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3D viscous-spring artificial boundary in time domain
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Abstract: After a brief review of studies on artificial boundaries in dynamic soil-structure interaction, a three-dimensional
viscous-spring artificial boundary (VSAB) in the time domain is developed in this paper. First, the 3D VSAB equations in
the normal and tangential directions are derived based on the elastic wave motion theory. Secondly, a numerical simulation
technique of wave motion equations along with the VSAB condition in the time domain is studied. Finally, numerical
examples of some classical elastic wave motion problems are presented and the results are compared with the associated
theoretical solutions, demonstrating that high precision and adequate stability can be achieved by using the proposed 3D
VSAB. The proposed 3D VSAB can be conveniently incorporated in the general finite element program, which is commonly

used to study dynamic soil-structure interaction problems.
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1 Introduction

Numerical simulation methods for near-field
wave motion problems have developed rapidly since
the 1970s. Near-field wave motion problems, such as
foundation vibration, dispersion of earthquake waves,
blast engineering, etc., can all be considered as soil-
structure interaction problems (Liao, 1997, 2002; Liu,
2002). Numerical techniques are widely used to solve
transient wave motion problems in infinite or semi-
infinite domains. If a verified virtual artificial boundary
condition is introduced into the numerical method,
the problem can then be solved in a finite computing
domain instead of an infinite medium. The equations
of motion and physical boundary conditions can be
discretized by using the finite element method (FEM)
or finite difference method (FDM). The simulation of
wave motion thus becomes primarily an arithmetic
problem, and simulation of the practical wave
motions can be carried out by using the general FEM
directly. Obviously, constructing an accurate artificial
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boundary condition (ABC) is necessary to enable this
process. The essence of the artificial boundary is that
the boundary is able to efficiently absorb the energy
of the scattering waves, from the generalized structure
to the infinite media. Based on this idea, extensive
studies on artificial boundary problems have been
carried over the past 30 years (Wolf, 1986; Liao, 1997,
Kausel, 1988). There are two main directions in these
studies, the global ABC and the local ABC. The global
ABC has high accuracy, but its techniques can be quite
costly and time consuming to implement due to the
coupling characteristics of spatial and time domains.
Therefore, for large-scale models, global ABCs may
not be available. A seismic free field input formulation
of the coupling procedure of the finite element and the
scaled boundary finite element is proposed to perform
the unbounded soil-structure interaction analysis in time
domain (Yan et al., 2003). It uses a fast eigen system
realization system, which significantly reduces the
computational effort. On the other hand, local ABCs are
important due to their decoupling characteristics of time
and spatial domains.

In developing a local ABC, the earlier viscous
boundary was widely applied due to its clearly presented
concept and convenient implementation. A viscous
boundary was first proposed by Lysmer and Kulemeyer
(1969). It is equal to the viscous dampers applied on
the boundary to absorb energy of the incident waves.
Lysmer’s viscous boundary was recommended in the
Chinese code for seismic design of nuclear power
plants (GB50267-97). However, the viscous boundary
considers only the absorption of energy from scatter
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waves. From physical concepts, a mechanical model
with a viscous boundary is a separated body, which is
suspended in space. The entire model can shift as a rigid
body under low frequency force. A viscous boundary
derived from a one-dimensional wave motion theory
would result in large errors when it is applied to a multi-
dimensional situation (Liu, 1997). Henceforth, scholars
derived many types of local ABCs; only some are
introduced in this paper. A nonreflecting plane boundary
proposed by Smith (1974) was a superposition boundary
based on the reflection characteristics of a plane wave
on fixed and free boundaries. Liao derived a transmitting
boundary based on the simulation of the propagation
procedure of various one-way waves. This type of
ABC can be applied to a linear combination problem
of any one-way wave propagation problem without
modification. Foreman (1986), Higdon (1986) and
Keys(1985) derived a Clayton-Enquist absorbing ABC
by using the sound wave equation. This type of ABC is
a paraxial approximate transmission boundary. Zhao et
al. (1989) proposed an infinite element boundary to deal
with the infinite basement problem. Deeks and Randolph
(1994) presented a type of 2D viscous-spring boundary.

