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Identification of acceleration pulses in near-fault ground motion
using the EMD method
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Abstract: In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are
investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method
is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the
September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into
high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing)
and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by
simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses
as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was
demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally
dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater
potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering
structures as well as placing very high deformation demands on long-period structures.
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1 Introduction

Near-fault ground motions affected by forward
directivity or fling step usually contain distinct
pulses in their waveforms (Aki, 1968; Archuleta and
Hartzell, 1981; Bolt, 1983). It has been demonstrated
that such pulses are more prominent in the velocity
or displacement time histories than in the acceleration
histories (Singh, 1985). Due to their unique impulsive
nature, as well as their potential to cause severe damage
to structures, the near-fault pulse-like ground motions
have been comprehensively studied in the seismological
and earthquake engineering communities (e.g., Iwan,
1997; Malhotra, 1999; Chopra and Chintanapakdee,
2001; Mavroedis ef al., 2004 among numerous others).
Low-frequency velocity pulses have been the focus of
most of these previous studies and several simple yet
effective mathematical models have been proposed
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for these velocity pulses (Someville, 1998; Alavi and
Krawinkler, 2000; Sasani and Bertero, 2000; Makris
and Chang, 2000; Agrawal and He, 2002; Mavroedis
and Papageorgiou, 2003). This is due to two main
reasons. First, compared with the acceleration pulse,
the low-frequency velocity pulse can be easily identified
at the beginning of the velocity waveform. Second,
and more importantly, parameters involved in simple
mathematical models for these velocity pulses, such
as the amplitude and the duration, have unambiguous
physical interpretations and are directly related to
seismological parameters such as earthquake magnitude,
rise time, and the shortest distance from the site to the
source (Somerville et al., 1997; Somerville, 1998;
Mavroedis and Papageorgiou, 2003; Mavroedis et al.,
2004).

Even so, despite the fact that much effort has been
invested in the study of near-fault velocity pulses, and
some important concepts in earthquake engineering
have been advanced from these studies, the engineering
implications of acceleration pulses contained in near-
fault ground motion has also interested some researchers
(Bertero, 1976; Bertero et al., 1978; Sucuogly et al.,
1999; Makris and Black, 2004), and the dynamic
responses of a structure under excitations simulated by
several simplified mathematical acceleration pulses have
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been investigated (Jennings, 2001; Dai et al., 2004).
Furthermore, regardless of how well the parameters
of velocity pulse correlate with the seismological
parameters, it is the acceleration history that is used
to compute the seismic response of structures and
velocity pulse models need to be differentiated to
study the structural response. However, sometimes the
acceleration waveforms obtained by differentiating
some simplified velocity pulses may be totally distorted
from the original records (Zhang et al., 2003). Thus,
identifying the acceleration pulses from near-fault pulse-
like seismic records, and further, directly establishing the
mathematical models for the acceleration pulses, may
have theoretical and practical significance. In general,
there may be two types of acceleration pulses contained
in the near-fault ground motions, i.e. high-frequency
(HF) and low-frequency (LF). The HF acceleration
pulse usually has large amplitude and short duration,
and can be easily detected from the accelerogram, but
it may not contribute very much to the velocity pulse
that is often low-frequency predominant. Whereas, the
LF acceleration pulse is well-related to the LF velocity
pulse, but in the acceleration waveform, the other HF
components often ride on this LF pulse, making it less
prominent in the acceleration waveform, as mentioned
above. Therefore, using a proper data processing
technique that separates these two types of acceleration
pulses from the original records will identify them and
their individual contributions to the damage potential of
original ground motion.

By using the empirical mode decomposition (EMD)
method, introduced by Huang ez al. (1998), a given data,
such as a seismic record, can be decomposed into a finite
number of intrinsic mode functions (IMFs). Further, by
grouping the corresponding IMF components according
to some prescribed criterion, subjective or objective, the
EMD method can be used as an adaptive filter (Zhang
et al., 2003), making it possible for the HF and LF
acceleration pulses to be separated and identified from
the original seismogram.

