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Anti-plane deformations around arbitrary-shaped canyons on
a wedge-shape half-space: moment method solutions
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Abstract: The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical
canyon at its vertex has been studied. Numerical computation of the wave displacement field is carried out on and near the
canyon surfaces using weighted-residuals (moment method). The wave displacement fields are computed by the residual
method for the cases of elliptic, circular, rounded-rectangular and flat-elliptic canyons. The analysis demonstrates that the
resulting surface displacement depends, as in similar previous analyses, on several factors including, but not limited, to the
angle of the wedge, the geometry of the vertex, the frequencies of the incident waves, the angles of incidence, and the material
properties of the media. The analysis provides intriguing results that help to explain geophysical observations regarding the

amplification of seismic energy as a function of site conditions.
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1 Introduction

The research presented in this paper involves the
study of plane SH-waves propagating through a wedge-
shaped media. In particular, the geometry of the media
ranges from a flat elastic half-space (where the wedge
angle is 180°), through the sloping wedge-space with
edge angles (vm, 1/2 < v < 1) ranging between 180°and
90° from a half space (v = 1) to a quarter-space (v=1/2).
Furthermore, an arbitrary shape canyon exists at the
vertex of the wedge. Figure 1 illustrates the geometry
of a sloping wedge-space for the case of incident plane
SH-waves.

Eventhough the treatment of the problem is somewhat
mathematical, it is believed that the consideration of such
a problem has practical ramifications, as many homes
and other structures have been built on ridges and cliffs
overlooking valleys and the ocean. The topography of
these ridges can be reasonably characterized in two-
dimensions as a wedge-space..

The problem of the two-dimensional scattering and
diffraction of plane elastic SH (shear horizontal, anti-
plane) waves by a surface canyon in an elastic half-space
has been studied by many researchers in earthquake
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engineering and strong motion seismology, Trifunac
(1973) first solved such two-dimensional SH scattering
diffraction of plane SH waves by a semi-circular canyon
in a flat elastic half space. Wong and Trifunac (1974a,b)
solved the same problem for semi-elliptical canyons
and alluvial valleys. Cao and Lee (1989, 1990), Lee
and Cao (1989) extended Trifunac’s (1973) results to
cases involving shallow circular canyons respectively
for incident SH, P and SV waves. Lee (1982, 1984,
1988, 1990) further studied diffraction problems for
hemispherical canyons, valleys and parabolic canyons.
The common feature of the above papers is that all of
the canyons are either circular, elliptic or parabolic in
shape. In other words, they are all of regular shapes.
This allows all of the above analyses to give closed-
form analytic series as solutions to the problems. Good
references for elastic wave propagation problems are
found in texts by Mow and Pao (1971), Achenbach
(1973), and Graff (1991).

For canyons with irregular shapes, field computations
will have to be carried out by numerical approximations
(Wong et al, 1997, Sanchez-Sesma and Rosenbleuth,
1979). Some popular methods in the analyses of wave
diffractions are the finite difference method (FDM), the
finite element method (FEM), and the boundary element
method (BEM).

Aspointed out in Lee and Wu (1994a,b), with FDM or
FEM, material inhomogeneouity and irregular geometry
can be easily modeled. However dealing with semi-
infinite or infinite domains, which are usually associated
with the problem of wave scattering and diffraction,
some approximations have to be introduced. The most
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general method is to simply truncate the infinite or semi-
infinite domains into finite ones. In this way, artificial
boundaries will have to be created and they will prevent
the true propagation of the waves, thus introducing
errors. Another difficulty is that FDM and FEM may be
easily overwhelmed by the large physical dimensions
or the fine details of the requirement, so for seismic
wave analysis in a semi-infinite domain, they would
numerically become a large-sized problem. The BEM,
on the other hand, does not have these disadvantages; it
only needs to perform integration along the boundaries
and model the infinite domain very well. Theoretically,
it is very suitable for the problems with infinite or semi-
infinite geometries. It, however, encounters the difficulty
in dealing with the Green’s function singularities in the
path of numerical integration.

With this difficulty in mind, Lee and Wu (1994a,b)
chose instead the so-called “weighted residual” or
“moment” method to solve these diffraction problems
involving arbitrary shaped canyons. This method is used
abundantly both in the fields involving electromagnetic
and acoustic waves. See Harrington (1967) for a full
historical development and references of this method.

