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Abstract  Abundance and distribution of jumbo flying squid (Dosidicus gigas) are evidently influenced by the changes of marine 
environment. In this study, the maximum entropy (MaxEnt) model was applied to examine the impacts of marine environmental va- 
riables on its potential distribution, and identified habitat hotspots of D. gigas in summer and autumn along the coast of Chile. The 
MaxEnt model was constructed by using the fisheries data of D. gigas from summer to autumn during 2011 – 2017 combined with cri- 
tical environmental factors including mixed layer depth (MLD), sea surface salinity (SSS), sea surface height (SSH) and water tem- 
perature at depths of 0 m, 25 m, 50 m, 100 m, 150 m, 200 m, 300 m, 400 m and 500 m. Results showed that the actual fishing efforts of 
D. gigas in summer and autumn were mostly distributed in the suitable habitat, indicating that the MaxEnt model can well predict the 
habitat hotspots of D. gigas off Chile. The key environmental factors and their suitable ranges for D. gigas showed significant inter- 
monthly changes from December to May. The critical environmental factors of D. gigas off Chile were MLD, SSH, water tempera-
ture at different depths in summer (Temp_25 m in December, Temp_300 m in January and Temp_400 m in February) and SSH, SSS, 
Temp_400 m in autumn. Our findings suggest that selecting the key environmental factors is vital to study the potential distribution of D. 
gigas off Chile in each month to explore its habitat hotspots. 
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1 Introduction 
The low-velocity eastern boundary California Current and 

Humboldt Current flow northward and southward, respec- 
tively, constituting a complex surface oceanographic re- 
gion in the eastern Pacific Ocean (Waluda et al., 2006). 
Humboldt Current System is one of the high productivity 
ocean currents in the eastern Pacific Ocean, including many 
economically important pelagic species such as anchoveta 
(Engraulis ringens) and jumbo flying squid Dosidicus gi- 
gas with high annual catch in the Southeast Pacific Ocean 
(Alheit and Bakun, 2010; Bertrand et al., 2016; Ramos et al., 
2017; Yu et al., 2019, 2021). Due to the influences of en- 
vironmental conditions, the abundance and spatio-tempo- 
ral distribution of marine species have changed dramatical- 
ly (Barange et al., 2009). For example, with the influences 
of moderate or strong-intensity El Niño events, extensive 
Trachurus murphyi juvenile migrated into the southern wa- 
ters off Chile, while the adult T. murphyi moved southwest- 
ward; however, this phenomenon hardly occurred in the  
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weak-intensity El Niño events (Arcos et al., 2001). En- 
graulis ringens preferred to live in cold water and Sardi- 
nops sagsx was opposite to it (Oozeki et al., 2019). There- 
fore, understanding the impacts of environmental conditions 
on the distribution of marine species is helpful to under- 
stand how the species seek stable environment for obtain- 
ing longer survival time and extensive growth space (Chen 
et al., 2016; Yu et al., 2019, 2021). 

D. gigas is a commercial cephalopod with a short life- 
cycle. It is extensively distributed in the eastern Pacific 
Ocean and extremely sensitive to the environmental con- 
ditions (Markaida et al., 2004; Yu et al., 2019, 2021). D. gi- 
gas occupies the middle position of the food chain and plays 
a vital role in marine ecosystem, acting as a top predator 
for low-trophic organisms such as Hemigrammus ocellifer, 
anchovy, sardine, while as a pivotal prey for high-trophic 
organisms such as Physeter catodon and shark (Uchikawa 
et al., 2009; Bazzino et al., 2010; Yu et al., 2019, 2021). 
Now the fishing ground of D. gigas is mainly distributed in 
the water off Peru, Equator and Chile. Main fishing countries 
include eastern Pacific coastal states and Asia-Pacific coun- 
tries such as Peru, Chile, Japan, China, South Korea. Chi- 
lean fishing ground is one of the most important fishing 
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grounds for catching D. gigas (Liu et al., 2015; Morales- 
Bojórquez and Pacheco-Bedoya, 2016; Yu et al., 2019). 
China began fishing D. gigas in the high sea of Chile in 
2004, while annual catch of D. gigas in China changed sig- 
nificantly (Fang et al., 2014; Feng et al., 2017; Yu et al., 
2019, 2021). At present, the catch of D. gigas off Chile has 
occupied an vital position in cephalopod production in Chi- 
na and even in the world (Chen et al., 2019; Yu et al., 2019).  