In this paper, the characteristics of response spectra
of simplified one-, two- and three-lobe sinusoidal
acceleration pulses are studied first. Some basic properties
of acceleration pulses are derived. Then, the EMD
method is used to decompose the velocity time histories,
which were obtained from the 1999 Chi-Chi earthquake
and have prominent pulses, into the corresponding
velocity IMF components. By grouping the first three
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IMF components, the HF velocity component can be
obtained; while adding the remained IMF components
yields the LF velocity component. Differentiating the
HF and LF velocity components generates the HF and
LF acceleration components that may contain the HF and
LF acceleration pulses, respectively. Then, in the context
of elastic response spectra, the pulse natures of the HF
and LF acceleration components and their contributions
to the damage potential of original impulsive ground
motion are investigated.

2 Sinusoidal acceleration pulses

The one-, two- and three-lobe sinusoidal models
of acceleration pulses are shown in Fig. 1, where their
amplitudes are units and their periods are denoted by 7.
According to the ratio of 7| to the natural vibration period
of structure, 7, the acceleration pulse can be classified
as either fast pulse or slow pulse (Jennings, 2001).
If T >> T,, then the acceleration pulse is a fast pulse;
otherwise, it is a slow pulse. The spectral accelerations,
velocities, and displacements of these acceleration
pulses with 7 being 0.5 s, 1.0 s, and 5.0 s are shown
in Fig. 2, where the damping ratio, { = 0.05 was taken,
and the time durations of all input acceleration time
histories are 50.0 s. With the input pulse period, 7, fixed
and the structural natural period, 7, varying, in some
interval on the abscissa of T of the response spectrum,
the input sinusoidal acceleration pulse is regarded as
fast pulse, and the associated range of 7 is defined as a
non-resonance band or impulse band accordingly; while
in the other interval, it is regarded as slow pulse, and
the associated range of 7 is defined as a resonance band
or cyclic band. In the non-resonance band, the input
sinusoidal acceleration pulse behaves in a similar way as
the Dirac-delta-type impulse load, as there is almost no
time for resonance to build-up, and it is the area under
the pulse, instead of the details of the pulse shape, that
has a major effect on the response of a structure. In the
resonance band, the input sinusoidal acceleration pulse is
like the cyclic load, which has some time for resonance
to build-up, and the pulse details have an effect on the
structural response. In Fig.2, for one fixed value of 7|,
the interval of 0.0 s < 7'< 37 is approximately regarded
as the resonance band, while the interval of T > 37 is
non-resonance band. When 7, = 5.0 s, the non-resonance
band is beyond the normal natural period range of
0.0 s < T < 10.0 s that encompasses a majority of
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Fig. 1 Sinusoidal models of acceleration pulse
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(a) Spectral acceleration
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Fig. 2 Spectral accelerations, velocities, and displacements of the one-, two- and three-lobe sinusoidal acceleration pulses with T,
being 0.5s, 1.0s, and 5.0s, respectively (damping ratio { = 0.05)

practical engineering structures.

Spectral accelerations exhibit the
features:

(1) In the resonance band, the more lobes the input
pulse contains, the larger the corresponding spectral
acceleration, since it takes longer time for resonance to
build up as the number of lobes increases.

(2) The predominant periods, where the spectral
accelerations reach their maximum values, occur in the
resonance band and with an increase in the number of
lobes, they become closer to the input sinusoidal pulse
periods, T, which is also caused by the increasing
time for resonance to build-up with the increment of
the lobe number. This observation suggests that the
input acceleration pulse imposes much higher base
shear demands on resonance-band structures than non-
resonance-band structures.

(3) In the non-resonance band, the spectral
accelerations become very small and are less dependent
on the number of lobes contained in the input pulses.