The local ABC is applied in civil engineering to
solve soil-structure interaction (SSI) problems. The ABC
derived from wave motion theory could not simulate a
zero-frequency component, e.g., the static component.
Many scholars tried to use local ABC to solve static
problems encountered in the study of SSI. Underwood
and Green (1981) set up a doubly asymptotic boundary
element method by combining static and viscous
boundaries. This type of boundary can simulate zero-
frequency and infinite-frequency problems accurately,
but had only one-order of accuracy for the other
frequencies problems. Wolf and Song (1995) proposed
a type of doubly asymptotic unbounded media-structure
interaction analysis method. Jing and Liao(2000) and
Liao (2002) combined static boundary and multi-
transmitting formula to solve the problem. This method
can be used with various numerical methods directly in
the near field. The aforementioned ABCs are not accurate
enough to be used in engineering and are too complicated
to be applied in numerical simulation. To overcome these
shortcomings, Deeks and Randolph (1994) developed
an axisymmetric transmitting boundary for the 2D
case in the time domain based on the cylindrical wave
theory. The 2D in-plane tangential boundary condition
with viscous springs developed by Liu and Lu (1997,
1998) was perfected. Liu also discussed the merits of
this boundary by comparing it with other boundaries,
such as enabling the simulation of the elastic restoring
performance of the semi-infinite media out of the
artificial boundary. The viscous spring boundary is more
stable in simulating the high or low frequency problem.

However, practical wave motion problems are
always three-dimensional. If a low dimensional
boundary is applied to a multi-dimensional situation,
the results would be highly unrealistic. Therefore, to

develop a 3D viscous spring boundary and its numerical
simulation method is important.

Based on the theory of elastic waves in the near-field,
3D viscous spring artificial boundary (VSAB) equations
are derived and their numerical simulation technique
is presented in this paper. To verify the proposed 3D
VSAB?’s reliability and practicality, numerical examples
of some classical elastic wave motion problems
are presented and the results are compared with the
associated theoretical solutions. These comparisons
demonstrate that a high degree of precision and adequate
stability can be achieved.

2 3D VSAB condition in normal direction

2.1 Boundary equations in normal direction

Equation (1) is the wave motion equation of spherical
expanding wave (P wave) in spherically symmetrical
coordinates.

9(RY) _ 1 9'(Rp) M
oR> o o

p

where ¢ is the potential function of displacement, c¢_is P

. . . . P
wave velocity of the media and R is the radial coordinate.
The general solution of Eq.(1) is

1 1
d(R,1) —Ef(R—cPt)+Eg(R +cpt) 2)

where, f{*) and g(-) are functions expressing scattering
wave and converging wave, respectively.

The displacement normal to the wave front can be
expressed as follows if the scattering wave is taken into
consideration (Wolf, 1988).

u=V¢=g—£=%f'(R—cpt)—%f(R—cpt) (3)

The normal stress is computed by the following
equation.

ou u
o'=(/l+2,u)a—R+2/lE 4)

with 4 and u being Lamé constants. From Eq.(3),

ou 1 .o 2
a—R—Ef (R Cpt) sz(R Cpf)

+% f(R=c,) (5)
u 1

, 1
E—Ff(R—Cpt)—Ef(R—Cpt) (6)
Substituting Eqs.(5) and (6) into Eq.(4), the normal
stress on the wave front expressed by function f{*) is
obtained.
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F(R=c)- %f‘(R—cpr)
+Ff(R —c,b) (7)

Introducing the following functions into Eq. (7),

. ou_ ¢ "R % r(r ]
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t
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—cpje—ﬁ‘f'(R—cpt) (10)

Comparing with Eq.(3), the relationship between normal
stress ¢ and displacement # can be obtained as follows.

R 4G R . pR
c +—c=——[u+—u+
4G

¢, R ¢,

i] (11)

Equation (11) is 3D artificial boundary function in the
normal direction, where, G=u is the shear modulus and p
is the mass density of the medium. In deriving Eq. (11),
the following expression was used.

A+2u=pc, (12)

As time tends to infinite, the 3D normal boundary
Eq.(11) becomes

o=-29, (13)
R

Equation (13) is the static boundary condition (Xu, 1990),
which represents the relationship between displacement
and stress near the cavity when the spherical cavity in an
elastic infinite space is subjected to uniform pressure.

2.2 Numerical simulation technique on the normal
boundary

The infinite homogenous medium is truncated by
introducing artificial boundaries. At the truncating
position on the boundaries, a continuous spring-dashpot-
lumped mass system is set up, as shown in Fig.1.