Due to the extremely sensitivity of D. gigas to environ- 
ment, the varieties of habitat conditions can induce rapid res- 
ponses of its stock, resource abundance and spatial location 
in a short time, resulting in fluctuant catches of D. gigas with 
significant differences between years and months (Walu- 
da et al., 2006; Li et al., 2017; Yu and Chen, 2018; Feng 
et al., 2020a). In fact, the impacts of environmental factors 
on D. gigas were different from month to month. There might 
be key environmental factors with high impacts and non- 
key environmental factors with low impacts in different time 
scales. The impacts from different environmental factors 
should be differed for different time scales. At present, some 
existing methods and models have been used to explore 
the response of resource abundance and the distribution of 
fishing ground of marine species to environmental changes 
(Tian et al., 2009; Li et al., 2016; Yu et al., 2019). How- 
ever, these methods or models ignored the environmental 
impacts on species, which made their accuracy for detect- 
ing fishing grounds not reliable. Therefore, it is essential to 
establish a relationship model for selecting the key environ- 
mental factors and evaluating or predicting the fishing ground 
of D. gigas off Chile, which is vital to the D. gigas fishing 
industry in the Southeast Pacific Ocean off Chile. 

Maximum entropy (MaxEnt) model is based on the re- 
gional environmental and species existence data of its dis- 
tribution. It is a machine-learning-method based on ‘cur-
rent existence’ to predict ‘unknown distribution’ by select- 
ing the distribution with the largest probability of species 
existence as its optimal potential distribution (Alabia et al., 
2015a; Siregar et al., 2019). At present, MaxEnt model has 
been largely applied to management services, conservation 
and identification of places suitable for the cultivation of 
crops (Zhu et al., 2013). It also has been successfully used 
in a broad range of terrestrial and marine applications. For 
example, Alabia et al. (2015b) used MaxEnt model con- 
structed in 2001 to predict the potential habitat distribution 
of the neon flying squid (Ommastrephes bartramii) in 2002 – 

2004. The results showed that the prediction effect in win- 
ter was better than that in summer, which may be due to the 
strong migration activity of O. bartramii in summer, result- 
ing in large sampling range deviation of sample data. Feng 
et al. (2020b) constructed the MaxEnt model to simulate 
and predict the seasonal variation of the habitat distribution 
of T. murphyi, and found that there were monthly differences 
in environmental factors affecting the potential distribution 
of T. murphyi.  

In this study, the MaxEnt model was constructed to as- 
sess the effects of marine environment on the potential dis- 
tribution and detect habitat hotspots of D. gigas off Chile 
according to the combination of the fisheries data and en- 
vironmental variables including mixed layer depth (MLD), 

sea surface salinity (SSS), sea surface height (SSH) and wa- 
ter temperature at different depths (including 0 m, 25 m, 
50 m, 100 m, 150 m, 200 m, 300 m, 400 m and 500 m) from 
December to May during 2011 – 2017. The main purposes 
of this study were to 1) assess the impacts of environmen- 
tal conditions on monthly habitat changes; 2) select the key 
environmental factors affecting the distribution of D. gigas; 
3) explore the fishing ground of D. gigas off Chile. 