(4) For pulses with the same number of lobes,
as the value of T increases, the maximum spectral
accelerations are almost of the same order, but the
resonance band becomes longer, which means that
the longer the period of the input pulse, the more the
structure is influenced by the pulse. In this sense, the

following

resonance band can be also viewed as the influence
band, where the acceleration pulse imposes severe base
shear demands on a structure whose natural period falls
in the band, and with the increment of the lobe number,
these demands also increase.

The following observations are made for spectral
velocities:

(1) In the resonance band, the variations of spectral
velocities with the number of lobes contained in the input
pulses and the mechanism embedded in such variations
are the same as those of the spectral accelerations.

(2) For two-lobe and three-lobe input pulses, the
predominant periods, where the spectral velocities reach
their maximum values, are in the resonance band; while
for one-lobe input pulses, the predominant period is in
the non-resonance band.

(3) In the non-resonance band, the spectral velocities
of one-, two-, and three-lobe pulses are identical and
stay at a relatively high level, as compared with the
spectral accelerations.

(4) As the value of T increases, unlike the spectral
accelerations, the maximum spectral velocities in the
range of 0.0 s < 7 < 10.0 s also increase, whereas the
resonance bands still becomes wider, just like the
spectral accelerations.

For spectral displacements, the following features
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are observed.

(1) In the resonance band, the changes of spectral
displacements are similar to the spectral accelerations
and spectral velocities.

(2) As mentioned by Jennings (2001), the spectral
displacements reach their maximum values in the non-
resonance band instead of the resonance band, which
means that the input acceleration pulses impose higher
deformation demands on the long-period structures than
on short-period structures.

(3) In the non-resonance band, the spectral
displacements or deformation demands of one-lobe and
three-lobe input pulses increase almost linearly as the
natural period increases, and at very long periods, they
tend to be identical, with the one-lobe spectral values
being higher than the three-lobe; while for two-lobe
input pulses, as the natural period increases, the spectral
displacement tends to be a constant, whose value has
been formulated by Jennings (2001).

(4) Different from the spectral accelerations but
similar to the spectral velocities, the maximum spectral
displacements increase as this input pulse period, 7,
increases, in the range 0of 0.0 s <7<10.0 s.

From the above discussion, it is seen that with the
amplitude being equal, the acceleration pulse with a
longer period would not only affect more engineering
structures, i.e., induce high base shears in more
structures, but also impose more severe deformation
demands on structures with moderate or long periods.
Such properties of the simplified acceleration pulses
disscussed are like those of the near-fault ground
motions with forward directivity or fling step effects,
which contain distinct velocity pulses and have special
yet severe damage potential to engineered structures.
Like the acceleration pulses with comparatively long
periods, these near-fault ground motions generally
impose high base shear demands on more structures
as well as severe deformation demands on long-period
structures (Malhotra, 1999). As an example, the damage

that the Olive View Hospital sustained during the 1971
San Fernando, California earthquake was attributed to
the effect of the impulsive near-fault ground motions on
flexible structures (Bertero et al., 1978). This might be
due to the pulse natures of near-fault ground acceleration
motions, which will be discussed in detail in the next
section.

Finally, it should be mentioned that the discussion
of general properties of the response of a structure
to sinusoidal acceleration pulses is only intended
to simplify the analysis in subsequent sections. In
addition to the acceleration pulses modeled herein by
sinusoidal pulses, there are several other mathematical
approximations that may also be used to represent the
realistic acceleration pulses, such as the rectangle and
the triangle pulses, etc. For more detailed information
about the spectral characteristics of the acceleration
pulse or harmonic waves, readers may refer to Jennings
(2001) or Xu et al. (2005).

3 Identification of near-fault acceleration
pulses by EMD

After discussing the general dynamic characteristics
of simplified sinusoidal acceleration pulses within
the context of elastic response spectra, in this section,
the acceleration pulses are identified in the near-fault
acceleration records using the EMD method, and then
the resulting acceleration pulses are simulated by these
simplified models.

