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Abstract: Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that
many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses
are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing
the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this
paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural
damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of
acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic
systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong
acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum,
a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced
concrete (RC) structure under the impact of a strong acceleration pulse.
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1 Introduction

Near-fault ground motion characteristics have been
extensively researched since several major earthquakes
occurred in the 1990’s (Hall et al., 1995; Sommerville
et al., 1997; Alavi and Krawinkler, 2000; Mavroedis
et al., 2004). The primary near-fault ground motion
characteristics include: permanent static displacement
and fling step caused by ground movement; impulse
velocity and directivity effect caused by directional fault
rupture mechanism; and large acceleration spikes caused
by fault rupture dynamics. While the main research
interests focused on the velocity pulses, which often
produce strong low frequency fault-normal components
in the ground motions, some recent studies (Tong ef al.,
2002; Markris and Black,2004; Daiet al.,2004; Xie et al.,
2005; Zhang et al., 2005) also indicated that prominent
high frequency acceleration pulses may carry large
potential damaging effects. Different from the velocity
pulses, some strong acceleration pulses in a ground time
history often dominate the spectral acceleration, but do

Correspondence to: Mai Tong, MCEER, State University of
New York at Buffalo, Red Jacket Quadrangle, Buffalo, NY
14261-0025, USA
Tel: 716-645-3498; Fax: 716-645-3399
E-mail: mtong@mceermail.buffalo.edu

fSenior Research Scientist; ‘Emeritus Professor; $Professor

Sponsored by: U.S. National Science Foundation Under Grant
CMS-0202846

Received July 21, 2007; Accepted July 30, 2007

not contribute significantly to spectral velocity (Dai
et al., 2004; Zhang et al., 2005). Further, comparing
these spectral responses to those of the ground motions
without prominent acceleration pulses, it has been
observed that for structures with fundamental periods
falling in the resonant band of the prominent pulse,
the corresponding peak responses of the structures can
be significantly higher. In addition, if a sequence of
consecutive acceleration pulses appears in the ground
motion, the pulse effects may be compounded (Dai
et al., 2004; Zhang et al., 2005).

In this paper, research results from a recent study
of acceleration pulse prominent ground motions and
analysis and quantification of acceleration pulse induced
structural damage effects are summarized. The main
results include:

(1) Temporal characteristics of acceleration pulses.

(2) Acceleration response spectra of strong
acceleration pulse dominant ground motions.

(3) Estimation of structural dynamic property
changes under strong acceleration pulses (e.g., increase
of fundamental period for reinforced concrete (RC)
structures).

2 Temporal characteristics of prominent
acceleration pulses

The ground acceleration pulses in a near-fault
zone (<20 km from the fault strike) can be generally
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classified into three types: (1) unrelated to the velocity
pulses or permanent ground displacement at the site,
but contributing a major portion of spectral acceleration
response at the short fundamental periods; (2) directly
related to velocity pulses (rupture directivity effect)
or other peak values such as PGV and PGD; and (3)
contributed a large fling step or displacement pulse
(long period low amplitude pulses), but not obviously
recognizable from ground acceleration time histories. In
Figs. 1-3, a comparison of three selected ground motion
records (TCU045, TCUO095 and TCUOS51) from the
Chi-Chi earthquake illustrates the characteristics of the
three types of acceleration pulses. Figure 1(a) shows the
prominent acceleration pulses in the TCU045 NS record.
The acceleration pulses contributed more than 90% of
the spectral acceleration responses (Fig. 1(b)). However,
the extracted acceleration pulses do not produce the
velocity pulse and displacement offset seen from the
original record (Fig. 1(c)). It shows that the acceleration
pulses are unrelated to the velocity pulse and permanent
displacement. Note that in the record, the PGV is still
controlled by the acceleration pulse; however, the main
velocity pulse has a much longer duration as shown in
Fig. 1(c).