The equation of motion of the physical system
shown in Fig.1 is

Kuy +Cliiy —tiy,) =0 (14)

miiy; + C(tiy, —1iy ) =0 (15)

The operators u, and u,,in Eqgs.(14) and (15) represent
the displacements along the load direction on the
boundary node and lumped mass, respectively. The
following equations are obtained from Eq.(14).

1 .
Uiy =E(KuR + Ciiy —0) (16)

1 . . .
M ZE(K”R + Ciiy —0) (17)

Substituting Eqs.(16) and (17) into Eq.(15), the
differential function is obtained, which meets the
requirement of the node’s stress equilibrium and
displacement continuity on the boundary of the physical
system.

M do
C o

2
~ Klu, +M8uk M d7uy

C ot K of

1 d®)

From Eqgs.(11) and (18), expressions for the
equivalent distributed stiffness, damping and mass can
be found as follows:

K—4G C=pc,;

M =pR 19
2 p (19)

thus, the conditions for stress and displacement on
the boundary are identical with those of the original
homogenous medium. The 3D VSAB can be achieved
by simply using the corresponding spring, dashpot and
lumped mass elements. The continuously distributed
physics constants must be discretized according to
rules in FEM analysis. For example, any parameter on
the normal boundary can be taken as the product of the
relevant value obtained from Eq.(19) and the grid area
corresponding to the node.

In numerical implementation, the 3D artificial
boundary can be set up by using the corresponding
spring and dashpot only, ignoring the concentrated
mass, such as shown in Fig.2. It has been shown from
numerical examples that such simplification results
in a minor effect on the numerical precision for most
situations.

3 3D VSAB condition in tangential direction

3.1 Boundary equation in tangential direction

The dynamic displacement for spherical shear waves
(S wave) can be approximately expressed in spherical
coordinates by the following equation (Aki, 1980).

u(R,t)=%f(R—cst)+%g(R+cst) (20)

in which c_is the shear wave’s velocity of the medium.
The first and second items on the right side of Eq.
(2) represent the scattering and converging waves,
respectively.
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Fig. 1 Physical component applied on the normal boundary

Next, the spherically scattering shear wave is
considered. The displacement in the tangential direction
of the wave front can be expressed as:

u(R,t) =%f(R—cst) (21)

The shear strain and shear stress can be derived from
Eq.(21) as:

_Ou w2 L
y(R,t)—a—R R_ sz(R Cst)+Rf(R ct) (22)

T(R,1)=Gy = G[—%f(R —ct) +%f'(R -ct)] (23)

The velocity of a point of at a radial coordinate of R is

. ou(Rt) ¢ .
h=——"="=—=f(R-ct 24

py Rf( 1) (24)
From Egs.(22), (23) and (24), the stress on the wave
front is obtained.

t(R,f) = —%u(R,t) — pc.ii(R,1) (25)

Equation (25) is the 3D artificial boundary condition
in the tangential direction. It expresses the relationship
between the stress and displacement on the wave front
in the tangential direction. In deriving Eq.(25) G=pc’
had been used.

3.2 Numerical simulation technique on the boundary
in tangential direction

The 3D artificial boundary function in the tangential
direction expressed by Eq.(25) implies a parallel-
connected spring-dashpot system. The corresponding
parameters of the physical components are

2G
K=—; C=pc
R pe, (26)
As in the previous section, in the general FEM analysis
program, any parameter on the boundary in the
tangential direction can be taken as the product of the

B TB B
= +
KBjr-W T CB fl.; KB - .CB

Fig. 2 Artificial boundaries and isolated bodies

relevant value obtained from Eq.(26) and the grid area
corresponding to the corresponding node.