Figure 3 shows the NS components of ground
motion recorded at the TCUO52 station during the
September 20, 1999 Chi-Chi earthquake. The large LF
velocity pulse can be clearly detected at the beginning
of the velocity waveform, with a HF velocity pulse
riding on it before the time instant of 20.0 s. The HF
velocity pulse is associated with the conspicuous large-
amplitude HF acceleration pulse at the same time instant
in the acceleration, while the LF velocity pulse cannot
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Fig. 3 NS components of ground motion recorded at the TCU0S52 station during the September 20, 1999 Chi-Chi earthquake
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easily find its counterpart in the acceleration waveform.
However, the large permanent displacement (about 6.2
m) was mainly contributed by the LF velocity pulse.

By using EMD, the velocity time history, v(?), is
decomposed into 10 IMFs, i.e. ¢ (?) to ¢, (7), as shown
in Fig. 4. Adding the first three IMF components shown
in Fig.4 gives the HF component of w(?), i.e., the v (?)
shown in Fig.5; while adding the remaining seven
IMF components yields the LF component of v(?), i.e.,
the v,(#) shown in Fig.5. Note that the choice of the
number of IMF components for the EMD-based HF
and LF components is as subjective as the selection of
the cutoff frequency in the Fourier-based filters (Zhang
et al., 2003). Differentiating v (#) and v,(¢) yields the
corresponding HF and LF acceleration components,
a,(?) and a,(f); while integrating v () and v (7) yields the
corresponding HF and LF displacement components,
d (¢) and d(?), all shown in Fig.5. In the waveform of
a(?), the HF acceleration pulse with high amplitude
can be easily detected, which is associated with the
HF velocity pulse before 20.0 s, but contributes little to
the large permanent displacement, since the maximum
value of d () is only below 30.0 cm. While in the LF
acceleration component, a,(?), the LF acceleration pulse
associated with the large LF velocity pulse can also be
easily detected, and it is this LF acceleration pulse that
mainly induces the large permanent displacement about
6.2 m. Comparisons between the original waveforms
and their HF and LF components are shown in Fig.6.
It can be seen that the HF components (HFC) represent
the details in the original waveforms, while the LF
components (LFC) are the approximations of the
original waveforms, with the HF components riding on
the LFs to comprise the original waveforms.

The spectral accelerations, velocities, and
displacements of a(#), a,(¢), and a,(f) are shown in Fig.7.
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It is seen that before the natural period of about 4.0 s,
it is mainly the HF component (HFC) that dominates
the structural responses; while after 4.0 s, it is the LF
component (LFC) that controls the structural responses.
The large deformation demands imposed by this near-
fault ground motion on the long-period structures are
mainly due to the LF component, while the high base
shear demands with natural periods less than 4.0 s are
mainly caused by the HF component.

In order to reveal the pulse natures of a (7) and a,(?),
the HF and LF acceleration pulses are isolated out of
the waveforms of a () and a,(7), respectively, and then
the simplified sinusoidal pulses are used to model them.
The isolated HF and LF acceleration pulses, a, ,(f) and
a, (1), their two-lobe sinusoidal approximations, a, (1)
and a, (1), together with a,(7) and a,(#), are shown in
Fig.8. The parameters of the two-lobe sinusoidal pulses
are calculated by identifying the pulse period, 7, of, and
calculating the area, S, under, the isolated acceleration
pulse. Then the amplitudes of the two-lobe sinusoidal
pulse, a, (1) ora, (1), are determined as:

a —E
"Tor, (1)

The values of 7, S, and g, are all shown in Fig.8.