2 Materials and Methods 
2.1 Fisheries and Environmental Data 

Fisheries data of D. gigas were originated from the Na- 
tional Data Center of Distant-water Fisheries of China, 
Shanghai Ocean University. Data were grouped by 0.5˚ × 

0.5˚ grid cell and by month, covering the main fishing months 
from December to June in 2011 – 2017. Data information 
mainly includes fishing longitude and latitude, fishing date 
(year and month), fishing effort (in days) and catch (unit: 
ton). The study region covered the range between 20˚ – 

47˚S and 70˚ – 97˚W, which was the main colony area of D. 
gigas in Chilean waters in summer and autumn (Fig.1) (Qian 
et al., 2008; Yu et al., 2019).  

 

 
Fig.1 Fishing locations of Chinese squid-jigging fishing 
fleets in the Southeast Pacific Ocean off Chile. 

There was a notion of consistency from the previous stu- 
dies that sea surface temperature (SST), sea surface height 
(SSH), sea surface salinity (SSS) and mixed layer depth 
(MLD) were the potential environmental factors that con- 
tributed the variability in the abundance and distribution of 
D. gigas (Arkhipkin et al., 2015; Medina et al., 2017). At 
the same time, due to the strong vertical movement of this 
squid species, SSH, SSS, MLD, SST together with water 
temperature at different depths (including Temp_0 m, Temp_ 
25 m, Temp_50 m, Temp_100 m, Temp_150 m, Temp_200 m, 
Temp_300 m, Temp_400 m and Temp_500 m) were select- 
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ed to construct the MaxEnt model in this study. All envi- 
ronmental data were obtained from the website http://apdrc. 
soest.hawaii.edu/las_ofes/v6/dataset?catitem=71 and cover- 
ed the study area between 20 – 47˚S and 70 – 97˚W during 
the period from December to June over 2011 – 2017. The 
temporal and spatial resolution of environmental data were 
matched with the fisheries data. 

2.2 MaxEnt Model Construction and Validation 

MaxEnt model is a maximum entropy species model 
which combines environmental layers with species occur- 
rence data to identify the optimal distribution of the target 
species in the whole study area (Phillips and Dudik, 2008). 
In this study, MaxEnt model analyses were performed us- 
ing MaxEnt software version 3.4.1k (http://biodiversityin- 
formatics.amnh.org/open_source/maxent/) (Phillips et al., 
2013). The fishing samples assimilated in the D. gigas exis- 
tence data was the fishing position of each fishing vessel 
in each fishing month. The species existence data input form 
was ‘species name, longitude, latitude’, then stored in the 
format of CSV. The environmental layer data were the mean 
values for each environmental factor in each fishing month. 
All environmental data were converted from ArcGis 10.2 
software to ASCII format for storage. Before the operation 
of MaxEnt model, 75% of the species distribution data were 
used as the training data, and the remaining 25% data were 
the test data. In order to eliminate the randomness and re- 
petition number, the repeated operation times of the model 
was set to 10, which made the 10 equal sample data run in 
the way of cross-validation in the operation process. Regu- 
larization multiplier and iteration times were soft by de- 
fault, and the results were output in the form of logistic. 

Generally, receiver operating characteristic curve (ROC) 
generated automatically by MaxEnt model was used to eva- 
luate the experimental performance of the model (Khanum 
et al., 2013). The ROC curve was drawn with the false po- 
sitive rate as the abscissa and the true positive rate as the 
ordinate. The area under curve (AUC) enclosed by the ROC 
curve and the abscissa and ordinate was used as a measure 
of model accuracy. The value ranges from 0 to 1, that is, 
when the potential distribution of the simulated species is 
completely inconsistent with the actual distribution, the AUC 
value is 0; when the two completely match, the AUC va- 
lue is 1 (Yackulic et al., 2013). For the model results, va- 
lues of 0.5 ≤ AUC < 0.6, 0.6 ≤ AUC < 0.7, 0.7 ≤ AUC < 0.8, 
0.8 ≤ AUC < 0.9, 0.9 ≤ AUC < 1.0 were defined as failure, 
poor, average, good and excellent, respectively (Wang et al., 
2015).  