In the weighted residual method used in this study,
like the BEM, it only needs to be integrated along the
original boundaries. Thus the size of the equations is
greatly reduced, when compared with that of the FDM
and FEM, and it imposes no artificial boundaries at all. It
also does not involve the Green’s function, thus avoiding
the difficulty of singularities that the other methods
encounter. Compared with the method of using the
simple full space Green’s function (Chang and Wong,
1990), the results of the weighted residual method
are much better for relatively deep canyons. Beside
all of these advantages, it is also simple to formulate.
Therefore the weighted residual proposed here is very
suitable for wave scattering and diffraction problems.

Lee and Sherif (1996) presented such a diffraction
problem involving a circular canyon at the vertex of
the wedge space. The solution is expressible in simple
analytic closed form involving Hankel functions with
the corresponding cosine terms.

The analysis indicates that SH-waves travelling
through a particular wedge geometry result in
displacement fields that depend on the angle of incidence,
the frequency of the incident wave, the geometry of the
vertex and the material properties of the media.

2 SH wave propagation in an elastic wedge

The two-dimensional model of the problem is shown
in Fig.1. It represents the wedge-shaped space with
angle vr, where 1/2<y<l. An arbitrary-shaped canyon
is situated on the vertex of the wedge space. Both the
rectangular (x,)) and cylindrical (7,6) coordinate systems
are defined on the model. The wedge-shaped space is
assumed to be elastic, isotropic and homogeneous, with
the material properties given by Lame constants A and u
and by the mass density p, from which the shear wave

speed, C, = (u/p)'? is derived.
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Fig. 1 Arbitrary shaped canyon — the model

For incident plane SH waves with incident angle y
with respect to the horizontal, the free-field equation is
(Sanchez-Sesma, 1985; Lee and Sherif, 1996)
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where ¢ = 1, and ¢, = 2 for n > 0. The presence of the
arbitrary-shaped canyon will result in the scattered
waves which are given by the equation (Lee and Sherrif,
1996)
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Both the free-field and scattered waves W™ and W* satisfy
the free field boundary condition:
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At C, the surface of the canyon, the zero-stress
boundary condition is
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where n is the normal at every point of the cavity
surface, such that n = ne + ne, Eq. (4) can not be
satisfied analytically along C, the surface of the arbitrary
shaped canyon.

3 The weighted residual (moment) method

The weighted residual method, also known as the
moment method, is used as a numerical method for
the evaluation of the displacement field (Lee and Wu,
1994a,b; Lee and Manoogian, 1995). Weight functions
are selected along the surface of the canyon C, such that
w =W (0)form=0,1,2,3,... and along C
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where the stress due to the scattered waves is given by

F
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as the stresses due to the input free-field waves. Eq. (5)
becomes with
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and thus the coefficients 4 can be calculated. A good
choice for the weight function is

W (&)= rcos ik (®)
»

4. Case of Semi-cirlar canyon

The case of the semi circular (Fig.2) in an elastic
wedge-shaped half space has an exact closed form solution
for an incident plane SH wave (Lee and Sherif, 1996). The
solution of the weighted-residual method obtained above
can thus be compared with the exact solution.
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Fig. 2 Circular canyon

The free-field motion given by Eq. (1) and the scattered
waves given by Eq. (2) are repeated here with the value of
r given as a, the radius of the semi circular canyon.
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At the surface of the circular canyon, the boundary
conditions expressed by Eq. (3), are reduced to Eq. (11)
below
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Substituting Egs. (9) and (10) in Eq. (11), the coefficients
A, are thus calculated by
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The scattered waves are thus presented by Eq.(13)
below,

(13)

It is worth comparing this exact closed form solution
with that obtained from the weighted-residual method
presented earlier. Thus, starting with Eq. (2) and
utilizing Eq. (11), with the stresses defined in Eqgs.(14)
and (15) below,
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and using a weight function w = cos(m0/v), m=0,1,2,...,
the following inner products are evaluated:
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Utilizing the orthogonality of the cosine functions, i.e.
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When m = n =0, the above integral equals vr. The inner
product for the plane SH waves is represented by
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with the orthogonality of the cosine functions as before,
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and substituting Eqgs. (16) and (18) in Eq. (11), it is
observed that the matrix in Eq. (7) is diagonal, and thus
the coefficients 4 ’s are evaluated as,
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which is identical to Eq. (12), the analytical evaluation of
A . In other words, the appropriate choice of the weight
functions results in the exact closed form solution for the
case of the semi-circular canyon.

5 Displacement amplitudes

The above analyses for arbitrary-shaped canyons are
applied for the following cases of canyons described below.

5.1 Elliptic canyon

The displacement amplitudes for elliptic canyons are
evaluated for the shape defined by

¥ 2 }J 2_
(z] *H =! -

for ratios of b/a of 0.75 to 1.25. When the b/aratio is 1,
the shape is circular and is compared with the solution of
Lee and Sherif, 1996. The results of the circular canyon
on half space, where the wedge angle vr = 180°, are
compared with existing analytic solutions presented
by Trifunac, 1973. The results of the elliptical canyon
on half space, where the wedge angle vr = 180°, are
compared with the existing analytic solutions presented
by Wong and Trifunac (1974).