The response spectra of the HF component and its
two pulse approximations are shown in the upper part
of Fig.9. The spectral accelerations of a (7), algpl(l), and
a, ,(?) are close to each other in the natural period range
from 0.0 s to 10.0 s, which encompasses a majority of
engineering structures. While their spectral velocities
are close to each other in the natural period range from
0.0s to about 4.0 s, their spectral displacements are close
to each other only in the range from 0.0 s to about 2.0 s.
In the remaining natural period ranges, the spectral
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Fig. 4 IMF components of velocity time history shown in Fig. 3
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Fig. 9 Response spectra of HF, LF components and their pulse approximations (NS component, TCU052; {= 0.05)

values of a, (t) and a, ,(7) are consistent but higher
than those of a (o). Sucﬁ discrepancies are caused by
the remaining motlon in a () after the HF acceleration
pulse with high amplitude is extracted from a (?), i.e., the
motion of a (?)-a, (t) Even so, the s1m11ar1tles among
the response spectra of a(?), a (t) and a (t) still
demonstrate that it is the hlgh amplltude acceleratlon
pulse in the HF component, a (?), that dominates the
dynamic responses of most short-period and moderate-
long-period structures. Further, the simple yet effective

sinusoidal pulse models this HF acceleration pulse very
well.

Note that the duration of the HF acceleration pulse
is 1.325 s, which is significantly long, as described
in the preceding section. The resonance band of this
pulse is from the natural period of 0.0 s (rigid body)
to about 4.0 s, which is where the vibration periods of
most engineered structures fall. Thus, it is just this HF
acceleration pulse that causes the original ground motion
to impose high base shear demands on structures whose

207
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natural vibration period range is much wider than that
of the structures excited by the normal far-field ground
motions (Malhotra, 1999), as is seen in the spectral
accelerations in Figs.7 and 9. However, because the
HF acceleration pulse has two lobes, with its period, T,
being not long enough, the deformation demands it may
impose on long-period structures is not very severe.

The response spectra of the LF component and its
two pulse approximations are shown in the lower part
of Fig. 9. It can be seen that the spectral velocities and
displacements of a (t) a, (), anda, (0 are close to one
another for most englneerlng structures and in the very-
long-period range from about 4.0 s to 10.0 s, their spectral
accelerations are also close to one another. However, in
the band from 0.0 s to 4.0 s, the spectral accelerations of
a,(t) and a, (?) are close to each other but higher than
the s1nu801dpal approximation, a, wnlD)- This is due to the
fact that in this band, the LF acceleratlon pulse with its 7
being about 8.535 s should be regarded as a very slow
pulse, whose details remarkably influence the structural
dynamic responses. Even so, the observation that the
spectral accelerations, velocities, and displacements of
a,(t) and a, (D) are close to each other still validates that
the LF acceleratlon pulse of a, a0 controls the dynamic
responses of most structures when excited by the LF
component, a,(¢). The sinusoidal pulse models this LF
acceleration pulse well in the long-period range.

The duration of the LF acceleration pulse is 8.535 s,
which is so long that the normal structural natural period
range from 0.0 s to 10.0 s is still in the resonance band
of the pulse. Thus, when excited by it, the dynamic
responses of almost all practical engineering structures
would be amplified due to the build-up of resonance.
However, as can be seen from the spectral accelerations,
the base shear demands imposed by this LF acceleration
pulse are not so severe as the HF one, which is due to
the lower amplitude of the LF acceleration pulse, being
only about 80 Gal, as compared with 380 Gal of the

HF acceleration pulse. If the spectral acceleration were
divided by the maximum amplitude of the corresponding
input acceleration pulse, then the normalized spectra,
or the amplification factor spectra, of the HF and LF
acceleration pulses would be of the same levels, with the
influence band, i.e. the natural period range where the
amplification factor is larger than unit, of LF acceleration
pulse being wider. On the other hand, in spite of its lower
amplitude, this LF acceleration imposes much higher
deformation demands on structures with moderate or
long periods than the HF acceleration, as can be seen in
Fig. 9(c). Further, it is only this LF acceleration pulse
that engenders the original ground motion in Fig.3 to
generate severe deformation demands on long-period
structures, as is seen from the spectral displacements in
Figs. 7 and 9.

In this example, the acceleration recording contains
both the HF and the LF acceleration pulses. Generally
speaking, a near-fault pulse-like ground motion contains
long-period velocity pulses, which result in the LF
acceleration pulse. That is to say, the near-fault pulse-
like ground motion usually contains the LF acceleration
pulse, but it does not necessarily contain the HF
acceleration pulse like the one in this example. To make
this phenomena more clear, consider the following
example.