Figure 2(a) shows the prominent acceleration
pulses in the TCU095 NS record. The acceleration
pulse is coherent to the PGV and dominates the spectral
acceleration and velocity (Fig. 2(b)). Figures 2(b)
and 2(c) show that the acceleration pulses alone have
influenced a significant portion of the PGV and about
one third of PGD.

Figure 3(a) shows the acceleration, velocity and
displacement of the TCUO51 NS record. It is seen that
the large displacement pulse is produced from a low
frequency acceleration pulse, which is hidden under the
high frequency contents of the ground accelerations (Fig.
3(b)). Figure 3(c) shows the low frequency acceleration
pulse produced displacement compared to the original
ground displacement record.

Single or multiple acceleration pulse excitations,
compared to random excitations, are relatively easy
to model. Efforts to describe different waveforms of
ground acceleration and velocity pulses are seen in recent
publications (Mavroeidis et al., 2004; Makris and Black,
2004; Xie et al., 2005; Zhang et al., 2005). The most
commonly used waveforms include symmetric triangle,
rectangle, and half-sinusoidal of the same amplitudes
and duration. A set of formulations of the simple
pulses and their acceleration velocity and displacement
relationship are provided (Xie et al., 2005). These
simple pulse waveforms are applied to approximate the
forward directivity and fling step effects (Mavroeidis
et al., 2004). Figures 4(a)-(c) show the basic triangle
pulse and the corresponding sequence of pulse
combinations that correspond to forward directivity
velocity pulse and fling step displacement pulse.

The basic characteristic parameters of the triangle
pulse are the amplitude 4, the half cycle duration t and
the number of pulses in the sequence. Since ground

motion records are commonly given in NS, EW and
UD projections, this representation is sufficient to
capture the velocity pulse related aspects seen in one
dimensional ground motion records. However, forward
directivity typically generates stronger motion in the
fault-normal direction and weaker motion in the fault-
parallel direction (Dray and Rodriguez-Marek, 2004).
The fault-normal and parallel directions, in most cases,
do not coincide with the NS, EW and UD directions at
the ground motion recording stations. Therefore, a more
informative view of the ground pulse characteristics
requires a two or three dimensional wave representation.
Furthermore, acceleration pulses are not limited to
those directly associated with the velocity pulses or
fling step, as some 3 dimensional (3D) ground motion
characteristics can be very different from their 1D
projection (Tong et al., 2002).

Tong and Lee (1999) and Tong et al. (2002)
considered a moving coordinate decomposition of 3D
motion trajectory for analysis of temporal characteristics
of acceleration pulses. The ground acceleration vector is
recast with respect to a moving coordinate system {7,
N, B}, in which T and N are the tangential and normal
directions of the motion at the moment in reference
to the current point on the displacement trajectory.
The 3D acceleration vector is then expressed as a two
dimensional vector projection

a=alT+aN (1

a, = k|v[* (v —speed of the velocity vector) represents the
normal acceleration, which only changes the direction
of the acceleration vector, but is independent of the
speed change. a, = dJv|/ds represents the tangential
acceleration, which only changes the speed. Since the
tangential acceleration can increase or decrease the
speed, the tangential acceleration effect is separated as
acceleration and deceleration, denoted as a" and a,
respectively. This mathematical representation simplifies
the kinematic relationship between the 3D acceleration
and velocity vectors.

By examining the 3D norm of ground acceleration
and velocity using the 3D moving coordinate
decomposition, the following relationship is derived: the
velocity pulse kinetically coherent with two acceleration
pulses such that the rising phase of the velocity pulse
corresponds to a positive tangential acceleration
(a;") pulse, which increases the speed; the decaying
phase of the velocity pulse corresponds to a negative
tangential acceleration (a,-) pulse, which decreases the
speed. Figure 5 illustrates this relationship through a
decomposition of the PGV pulse and its corresponding
normal and tangential acceleration components from the
CHYO028 record of the Chi-Chi earthquake.