The wedge angles studied are 90°, 120°, 150° and
180°. Fig.3 represents the displacement amplitudes
for elliptic canyons with wedge angles of vm = 90°
and varying angles of incidence. The graphs are three
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Fig. 3 Anti-plane surface displacement amplitudes (elliptic canyon on wedge space, wedge angle v = 90°, b/a = 0.75)
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plots representing the displacement amplitudes for
incident plane SH waves with amplitude of 1.

For all graphs, the displacement amplitudes are
plotted versus the dimensionless distance x/a labeled
to range between values of —5 and 5, and the frequency
(wave number) ka, ranging between values of 0 and 10.
Note that these distances are not the coordinates on the
axis used, but just for visual convenience. The labels
x/a < -1 thus correspond to points on the horizontal
surface of the wedge-space to the left of the canyon.
Distances —1 <x/a < b/a (the shaded part in the figure)
correspond to points on the surface of the canyon,
and distances x/a > b/a correspond to points on the
inclined surface of the wedge-space to the right of the
canyon. The origin is taken as shown in Fig.1, at the
point of intersection of the horizontal and the inclined
surfaces of the wedge with the positive x-axis to the
left on the origin and the positive y-axis vertically
downward.

In addition, for all graphs, the stress-free boundary
condition on the horizontal and the inclined surfaces of
the wedge-space, i.e. where x/a < —1 and x/a > b/a, are
automatically satisfied and thus no integration is carried
out at those surfaces. Integration is carried out on the
points that are on the surface on the canyon using the
(moment) method of weighted-residuals.

5.2 Elliptic-flat beyond 90° canyon

The displacement amplitudes of elliptic canyons
with flat surface beyond 90° are evaluated for the shape
defined by Eq. (9) earlier for the elliptic part of the
canyon and by a flat surface for the surface beyond the
90°. The analyses are again for b/a ratios of 0.75 to 1.25.
The wedge angles studied are again 90°, 120°, 150°
and 180°. Fig. 4 shows the displacement amplitudes for
elliptic canyons with flat surface beyond 90° with wedge
angle of 120° and four angles of incidence.

Fig. 4 Anti-plane surface displacement amplitudes (flat circular canyon on wedge space, wedge angle: v = 120°, b/a = 1.00)
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Fig. 5 Anti-plane surface displacement amplitudes (“rounded” rectangular canyon on wedge space, wedge angle om = 150°, b/a =1.25)

5.3 Rounded-rectangular canyon

The displacement amplitudes for rounded-
rectangular canyons are evaluated for the shape defined
by

b -H,
A SR ) P 4 (22)
[ I [y

where a > 0 is a positive integer large enough so that
the graph of the function resembles a rectangular shape
with “rounded” corner. In this analysis, a value of a =
8 is used. Again, the analyses and calculations are for
b/a ratios of 0.75 to 1.25. The wedge angles studied are
90°, 120°, 150° and 180°. Fig.5 shows the displacement
amplitudes for rounded-rectangular canyons with wedge
angle of vt = 150° and four angles of incidence.

For the weighted-residual method, as many as

N = 20 terms are used to achieve convergence at high
frequencies. The agreement of the results with existing
analytic solutions is good.

6 Conclusions

The displacement amplitudes calculated on or
near arbitrary, wedge-shaped canyons show that the
response is dependent on all the parameters used in
the analysis, including but not limited to the angle of
incidence, frequency of the incoming train of the SH
waves, the geometry of the canyon and the material
properties of the media. A complete set of figures
for all four angles of incidence, 0°, 30°, 60° and
90°, and various wedge angles, 90°, 120°, 150° and
180° at dimensionless frequencies up to ka=10 can
be found in Dermendjian and Lee (2002). The case
of the wedge angle of 180° have results that are in
agreement with previous known analytic and numerical
solutions (Lee and Cao, 1989; Lee and Wu, 1994a).
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The present case of an arbitrary-shaped cylindrical
canyon on the vertex of a wedge space is an extension
of the same problem in a flat half space. While there are
not many practical canyon topographies that will fit the
geometry of the canyons studied here, the present paper
present a methodology from which more complicated
problems can be built on and solved. For example, the
same weighted-residual moment method has next been
applied to arbitrary-shaped foundations in soil-structure-
interaction (SSI) studies on wedge-shaped half-space to
be presented in subsequent papers.
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