4 Application of 3D VSAB

To simulate the condition of a practical continuous
medium, Eq.(19) and Eq.(26) provide the parameters
of the physical components applied in the normal and
tangential directions of the artificial boundary. The mass
M of the physical component on the normal boundary
is joined with the dashpot. Obviously, it is an instable
system, which is shown in Fig.1. It is not convenient
for use in modeling and computing. To simplify the
model, the mass component is neglected and the end of
the dashpot is fixed. Thus, the artificial boundary with
a viscous dashpot and spring is constructed, which is
the Viscous-Spring Boundary. The effectiveness and
accuracy of this boundary will be proven in the following
examples. Note that the VSAB provides a simulation of
the distributed stress condition on the artificial boundary.
Therefore, it is a type of continuously distributed
artificial boundary condition. The surface of the artificial
boundary will be discretized when the computed domain
on the boundary is discretized. The physical components
of the continuous boundary can be changed into a
coupled artificial boundary via the shape functions of
FEM directly, and the consistent VSAB is achieved
(Liu, 1997, 1998). It can also change into an uncoupled
artificial boundary via the lumped parameters, resulting
in a lumped VSAB, which can then be used. The detailed
implementation method is shown in Fig.3. In Fig.3, the
X and Y coordinates are both in the tangential directions
and Z is in the normal direction. The parameters of
the physical items on the nodes of the VSAB can be
obtained from Eq. (27).

K=kK=224
R
C, =C,=pcA
27)
k-4,
R
G =pc, 4

where A4 is the total area of all elements around the node
considered on the boundary, for instance for the status
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shown in Fig.3, we have 4=4 +4,+4 +4,.
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Fig. 3 Sketch of 3D VSAB

The above discussion refers to the full space and
spherically symmetrical wave motion. However, in most
practical situations, problems to be treated are in the half
space and are nonsymmetrical. Moreover, low-frequency
and the static state must be considered in many cases.
The numerical parameters obtained from Eq.(27) are not
available for general situations. Therefore, Eq.(27) is
modified as Eq.(28):

K =k,=%9,
R
C, =C,=pcA
(28)
k=20,
G =pc,4

where, a, and o are modified coefficients in the
tangential and normal directions, respectively. R is
the distance between the load point and the boundary,
which takes the approximate value of the perpendicular
distance from the load point to the boundary.

It can be found that via the modified parameters
given in Eq.(28), the half-space, low-frequency and
static component in wave motion problem, especially
SSI problem, can be satisfied.

The modified parameters in Eq. (28) can be
determined from the parameter analysis and some
example tests. The parameter analysis shows that the
numerical solution only slightly varies with the change
of the modified parameters around the recommended
value given in Table 1. A viscous boundary is a result
of a plane wave problem and VSAB is a 3D problem,
in which the geometry spreading and scattering effects
must be taken into account. Therefore, VSAB is more
accurate than a viscous boundary.

Table 1 Recommended value of o and a

Modified parameters Recommended value

a 1.0-2.0 1.33

N
o 0.5-1.0 0.67

Value range

L

5 Examples of numerical simulation

To verify the accuracy and reliability of the proposed
3D VSAB, four typical wave motion problems are
examined as follows. The first example is an explosive
source in an unbounded space, i.e, it is a spherically
symmetric problem. The load is a dilated stress wave.
The condition of this example is the same as the basis
for the theory introduced in this paper. The second
example is an inner-source problem. It is also a full
infinite domain problem, but the load is concentrated in
one direction. The third example is the Lamb problem,
i.e., under a concentrated load on the half space surface.
The last example is a half-infinite domain problem
under several forces. In the first and the last examples,
the generalized solution will be developed, while for the
other examples, analytical solutions are available. In the
second example, parameter analysis will be conducted
and the value of the modified coefficients will be
discussed. By presenting the solutions obtained under
different artificial boundary conditions, the accuracy
and applicability of 3D VSAB are identified.

5.1 Explosive-source problem

In this example, the wave motion caused by blasting
in an homogeneous, isotropic and linear elastic infinite
medium is studied. The model is an explosive-source
model with spherically symmetrical coordinates. The
explosive source is located at the origin point (0, 0, 0).
There is a fluid cavity of 0.3m thickness between the
dynamite and the medium. The velocity of shear wave
of the medium is assumed to be C=500m/s, the mass
density p=1800kg/m* and the Poisson’s ratio v=0.25.
The time interval A7=10us is used. The dynamite part is
meshed as Eulerian grids and the others are Lagrangian
grids. Due to the spherical symmetry, only a one-eighth
sphere, with R from 0 to 1m as shown in Fig.4, is needed
for the finite element model. The parameters of . and
a, take the values of 2.0 and 4.0 without modification.
The radius values of the observation points are 0.4m and
0.8m.

The displacement of the observed point is in the
direction of the radius. The generalized solution is
obtained by a model of R =10, which is much bigger
than the model with VSAB. The corresponding numerical
solutions are obtained by different boundaries, as shown
in Fig.5. From the figures, it is seen that the 3D VSAB
has good accuracy. The displacement response in the
other direction is the same as shown in the figures.