The existing probability results of D. gigas in ASCII for- 
mat were analyzed by ArcGis 10.2 software and defined as 
habitat suitability index (HSI). The HSI value range was 0 

– 1, and ‘0’ indicated the most unfavorable habitat, while 
‘1’ indicated the most suitable habitat for D. gigas. The 
areas with HSI ≤ 0.2 and HSI ≥ 0.6 were defined as poor 
habitat and suitable habitat for D. gigas stock, respective- 
ly (Chen et al., 2010; Yu et al., 2019, 2021). The actual fish- 
ing data of D. gigas off Chile were superimposed with the 
simulation probability distribution to verify the simulation 

effect of the model. 

2.3 Analysis of the Gravity Center of Fishing 
Ground and Suitable Habitat 

The longitudinal and latitudinal gravity centers of fish- 
ing ground and suitable habitat can be used to reflect spa- 
tiotemporal changes of fishing grounds and distribution shift 
of species preferred habitat environment (Fang et al., 2014; 
Feng et al., 2020b). To examine the varieties of latitudinal 
and longitudinal location of suitable habitat and fishing 
ground with the change of environmental factors, the cal- 
culation formulas of LONG, LATG, LATGHSI, LONGHSI were 
as follows (Yu et al., 2019; Feng et al., 2020b): 
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where Effortmij is the fishing effort of different fishing lo- 
cation in different months; Lonmij, Latmij are the longitude 
and latitude of fishing ground in different months; HSImij 
is the HSI value at different spatial positions in suitable ha- 
bitat of fishing ground in different months. 

2.4 Selection and Analysis of Key Environmental 
Factors in Each Month  

The model gain was increased by changing the charac- 
teristic coefficient of a certain environmental variable, then 
the increment of model gain was assigned to this environ- 
mental variable in the model operation process. Finally, the 
gain increment was converted into a percentage, thus the 
contribution rate of each environmental variable in each 
month can be obtained (Urbani et al., 2015). The contribu- 
tion rates of each environmental factor were ranked from 
high to low in each month. The top three variables with 
higher contribution rate were regarded as the key environ- 
mental factors in this month.  

The data of the key environmental factors were match- 
ed with fisheries data in each month. The frequency distri- 
bution figures with key environmental variables as abscissa 
and fishing effort as ordinate were drawn by frequency sta- 
tistics method, which was applied to estimate the suitable 
range of key environmental variables for D. gigas. Then, 
the response curve was drawn with the critical environmen- 
tal variables as abscissa and the survival probability of D. 
gigas as ordinate when modeling with a single key environ- 
mental variable. The suitable range of key environmental 
variables in each month was obtained using the response 
curves and compared with the results from the frequency 
distribution figures to verify the rationality of the selection 
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of key environmental factors. The temporal and spatial dis- 
tribution of key environmental factors in each month was 
drawn and superimposed with actual fishing effort to ana- 
lyze the spatial characteristics of suitable environment for 
D. gigas.  

2.5 Spatial Patterns of Habitat Hotspots of D. gigas 
In order to examine the prediction performance of the 

MaxEnt model for D. gigas off Chile using key environ- 
mental factors, the habitat hotspots of D. gigas offshore 
Chile in each month were predicted based on both the se- 
lected key environmental factors and the fisheries data from 
December to May in 2011.  

3 Results 
3.1 MaxEnt Model Performance and Habitat 

Characteristics of D. gigas 
The results of MaxEnt model showed that all the month- 

ly regional models performed significantly well with AUC 
higher than 0.9 from December to May in 2011 – 2017. Po- 

tential distribution of D. gigas habitat simulated by the 
monthly model was in good agreement with the actual fish- 
ing locations, implying that the model outputs were reli- 
able (Table 1 and Fig.2). Potential habitat of D. gigas exhi- 
bited significantly monthly variations. It was observed that 
most fishing efforts were concentrated in the suitable habi- 
tats with higher HSI values. Except for the extensive distri- 
bution of D. gigas from north to south off Chile in January, 
the area of suitable habitats in other months was relative- 
ly stable bounded by 20˚ – 30˚S and 75˚ – 85˚W.    