The temporal analysis of the waveforms of the
acceleration pulses can provide some useful details.
For example, from Fig. 5, it is seen that the rising
and decaying phases of the velocity pulse are 0.4 and
0.18 s, respectively, which correspond to the different
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durations of the acceleration and deceleration pulses.
The peaks of the two tangential acceleration pulses are
400 and 600 Gal, and again, the amplitudes of the two
tangential acceleration pulses are significantly different.
Furthermore, as shown in Fig. 5, the 3D PGV and PGA
in many of the prominent acceleration pulse ground
motions are coherent. However, unlike what is normally
expected (i.e., where large acceleration produces large
velocity) for the correlated PGA and PGV, often PGV
occurs ahead of PGA. Further, a close examination of
the temporal characteristics of the acceleration pulse
reveals that the PGA is dominated by a large deceleration
pulse.

Another temporal characteristic quantity of ground
acceleration is the derivative of acceleration, which
carries more details of high frequency components.
Although most structures are less sensitive to the high
frequency components in ground motions, the high
frequency components of the derivative of accelerations
are potentially good indicators of the changes in
structural strength due to heavy dynamic loadings (Tong
et al., 2005).

3 Prominent acceleration pulse induced

response spectra

The structural responses excited by the ground
motions with prominent acceleration pulses are generally
correlated to the pulses of the excitation and dominated
by only a few cycles of large pulse-like motions with
coherent peak values of acceleration, velocity and
displacement. Such coherent peak response values
imply that there are parametric relationships between the
key parameters (i.e., amplitude, duration and waveform)
of the acceleration pulse and the corresponding response
peak values. Therefore, pulse excited response spectra
should be able to provide more useful information than
traditional random excitation induced response spectra.

Consider the linear response of a SDOF system
subject to an acceleration pulse excitation,

mX + X +kX= -mG, )

where m is mass, ¢ is the damping coefficient, G is the
full cycle ground acceleration pulse (as shown in_Fig.
4(b)) with amplitude 4 and duration t. X, X and X are
the displacement, velocity and acceleration responses
of the system. To compare the spectral acceleration,
velocity and displacement of the elastic systems, the
dynamic system and the input pulse amplitude (with
m=1 and A =1) is normalized. Figure 6 shows the
elastic spectral acceleration. This spectrum is calculated
with the amplitude of the input acceleration set to 1g.
Therefore, the spectrum value can also be interpreted
as the acceleration amplification factor if the input
acceleration amplitude is changed to a non-unit level 4.
In that case, the corresponding spectral acceleration is
equal to 4 multiplied by the corresponding amplification
value from the normalized spectrum. Note that the

horizontal axis of the spectrum is given in 2¢/7,. This
is because the pulse excited spectral acceleration of an
SDOF system is invariant with respect to the period ratio
27/T,. Namely, a system with a fundamental period of 7
excited by a pulse of duration 7 will have the same peak
acceleration as a system with a fundamental period 7}
excited by a pulse of duration 27.

For elastic-plastic response of a SDOF system, the
above dynamic equation is modified by

mX +cX + R(X,X) = -mG, 3)
where R(X, X ) is the restoring force and can usually be

modeled by an inelastic hysteresis function such as the
trilinear function given below.

k(X -x,) |X—)c0|Sx1
ROLA) = sign(X—xl)R}ﬁkp(X—xl) X <X <ux, X~X>0
sign(X —x,)R, X, <X<x, X-X>0
k(X -x,) x<X<x, X-X<0
4
For this trilinear hysteresis function, the

corresponding yielding point x,, fully yield point x,,
offload point x, and offset point x, are shown in Fig.7.
Note that the definition of R is not limited to X>0
and R>0 (the first quadrant). In other quadrants, the
definition is symmetric to that of the first quadrant as
given in the figure.

The typical response loop shown in Fig.7 can be
approximated by the trilinear model with &, to be the
elastic stiffness before the loop, R, to be the yielding
point, kp to be the stiffness after the yielding point before
entering plasticity, R to be the ultimate strength.