The modified coefficients o and o were taken as
the theoretical value. This implies that for this case, no
modification of the parameters of Eq.(27) is needed. The
explosive-source problem is a high-frequency problem
and the shock wave is a dilated wave. The condition is
the same as in the theoretical case. Therefore, it shows
that the solutions of the derived equations are correct.



98 EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.5

From the solution, it is also found that the viscous
boundary has a good accuracy for high frequency
problem. Nevertheless, it is not known whether the
proposed 3D VSAB along with the recommendation of
the modified coefficients of & and a can be confidently
applied in the other situations.

5.2 Inner-source problem

In this example, the wave motion caused by a
concentrated force in homogeneous, isotropic and linear
elastic full infinite medium is studied. The Cartesian
coordinates are adopted. The concentrated force is
applied at the origin point (0, 0, 0) as shown in Fig.6.
The range of the numerical computed object takes a
cubic volume, with X, Y and Z all from —50m to 50m,
and the grid size of AX=AY=AZ=5m. The coordinate of
the observed points are X=Y=7=5m and X=20m, Y=7=0.
The time interval A¢=0.003s is used for this example,
and a large quarter model is not needed as in the
explosive-source problem using symmetry, so a small
full model is adopted.

The property of the medium is the same as in
example 5.1. To explore the influence of the variety of
the modified coefficients, different o, values of 1/2, 2/3,
1.0, 4/3, 5/3 and 2.0 are used, while is twice the value of
a., and R = 50m.

Fig. 4 Finite element model

_General solution

15 - ---.3D viscous-spring boundary

-~ Viscous boundary
---Fixed boundary

/é\ 10 L A !_/.‘_‘

é A i

=

Q

=

[0}

g

5

A

-10 : * :
0 0.4 0.8 1.2
Time (ms)

(a) For observation point, R=0.4

Theoretically, it will be more accurate in numerical
simulations if the spherical model is used for the artificial
boundary, as shown in Fig.4. However, a plane and
straight boundary is used for convenience in modeling.
The direction of the boundary is perpendicular with
the Cartesian coordinates. A rectangular computing
domain is cut off in the space. Furthermore, the physical
parameter of the distance R in the artificial boundary is
taken as the shortest distance between the origin and the
plane of the boundary uniformly, instead of the distance
between the origin of the coordinates and the nodes on
the boundary. Thus, each parameter on the plane and
straight artificial boundary is identical. Therefore, R=
50m is assumed in this example.

The analytical solution under ¢ (Dirac) load function
is obtained by integrating the basic solution of the inner-
source problem (Pekeris, 1955).

The o load function is expressed as

5(r)=1.6x10"[G,(¢) - 4G,(r —i)+6G4(r —%)

3
-4G,(r - Z) +G,(r -1)] 29)

3 -t
G,(t)=1"H(7), T—T

where T is the load time duration, and H(r) is the
Heaviside ladder function.

The displacement time histories of the observed
points along the Z direction obtained from analytical
method and numerical analysis with different artificial
boundaries, including the proposed 3D VSAB, viscous
boundary and fixed boundary, are shown in Fig.7. From
the figure, it is seen that the displacement drift caused by
the viscous boundary is obvious as in the Lamb problem,
but the 3D VSAB gives the best accuracy among all the
artificial boundaries considered.

Moreover, from Fig. 7, it is seen that in this case,
where the problem of full infinite space is treated, and
analyzed using a cubic model, the best accuracy of

10 ¢ — General solution
----3D viscous-spring boundary
-~ ~== Viscous boundary
g st Fixed boundary
= -
=
2 0
Q
g
T s v
2
-10 ) L L
0 0.4 0.8 1.2
Time (ms)

(b) For observation point, R=0.8

Fig. 5 Displacement time history of the explosive-source problem
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Fig. 6 Inner-source problem model and the ¢ load curve
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Fig. 9 Displacement time histories of the Lamb problem
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the numerical analyses is achieved when the modified
coefficients are taken as the recommended values of o,
=2/3 and a =4/3 as given in Table 1. It can be proven
that the values of the modified coefficients a  and
o, are independent of the element grid size, the time
interval and other computational factors involved in the
finite element analysis procedure. The numerical error
occurred for each artificial boundary shown in Fig.7
resulted from both the artificial boundary deficiency, and
the finite element procedure. They are two independent
aspects.