Table 1 Summary of simulation of Dosidicus gigas in 
summer (December, January and February) and 

autumn (March, April and May) 

Maximum entropy 
models 

Sample 
size 

AUC 
Standard
deviation

Summer-December 35 0.944 0.027 
Summer-January 145 0.907 0.024 
Summer-February 190 0.950 0.010 
Autumn-March 264 0.939 0.019 
Autumn-April 246 0.940 0.009 
Autumn-May 181 0.911 0.022  

 

 
Fig.2 Spatial distribution of the probability (e.g., habitat suitability index) of Dosidicus gigas off Chile overlaid with ac- 
tual fishing locations from December to May in 2011 – 2017. 

3.2 Spatial Variation of Gravity Center of Fishing 
Ground and Suitable Habitat 

Fig.3 showed the change trend of the gravity centers of 
the suitable habitat and fishing ground off Chile from De- 
cember to May in 2011 – 2017. It was found that LONG and 
LATG were basically consistent with LONGHSI and LATGHSI. 
In the longitudinal direction, the gravity center of fishing 
ground and suitable HSI moved eastward from December 
to January and then was stable between 76.5˚W and 77.5˚W 
in other fishing months. In the latitudinal direction, the gra- 

vity center of fishing ground and suitable HSI obviously 
moved southward in December and May, in other months 
it was mainly located in the central and northern waters off 
Chile.  

3.3 Selection of Key Environmental Factors and 
Their Temporal Distribution 

The results of contribution rate of environmental factors 
in each month showed that the key environmental factors 
had clearly monthly differences (Table 2). In summer, MLD 
and SSH were included in the key environmental factors  
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Fig.3 Longitudinal and latitudinal gravity center of fishing effort (LONG and LATG) and optimal habitat suitability index 
(LONGHSI and LATGHSI) of Dosidicus gigas off Chile from December to May in 2011 – 2017. 

in December, January and February, but the preferred wa- 
ter temperature at different depths for D. gigas were di- 
verse in each month (Temp_25 m in December, Temp_300 m 
in January and Temp_400m in February). In autumn, the key 
environmental factors of each month were same, which were 
SSH, SSS and Temp_400 m. The cumulative contribution 
rate of key environmental factors was 84.2%, 80.9%, 71.4%, 
81.9%, 83.4% and 78.6% in each month from summer to 
autumn in 2011 – 2017, respectively, indicating that these 
key environmental factors played an important role in the 
spatial-temporal distribution of the fishing ground of D. 
gigas off Chile. 

Variability trend of the mean SSH, SSS and Temp_25 m 
was basically similar, with a lower mean value and an up- 
ward trend in summer and a higher mean value and a down- 
ward trend in autumn (Fig.4). Variability trends of the mean 
MLD and Temp_300 m were contrary. MLD was the low- 
est in January and then increased in the following months, 
while Temp_300 m showed an increasing trend in January 
and then decreased in the next four months. For Temp_400 m, 

it first decreased from December to April and reached the 
minimum value in April, then slightly increased in May. 

Table 2 Contribution rates of environmental factors of 
the fishing ground of Dosidicus gigas off Chile 

from December to May in 2011 – 2017 

Environmental
variables December January February March April May

MLD 33.4 23.6 16 0.7 8.8 8.2
SSH 18.0 32.0 33.7 42.1 40.0 42.8
SSS 0.1 2.5 11.1 14.6 22.9 19.7
SST 0.8 2.7 1.2 0.5 1.5 0.7
Temp_25 m 32.8 0.8 5.6 3.6 1.3 8.7
Temp_50 m 1.1 1.3 0.9 4.8 0.6 1.2
Temp_100 m 3.3 1.3 1.7 0.3 0.6 0.6
Temp_150 m 9.6 8.6 4.8 0.4 1.9 1.0
Temp_200 m 0.8 0.3 0.1 0.1 0.3 0.5
Temp_300 m 0 25.3 2.5 0.3 1.0 0.1
Temp_400 m 0 1.1 21.7 25.2 20.5 16.1
Temp_500 m 0.1 0.5 0.7 0.4 0.5 0.5

Note: The environmental factors in black and bold were regarded 
as the key ones in each month. 