Figure 10 shows the EW components of ground
motion recorded at the TCUOQ75 station during the
September 20, 1999, Chi-Chi, earthquake. It can be
seen that there is no distinct large HF acceleration
pulse contained in the acceleration time history, a(?).
Nonetheless, there is a large velocity pulse at the
beginning of the velocity history, which is associated
with the large permanent displacement. When processed
by EMD, the velocity history, v(¢), is decomposed into
ten IMFs, as shown in Fig.11. Similarly, adding the
first three and the remaining seven IMF components
provides the HF and LF velocity components, i.e. v (7)

a(?) (cm/s?)

v(t) (cm/s)

d(#) (cm)

0 10 20 30 40 50 60 70 80 90 100
1(s)
Fig. 10 EW components of ground motion recorded at TCU07S station during the September 20, 1999, Chi-Chi earthquake
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Fig. 11 IMF components of velocity time history shown in Fig.10
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and v,(7) in Fig.12(b), respectively. Differentiating and
integrating v (7) and v,(¢) yield the corresponding HF
and LF acceleration components, a (#) and a,(?), and
displacement components, d (¢) and d(7) in Fig.12(a)
and (c), respectively. It can be seen that in the HF
acceleration component, a,(?), there is no distinct large-
amplitude HF acceleration pulse that can be detected,
and the waveform of a,(?) is like most of the ordinary far-
field ground motions that are typically broad-frequency-
band excitations (Chopra and Chintanapakdee, 2001).
Moreover, the HF displacement, d (?), is very small.
Whereas, there is a distinct LF acceleration pulse
contained in the LF component after the time instant of
10.0 s, which is associated with the large velocity pulse
as well as with the large permanent displacement.

The spectral accelerations, velocities, and
displacements of a(?#), a (?), and a,(?), with damping
ratio of 0.05, are shown in Fig.13. The figure shows
that only before the natural period of about 1.0 s does
the HF component (HFC), a (7), dominate the structural
responses, i.e. contribute to the high base shear demands
imposed by the original motion on such short-period
structures; whereas, the LF component (LFC), a,(),
controls the dynamic responses of a majority of
structures, whose natural periods are larger than 1.0 s.
Further, it is the LF component that imposes the high

deformation demands on moderate-long- and long-
period structures.

To investigate the pulse nature of the LF component,
a,(?), the LF acceleration pulse is first isolated from a (7),
resulting in the time history of a, (t) in Fig.14. The two
lobes of this acceleration pulse, a (D), are asymmetrical
in their amplitudes and periods. To model these pulses,
both the asymmetrical and the symmetrical sinusoidal
approximation are used. In the waveform of a, (s the
periods of the first and second lobe are denoted by 7,
and 7, ,, with the corresponding areas being S, and S
respectwely When the asymmetrical appr0x1mat10n
a, (1), is adopted, the amplitudes of the two successive
ha}if sinusoidal waves, a,, and q,,, are calculated by
Eq. (1), with the term S i 1n Eq.(1) taking values of 28,
and 2§, respectively; while, when the symmetrlcal
appr0x1mat10n a, (0, is adopted, the uniform period,
T,, is the average of T, and T ,, ie. T = (T, +T,,)/2,
the area, S, is the sum of S, and S ie. S S, +S and the
amplitude of the smus01dal wave, da,, is determmed by
Eq. (1) accordingly. All the above values are presented
in Fig.14.