Based on the trilinear model, the total incremental
displacement for a given hysteresis loop is defined to be

AD = Xmax - xO (5)
and the maximum elastic displacement is defined to be
Ady =x, =X, (6)

where x, is the initial position, x, is the yielding
displacement, X is the maximum displacement
reached in the loop. Then, the corresponding ductility of

the loop is measured by

0 if AD < Ad,
H=1ADZAD e ap s A, (7)

E

Consider a special case of the trilinear system with
R = R . This is an elastic-perfect plastic system which
reduces the trilinear model to a bilinear model.

To evaluate inelastic spectral responses induced by
prominent acceleration pulses, four parameters, 4, 7, T
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and R, can influence the spectral responses. To simplify
the cumbersome multi-variable function, it is desirable
to group the spectral response values into same-value
classes such that they can be distinguished by equivalent
relationships formulated with the four variables. Makris
and Black (2004) looked into developing dimensionless
spectral displacement of elastic and inelastic systems. In
this paper, we consider dimensionless classes, 27/7, and

Ry/Rmax, as the basic variables of the ductility demand
function, where 7 is the half cycle duration of the pulse
and 7, is the fundamental period of the dynamic system;
and R, is the yielding force and R is the maximum
restoring force that corresponds to the maximum elastic
displacement of the dynamic system under the pulse
loading. Figure 8 shows the ductility time histories

of three different elastic-perfect plastic systems such

A J
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©

Fig. 4 Simple acceleration pulses of triangle waveform (black) with corresponding velocity (green) and displacement (red)
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that they have different fundamental periods and are
subjected to different pulse loadings; however, since
2t/T,and R /R _are the same, they all belong to the same
class Checklng ‘the ductility time histories, Fig. 8 shows
that the peak values of ductility for all three systems are
nearly identical (31.00; 30.96 and 31.14). Therefore,
the equivalent class determined in this way satisfies
the grouping requirements. It is shown that a ductility
demand spectrum can be formulated with respect to the
equivalent classes defined by 27/7, and R /R i

Figure 9 shows the ductility demand spectmm as
a function of 2¢/T; and R /R . The corresponding p
values for the equlvalent classes of 2t/T, and R /R are
given in Table 1.

Curve-fitting the ductility demand spectral values for
the equivalent classes resulted in the following empirical
ductility demand spectrum with respect to the equivalent
classes:

n

!
= 8
u 22 (T)<Rm) ®)
where / and n are numbers of the 27/7 and Ry/RmaX, which

are taken as 7 and 8, respectively. The corresponding
coefficients p_are given in Table 2.

In the above ductility demand spectrum, the yielding
ratio r = R /R is an intermediate variable. It depends
on the seismic-force-resisting system of the structure
and the excitation pulse characteristic parameters (4
and 7). The yielding ratio » is determined based on the
maximum elastic displacement and the elastic response

of the structure under the specified pulse loading. The
maximum elastic displacement de of a type of structure
can be assessed as shown in the second column of
Table 3 (derived based on Recommended Provision of
SNiP, 1986). The corresponding yielding ratio r is then
calculated by

R
= b :(&) 5@ = 47[:256
R M (254 T2a(25)4
T,

)
max 0(27

o TN LT

60 ! " , N T
sob L) N\ N
2007 ) M

Ductility

02 0304 05 06 07 08 09 1 © 207,

Ry/Rmax

Fig. 9 Ductility demand spectrum with respect to the
equivalent 27/7 and R /R classes

Table 1 Ductility demand spectrum with respect to equivalent 2z/7, and Ry/Rm“ classes
27/T, Ry/ R
° 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.50 10.80 4.72 2.81 1.94 1.48 1.38 1.33 1.29