 

 
Fig.4 Monthly average value of the key environmental factors from December to May in 2011 – 2017. 
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3.4 Relationship Between Key Environmental 
Factors and D. gigas Stock 

Probability of fitness and frequency distributions of fish- 
ing effort of D. gigas in relation to environmental parame- 
ters in summer and autumn during 2011 – 2017 were shown 
in Figs.5 and 6. Results showed that the suitable ranges of 
the key environmental factors affecting the distribution of D. 
gigas were basically the same based on the two methods (Ta- 
ble 3). Moreover, Figs.7a and 7b showed that the actual dis- 
tribution of D. gigas in each month was basically located 
within the suitable range of key environmental factors. 

 

 

3.5 Prediction Results of Habitat Hotspots Based on 
Key Environmental Factors 

Based on the key environmental factors selected from 
2011 – 2017 to predict the habitat hotspots of D. gigas in 
2011, the forecast results suggested that the fishing effort 
from December to May in 2011 were mostly located in the 
predicted suitable habitats of D. gigas and more fishing 
effort correspond to higher HSI value (Fig.8), implying that 
the key environmental factors selected by the MaxEnt mo- 
del can better evaluate and predict the spatial location of the 
D. gigas fishing ground off Chile.  

 
Fig.5 Frequency distribution of fishing effort of Dosidicus gigas in relation to key environmental factors from December 
to May in 2011 – 2017. 
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Fig.6 Response curves for the key environmental factors from December to May in 2011 – 2017 of all regional models.  

4 Discussion 
4.1 Results of Maximum Entropy Model and 

the Advantages 

The potential habitat hotspots of D. gigas off Chile in the 
Southeast Pacific Ocean were explored and identified by 
combining available environmental variables and fisheries 
information as inputs to the MaxEnt models. Monthly Max- 

Ent model showed the potential distribution of D. gigas were 
basically consistent with the change trend of actual fish- 
ing location (Fig.2). AUCs higher than 0.9 for regional base 
models in each month showed minimal variability in sta- 
tistical performance in modeling domain and the favorable 
consistence between the MaxEnt models and testing data 
(Table 1). There were many other models to identify the 
potential distribution of marine species such as habitat sui- 
tability index model (HSI) (Chen et al., 2010; Yu et al., 
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Fig.7 Suitable range of key environmental factors and overlay with actual fishing locations in summer (a) and autumn (b). 
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Table 3 Suitable range of key environmental factors for Dosidicus gigas 
off Chile from December to May based on two methods 

Suitable range 
Month Key environmental factor

From response curves From frequency distribution 

MLD (m) 28 – 50 28 – 40
SSH (cm) 2 – 15 2 – 11December 
Temp_25 m (℃) 18 – 19.5 17.8 – 19 
MLD (m) 18 – 45 1 – 36
SSH (cm) 1 – 11 0 – 11January 
Temp_300 m (℃) 8 – 10 8 – 9.5 
MLD (m) 25 – 40 22 – 34
SSH (cm) 3 – 13 2 – 7February 
Temp_400 m (℃) 7.2 – 7.6 7.2 – 7.4 
SSS 34.5 – 35.5 34.5 – 35.3 
SSH (cm) 3 – 14 3 – 10March 
Temp_400 m (℃) 7.2 – 7.7 7.3 – 7.5 
SSS 34.5 – 35.4 34.7 – 35.3 
SSH (cm) 3 – 15 8 – 13April 
Temp_400 m (℃) 7.3 – 7.8 7.3 – 7.6 

 SSS 34.5 – 35.4 34.4 – 35.3 
May SSH (cm) 1 – 17 0 – 14
 Temp_400 m (℃) 7.1 – 7.7 7 – 7.6 

 

 
Fig.8 Spatial distribution of the predicted habitat suitability index of Dosidicus gigas off Chile overlapped with its actual 
fishing locations from December to May in 2011. 