5.3 Lamb problem

This example is the surface source problem of Lamb,
in a homogeneous and isotropic semi-infinite space with
a vertical concentrated force of ¢ function on the free
surface, as shown in Fig.8. The load ¢ is the same as in
example 5.2.

In this example, the analytical solution can be
obtained by integrating the basic solution of the Lamb
problem (Pekeris, 1955; Wang, 2002).

The range of the numerically computed object is
taken as: -50m<X<50m, -50m<Y<50m, and -50m<
Z<0; the other parameters of the model are the same
as in example 5.2. The observed item is the vertical
displacement response of the nodes A(20, 0, 0) and
B(35, 0, 0) on the free surface. The parameters of and
a, are also taken as the recommended values of 2/3 and
4/3, respectively.

The time histories of the displacement responses
of observed points 4 and B are shown in Fig.9. As
in example 5.2, the viscous boundary causes obvious
displacement drift at the observed points, particularily
for observation point B, which is closer to the artificial
boundary than point 4, while the proposed. 3D VSAB
gives much better accuracy. The fixed boundary, the
worst boundary, may cause enormous oscillation when
the frequency of the load near to the natural frequency
of the system is analyzed. The results reveal that the
recommended modified parameters are also suitable for
the concentrated load in half-infinite space.

5.4 Torsion and bending problem

This example is the surface source problem of a few
forces in or perpendicular to the half-space surface plane
inducing torsional and bending moment, which is shown
in Fig.10. F is 0 function and is the same as example
5.2.

The parameters of the model are the same as in
example 5.3. The observed item is at a point 4(25, 0, 0)
on the free surface . The recommended values for the
parameters of o and o are the same as those used in
examples of 5.2 and 5.3. The forces, F, are at points B (5,
0,0) and C (-5, 0, 0).

The displacement time histories at the observed point
A are shown in Figs.11 and 12 for torsional and bending
models, respectively. From the results, it is concluded

that 3D VSAB has a wide applicable range. It also
simulates the problem of rotary and bending moment on
the surface of semi-infinite space very well.

The above examples only show the results in the
main direction. The results from other directions have
the same features as the main direction.

From these examples, it is shown that the viscous-
spring boundary can be directly used in the dilated wave
problem in the full infinite space. When the boundary is
used in the concentrated load, rotary and bending load
problem in half or full infinite space, the boundary is
more accurate with the modified parameters o, and o
The two modified parameters can take the value of 2/3
and 4/3, respectively. The parameter analysis in example

(a) Torsion (b) Bending

Fig. 10 Torsion and bending model
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5.2 indicates that the accuracy of the viscous-spring
boundary is better than the viscous boundary and fixed
boundary even when the modified parameters take the
unapt values. The 3D viscous spring boundary has a
good stability.

6 Conclusions

To develop an effective, accurate and convenient
3D artificial boundary, simulating wave motion and the
soil-structure interaction in the infinite and half-infinite
medium is important. Based on the elastic wave theory,
a 3D VSAB in the time domain is proposed in this paper.
The proposed 3D VSAB consists of an unit of typical
spring-dashpot in each direction, and the modified
coefficients for the spring-dashpot parameters are also
recommended. The modified parameters have been
studied via parameter analysis. Four numerical examples
are provided to illustrate the efficiency and accuracy of
the proposed 3D VSAB. The examples consider different
situations: full space and half space, high frequency and
low frequency of the loading, spherically symmetrical
domain and rectangular domain, etc. The following
conclusions are drawn.

(1) The numerical examples demonstrate that
by using the proposed 3D VSAB along with the
recommended modified coefficients of o, and a ,
high numerical precision and adequate stability can be
achieved.

(2) The proposed 3D VSAB is better than the
generally used viscous boundary, but not always better
than all other local artificial boundaries, such as the
multi-transmitting boundary suggested by Liao ZP et al..
However, the 3D VSAB is simple in physical concept
and it can be conveniently incorporated in the general
finite element program for the study of dynamic soil-
structure interaction problems.

The proposed VSAB has been examined only
for linear, homogeneous unbounded space problems,
and internal excitation. Its application to layered soil,
nonlinear performance and seismic response analysis
etc. should be studied further. The application and
subroutines for a general finite element program should
be studied in the future.
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