system. In Fig 12, it is found that numerical 
instability occurs in the early response of the simulation 
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Fig. 10   Computer simulation results for pseudodynamic 
                  testing of Sys-1

Fig. 11  Computer simulation results for pseudodynamic 
                  testing of Sys-2

Fig. 12  Computer simulation results for pseudodynamic 
                  testing of Sys-3
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result for M4 since it is only of  conditional stability and 
the upper stability limit is violated.

10  Pseudodynamic tests

A series of pseudodynamic tests were performed 
to confi rm the feasibility of the proposed family 
algorithm. Some steel beams with a cross section of  
H200×200×8×12 and a length of  3.2 m were adopted for 
the tests. A cantilever beam was designed and fabricated 
and is simulated as a 3-DOF system. The experimental 
setup is shown in Fig. 13 where the cantilever beam is 
loaded by three actuators in parallel to simulate a 3-DOF 
system. The steel beam is loaded in its minor axis so 
that the problem of local buckling or instability can be 
avoided. A small linear elastic range was found for the 
specimen due to the relatively large dimension of the 
cross section, very rigid connections and the tightened 
swivel of each actuator.

It is necessary to obtain the initial stiffness matrix 
to use the proposed family algorithm before performing 
an actual pseudodynamic test. As a result, the initial 
stiffness matrix of the specimen is experimentally 
obtained as follows 
 

K0

66 2 50 0 12 8
50 0 71 0 31 9
12 8 31 9 20 7

=
−

− −
−

⎡

⎣

⎢
⎢
⎢

    
  

    

. . .

. . .

. . .

⎤⎤

⎦

⎥
⎥
⎥

              (33)

where the unit for all elements is in kN/mm. The 
measured off-diagonal term kij is not exactly equal 
to kji for i ≠ j. However, an average value is taken so 
that a symmetric stiffness matrix can be obtained. This 
symmetric matrix will be used to compute the coeffi cient 
matrices. The lumped masses for the fi rst, second and 
third degree-of-freedom are taken to be 4.0×105, 2.0×103 

and 6.0×104 kg. Consequently, the natural frequencies of 
the system are found to be 5.25, 12.48 and 189.28 rad/s.

The specimen is subjected to the 1995 Kobe 
earthquake with a peak ground acceleration (PGA) 
of 0.0015 g for linear tests while for inelastic tests the 
PGA is scaled to 0.05 g. Figure 14 shows the linear test 
results and the inelastic test results are shown in Fig. 15. 
Pseudodynamic results for M1 with a time step of 

Δt = 0.005 s are considered as “correct” solutions for 
comparison. For this time step, the values of Δt T/ 0  
for all three modes are found to be 0.0042, 0.010 and 
0.15. This implies that the fi rst two modes are accurately 
integrated. Although a considerable period distortion is 
found for the third mode, its contribution is insignifi cant 
and thus very reliable solutions can be obtained.

In performing the pseudodynamic tests, M1, M4 and 
M6 are used to carry out the step-by-step integration. It 
is found in Figs. 14 and 15 that instability occurs in the 

Fig. 13   Pseudodynamic test setup for cantilever beam
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very early responses if using M1 with a time step of Δt 
= 0.02 s while M4 and M6 still provide reliable results. 
This is because the value of 0

3( )  for the third mode is 
equal to 3.79, which is larger than the upper stability limit 
2.0 for M1. Thus, instability occurs. On the other hand, 
it is indicated that M4 and M6 can be of  unconditional 
stability for an instantaneous stiffness softening system 
and a linear elastic system since acceptable results can 
still be achieved for the value of 0

3( )  =3.79 for both the 
linear elastic and inelastic tests. 

11  Conclusions

A novel family of explicit pseudodynamic algorithms 
is presented herein. Since the proposed family algorithm 
has the same characteristic equation as the Newmark 
family method for a linear elastic system, it naturally 
inherits the same numerical properties as those of the 
Newmark family method at least for linear elastic 
systems. Due to excellent stability properties, a subfamily 
of this proposed family algorithm has been shown to 
be very suitable for use in general pseudodynamic 
testing, where the total response was dominated by low 
frequency modes while the high frequency responses are 
of no interest. In fact, this subfamily offers unconditional 
stability for any instantaneous stiffness softening 
systems, any linear elastic systems and instantaneous 
stiffness hardening systems that may be experienced in 
practice when performing a pseudodynamic test. This 
implies that it is not necessary to consider the stability 
problem to conduct a general pseudodynamic test if this 
subfamily is used. 

In addition to the favorable stability characteristics, 
the proposed family algorithm can offer similar accuracy 
when compared to second-order accurate methods for 
both linear elastic and nonlinear systems. It seems 
that the proposed approximate guideline of choosing 
an appropriate time step to satisfy Δt T/ .0 0 05<  for 
the modes of interest works well for both linear elastic 
and nonlinear systems. The subfamily for the β value in 
the range of 1

3
1
2≤ ≤  or 1

3
2
3≤ ≤  and  = 1

2  also has 
improved error propagation properties when compared 
to M4. This is manifested from error propagation 
analysis and a series of numerical simulations. Finally, 
the explicitness of each time step enables it to have an 
explicit implementation for the general pseudodynamic 
testing. The feasibility of this proposed family algorithm 
is also pseudodynamically confi rmed.
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