2019), BP (Back Propagation) neural network model (Wang 
et al., 2014), generalized linear model (GLM) and genera- 
lized additive model (GAM) (Venablse et al., 2004; Chang 
et al., 2011). Although these models had good analysis ca- 
pability and reliable results, their application often required 
accumulated data that should be collected from the actual 
fisheries logbook with large sampling size for many years. 
Thus, there are many constraints to the data, especially for 
the time and distribution range of these models. On the con- 
trary, the MaxEnt model has huge advantages for limited 
samples and prevented over fitting of the results. It is only 
based on the occurrence data and environmental background 
data. It breaks the limit that requires a lot of fisheries sta- 
tistical data in time and space. In addition, the MaxEnt mo- 

del can use both continuous and categorical data with effi- 
cient deterministic algorithms. At the same time, it does 
not need to require or even incorporate absence points with- 
in the theoretical framework (Phillips et al., 2008; Sharma 
et al., 2018). 

The impacts of environmental factors on marine species 
varied over time. For example, Yu et al. (2019) used the 
arithmetic mean method-based HSI model to evaluate the 
correlation between the D. gigas habitats and marine en- 
vironmental factors off Peru. The D. gigas habitat varied 
seasonally and the most critical environmental factors af- 
fecting this species distribution was different in each sea- 
son. Many studies on the spatial-temporal distribution of D. 
gigas fishing grounds were based on two or three environ- 
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mental factors that artificially selected exclusive the con- 
sideration of various impacts from biotic and the abiotic 
factors (Feng et al., 2020b; Wen et al., 2020). In this study, 
the differences and contribution rates of 12 different en- 
vironmental variables to the distribution of D. gigas fishery 
were fully considered in summer and autumn. With the 
MaxEnt model effectively dealing with the complex inter- 
actions among environmental variables, the response rules 
of D. gigas habitat to different environmental factors were 
explored. Based on the contribution rate, the factors with 
little influences on D. gigas were not included into the 
analysis, while the selected key environmental factors af- 
fecting the distribution of D. gigas fishing ground were used 
for modeling and predicting, and determined the preferred 
ranges. In the present study, the biological characteristics 
of D. gigas and its environmental sensitivity were fully con- 
sidered, making the selection of environmental variables 
more reasonable, and enhancing the reliability of the pre- 
diction model. 

4.2 Key Environmental Factors Affecting the 
Distribution of D. gigas 

Marine environmental variables are the critical elements 
in regulating the distribution of pelagic species (Du et al., 
2020). For example, shallow MLD can obtain stronger il- 
lumination and yield more plankton through physical and 
biological processes, creating better food conditions for 
swordfish (Chang et al., 2013). The influence of SSS on the 
distribution of T. murphyi was different for each month. In 
the peak fishing season, the surface salinity strongly affect- 
ed spatial-temporal fishing ground of T. murphyi (Jin et al., 
2012). SST directly influenced the growth process, prefer- 
red habitat and the response to the unsuitable sea tempe- 
rature of D. gigas (Paulino et al., 2016). Although these sea 
surface environmental variables were considered as impor- 
tant environmental factors to identify habitat hotspots and 
explore fishing ground for pelagic fishes or cephalopods, 
however, many species were also affected by the vertical 
structure of water temperature due to their vertical move- 
ment (Li et al., 2016; Xu et al., 2016). For example, the 
habitat suitability index model based on the vertical struc- 
ture of water temperature can well predict the potential fish- 
ing grounds of O. bartramii in the Northwest Pacific Ocean 
and bigeye tuna (Thunnus obesus) in the Indian Ocean (Song 
and Zhou, 2010; Chen et al., 2012). T. murphyi also inha- 
bits different water layers at different seasons. In autumn, 
the depth of the water layer that T. murphyi distributes is 
relatively stable and changes greatly in winter (Zhang et al., 
2000; Ruan et al., 2016). Because of feeding and reproduc- 
tive behaviors and environmental conditions, D. gigas per- 
forms both vertical and horizontal migrations (Gilly et al., 
2006). Vertical migrations can range from the surface to 
more than 500 m deep, while latitudinal migration is up to 
several hundred miles (Nigmatullin et al., 2001; Chavez 
et al., 2008). This study used water temperature at differ- 
ent layers (including 0 m, 25 m, 50 m, 100 m, 150 m, 200 m, 
300 m, 400 m and 500 m) except the SSH, SSS, and MLD, 
and then selected the relatively critical vertical water tem- 
perature at certain depths for each fishing month (Table 2). 