0.75 11.20 4.28 2.34 1.97 1.88 1.91 1.53 1.29

1.00 13.50 438 2.46 2.29 2.07 1.95 1.59 1.29

1.50 30.90 9.46 4.10 2.76 2.07 1.70 1.65 1.32

2.00 91.50 31.10 13.92 7.10 3.92 2.46 1.72 1.38

2.50 151.10 50.60 22.31 10.50 5.39 3.03 1.88 1.38

3.00 207.00 66.00 27.32 12.27 5.59 2.66 1.55 1.25

Table 2 Coefficients p; for the ductility demand spectrum
; J
1 2 3 4 5 6 7 8

1 9532.88 -21743.45 13679.58 4211.97 -9066.98 4388.51 -953.9 89.75
2 -84460.32 185180.3 -98142.22 -65847.16 98259.3 -44861.6 9464.81 -870.32
3 295383.6 -626072 274350 317849.6 -399527.5 175459.6  -36122.43 3246.52
4 -515416.7 1065309 -385005.6 -680775.6 780371.8  -333790.7 67258.15  -5900.21
5 433285.1 -836482.8 126787.7 831523.7 -826212.4 338451.7  -66175.77 5626.81
6 -140966.3 198617.6 194740.8 -572315.2 4633494  -176147 3285437  -2680.17
7 11193.31 10219.58 -98132.54 150438.8 -104262.9 36965.68 -6609.33 523.19
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where m is the total mass of the structure, a(27/T) is
the elastic acceleration amplification factor (Fig. 6), 7,
is the fundamental period of the structure, and A4 is the
amplitude of the excitation pulse.

4 Change of fundamental period under
acceleration pulse excitation

Using the ductility demand spectrum developed
above, the ductility demand to a structure subjected to
the impact of a given acceleration pulse excitation is
estimated. With this information, the potential damage
to an RC structure can be evaluated in terms of its
change in stiffness, fundamental period, and total plastic
energy accumulation.

The corresponding stiffness degradation for RC
structures is fitted by the following function (Rzhevsky
and Lee, 1999)

(10)

1
(u+u’ +1y

where y is the stiffness degradation coefficient. Note
that if  is zero, o =1 (i.e., without plastic deformation);
otherwise, if x> 0, then ¢ < 1, which implies that
the stiffness is softened due to yielding and plastic
deformation.

The degraded effective stiffness after one hysteresis
loop is estimated as

ky = ok, (1)

Thus, the change of fundamental period is

1\/\[) T(l\/\—r (12)

AT =T, -T,=2x

where m is the mass of the dynamic system. The
corresponding plastic energy accumulation from the
plastic deformation is calculated by

W= [ R(X, X)dx (13)

loop

Based on the above formulations, a simple procedure
has been developed to estimate the ductility demand and
the fundamental period change for RC structures when
subjected to the excitation of a prominent acceleration
pulse. The basic information needed to complete the
procedure include: the characteristic parameters of the
acceleration pulse (amplitude A, duration 7), the initial
fundamental period of the structure 7|, and the type of
structure (e.g., RC moment frame). The procedure is as
follows:

(1) Use the parameters of the acceleration pulse
(amplitude 4, duration 7) and the initial fundamental
period of the structure 7, to determine the peak
acceleration level of the corresponding elastic system
a_ = Ax (amplification factor).

(2) Use a_, and the structure type to determine
the yielding ratio » = R /R . Where R = ma_ and
R =% R . Note that knowmg the general strength

y ma:
of the structure is often sufficient to determine the ratio
r without information about the total mass (m) of the
structure.

(3) Use 2/, and R /R _from steps 1 and 2 to obtain
the ductility demand ,u

(4) Apply the ductility demand g from step 3 in the
stiffness degradation formula to determine the change of
stiffness degradation ¢ and &'

(5) Use the stiffness degradation coefficient o to
determine the change of fundamental period AT.

The following example illustrates the use of the
procedure.