The response spectra of the LF component, a(7),
together with those of its three pulse approximations,
ie. »a, (1), a, L(0), and a, (D), are shown in Fig.15. It can
be seen that tile response spectra of the LF component
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Fig. 13 Response spectra of original record and its LF and HF components (EW component, TCU075; = 0.05)
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Fig. 14 LF component and its pulse approximations (EW component, TCU075)
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Fig. 15 Response spectra of LF component and its pulse approximations (EW component, TCU075; ¢ = 0.05)

and its three pulse approximations are close to one
another, which demonstrates the pulse nature of this LF
acceleration component: it is only the LF acceleration
pulse contained in it that dominates the dynamic
responses of most structures when excited by this LF
acceleration component. Further, the two sinusoidal
pulse models both simulate the LF acceleration pulse
very well. Because the period of the LF acceleration pulse
is about 2.960 s, its resonance band is from the natural
period of 0.0 s up to almost 9.0 s, which means that when
excited by such a pulse, the dynamic responses of most
engineered structures is amplified since resonance has a
finite time to accumulate. However, the duration of the
acceleration pulse is only about 2.960 s, so when applied
to a structure, resonance has a certain amount of time
to accumulate, but does not have as much time as when
subjected to the cyclic broad-frequency-band excitation
of a (7). As a result, in the predominant period band of
a,(?), from 0.0 s to 1.0 s, the spectral accelerations of
a,(?) are much higher than those of a,(7) and its pulse
approximations, although the peak motions of a (?), a,(?)
and the pulse approximations of a,(7) are of the same
levels.

In this example, unlike the preceding one, the
near-fault ground motion does not contain the easily-
detected HF acceleration pulse, but instead contains
only the prominent velocity pulse, from which the
LF acceleration pulse with a relatively long period
is identified by the EMD method and modeled by
simplified sinusoidal pulses. Further, it is only this LF
acceleration pulse that controls the dynamic behavior of
the original near-fault ground motion in the context of
the elastic response spectra.

Finally, it should be added that the TCU052 and
TCUO75 stations are both in the near-fault region and
their locations as well as the epicenter of mainshock of
Chi-Chi earthquake were proposed by Loh et a/ (Loh et
al., 2000).

4 Conclusions

In this paper, some fundamental dynamic properties
of acceleration pulse are studied by using simplified
sinusoidal approximations. To reveal the impulsive nature
of near-fault ground motion with forward directivity or

fling step effects, the empirical mode decomposition
(EMD) method is adopted to identify the acceleration
pulses, which are mathematically modeled by the
sinusoidal pulses. The following conclusions are drawn:

(1) According to the ratio of the acceleration pulse
period to the natural vibration period of the structure, the
input acceleration pulse can be classified as a fast pulse
or a slow pulse. Correspondingly, in the response spectra,
the abscissa of the natural period can be segmented into
the resonance band (or the influence band) and the non-
resonance band of the input acceleration pulse.

(2) For structures with natural vibration periods
falling within the resonance band, higher base shear
demands are imposed by the acceleration pulse, while
for structures with natural vibration periods falling in
the non-resonance band, higher deformation demands
are imposed. Further, in each band, the corresponding
demand is controlled by the duration of, or the number
of lobes contained in, the pulse. However, sometimes in
the resonance band, if the acceleration pulse is a very
slow pulse, the details of the pulse also influence the
structural dynamic responses.

(3) Near-fault ground motion with forward
directivity or fling step effects, which imposes high
base shear demands on more engineered structures than
broad-band far-field shaking, and also imposes severe
deformation demands on long-period structures, always
contains the low-frequency velocity pulse and sometimes
the distinct high-frequency acceleration pulse with large
amplitude.

(4) The empirical mode decomposition method
(EMD) can be successfully applied to identify the LF
acceleration pulse associated with the LF velocity pulse,
and can separate the HF and LF acceleration pulses from
the original motion if it contains the HF acceleration
pulse. Further, it is just the LF acceleration pulse,
together with the HF acceleration pulse if present, that
dominates the special impulsive dynamic behaviors of
original near-fault pulse-like ground motion and imposes
a unique yet severe demand on engineered structures.

(5) The simplified sinusoidal pulse, symmetrical
or asymmetrical, can be used to model the HF and LF
acceleration pulses contained in the near-fault ground
motion to some extent, enabling the characteristics of
structural response to near-fault ground motions to be
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understood.
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