Consider a structural system with 7, = 0.5 sec.
excited by a pulse of intensity 4 = 0.5 g, and duration
7 = 0.165 s, which resembles a pulse in the Chi-Chi
TCU068-90P record. 2t/T, = 0.66. The corresponding
linear acceleration amplification factor for 27/7, = 0.66
is 2.0 (Fig. 6). The maximum linear system spectral
acceleration is a_ = 0.5 x 2.0= 1.0g. The ordinary
RC structure under consideration has the limit elastic
deflection of 0.004 (Table 3). The corresponding yielding

Table 3 Limit of elastic deflection of different structures

Seismic-force-resisting system

Maximum elastic

deflection J, (rad)
1 story RC frame structure with 0.75% reinforcement 0.003
1 story RC frame structure with 1.5% reinforcement 0.006
1 story RC frame structure with 2.75% reinforcement 0.009
RC moment resistant frame with 0.75% reinforcement 0.002
RC moment resistant frame with 1.75% reinforcement 0.004
Masonry walls 0.003
Steel moment resistant frames 0.010
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ratio r=R, /R, =4x3.14x0.004/0.5* x2x0.5 = 20%.
For Ry/Rmax = 20%., and 27T, = 0.66, from the
ductility demand spectrum of the equivalent classes,
i = 4.2. The coefficient of stiffness degradation is
o =1/((42+42° +1) = 034 (for y = 0.5). It
follows that the change of fundamental period is
AT =0.5(1-+.34)/4/34=0.35s.

An experimental verification of the above proposed
methodology was carried out on simple one-story
RC column-diaphragm models. The details of the
experimental study are reported Part II of this paper.
Table 4 summarizes the comparison between the
calculated and measured change of fundamental period

under various pulse inputs. Where R, is the yielding
point, R and D_  are maximum restoring force and
displacement, respectively.

The structure stiffness of the RC models before
and after each pulse loading, given in columns 2-3,
are obtained from the hysterisis loop of the response
acceleration versus displacement. The corresponding
fundamental periods, given in columns 4-5, are obtained
from the free decaying vibration of the acceleration
time histories. The changes of the fundamental period
calculated from the above procedure are shown in Table 5
and compared with the measured change of period AT.

Table 4 Results of Structural fundamental period change of the RC models

Stiffness k&, Fundamental
Model and event (10kN/m) period, 7'(s) AT(s) R /(10kN) R (10kN) D_ (cm)
Start Finish Start Finish

M #1, v104

CHY080 280 95 0.307 0.526 0.219 1.30 2.70 2.50
M#2,Ev203

CHY080 260 63 0.319 0.65 0.331 1.30 2.83 4.00
M#3, Ev304

CHY080P 220 60 0.347 0.67 0.323 1.35 2.65 3.90

Table 5 Calculated AT compared with measured AT

Model and event X, (cm) u o ATarcutatea(S) Measured/Calculated
Model #1, v104 CHY080 0.464 4.38 0.34 0.225 0.97
Model #2,Ev203 CHY 080 0.500 7.00 0.27 0.300 1.10
Model #3, Ev304 HY080P 0.614 5.36 0.30 0.285 1.13

5 Concluding remarks

Large acceleration spikes caused by fault rupture
dynamics constitute one of the primary near-fault
ground motion characteristics. In this paper, research
results from a recent study of acceleration pulse
prominent ground motions and an analysis of structural
damage induced by acceleration pulses are summarized.
The main results of the study include: (1) temporal
characteristics of acceleration pulses; (2) ductility
demand spectrum of simple acceleration pulses with
respect to equivalent classes of dynamic systems and
pulse characteristic parameters; and (3) estimation of
reinforced concrete (RC) structural dynamic property
changes under strong acceleration pulses.

For a reinforced concrete (RC) structural system,
a simple procedure has been developed to estimate the
ductility demand and the fundamental period change
of the structure under the impact of a given strong

acceleration pulse. The procedure consists of three
calculation steps; first to obtain a ratio of the structure’s
yielding strength over the elastic load demand from the
acceleration pulse and a ratio of pulse duration over
the effective period; second to input the two ratios into
the ductility demand spectrum to acquire the needed
ductility demand; and finally to determine the in-cycle
degradation of strength and change of fundamental
period.
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