Based on our results, the critical vertical water tempera- 
ture of each month can be considered as one of possible 
abiotic indicators affecting D. gigas habitat and was con- 
sistent with its biological characteristics. These findings 
were similar to the conclusions by Qian et al. (2008), in 
which the water layer of D. gigas inhabited was different 
in distinct regions and months. 

In this study, the SSH was also a critical environmental 
factor and contributed the highest to the formation of D. 
gigas habitat in summer and autumn. This finding was si- 
milar to the finding by Arkhipkin et al. (2015) with a con- 
clusion that the SSH was an essential factor in determin- 
ing squid habitat. SSH was an indicator of seawater dyna- 
mics. It reflects the dynamic cumulative results of thermo- 
dynamics, land, ocean and atmosphere processes in the Max- 
Ent model, while it also can drive the local food concen- 
tration into different spatial patterns (Chen et al., 2010; 
Long et al., 2012; Li et al., 2016). The seasonal and inter- 
annual variations of the surface flow field are obvious in 
the Southeast Pacific (Montes et al., 2011). The surface cur- 
rents in the northern part of Chile mainly include the Sou- 
thern Equatorial Current and the Peruvian Current, and are 
also affected by the upwelling. Under the influences of sea 
surface wind field, the surface currents significantly varied 
monthly or seasonally (Lin et al., 2006). For example, in the 
Humboldt Current, Trade Winds, the upwelling-favorable 
wind for the Humboldt Current, is intensified during the 
austral winter, inducing vertical advection of cold, nutrient- 
rich waters which support high levels of biological produc- 
tivity (Strub et al., 2013). Variations of the Southern Equa- 
torial current are mainly reflected in the seasonal variations 
of current velocity, while the circulation axis of Peru Cur- 
rent changes significantly in the low latitude (Lin et al., 
2006). Climate variability at different scales also have sig- 
nificant effects on current. During the El Niño years, the cir- 
culation axis of the Southern Equatorial Current and Peru 
Current deflect, the current fields and the upwelling are wea- 
kened; during the La Niña years, the flow field is streng- 
thened again and the upwelling is enhanced (Montes et al., 
2011; Mogollón et al., 2017). Therefore, with more fre- 
quent current changes, the convergence and upwelling of sea 
water become obvious, and the influences of SSH on the 
potential distribution of D. gigas is more critical. 

In addition to the impacts of SSH and vertical water tem- 
perature on D. gigas stock, the results indicated that MLD 
played an important role in summer, while SSS was criti- 
cal in autumn. These phenomena may be related to the in- 
fluences of current and sea surface wind field on the D. 
gigas habitats. Sea surface wind is one of the main reasons 
causing the current velocity variation, consequently result- 
ed in fish stock dynamics (Pickett et al., 2006). For exam- 
ple, previous studies showed that the higher the wind speed, 
the higher the mortality rate of the juvenile fish of Engrau- 
lis mordax (Peterman et al., 1987). In summer, due to the 
slow sea surface wind speed, the velocity of the South Equa- 
torial current was relatively slow, which was favorable for 
the accumulation of plankton, and promoted the increase of 
population richness through the food chain transmission 
and accumulation (Lin et al., 2006; Bakun et al., 2014). The 
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monthly SSS and MLD off Chile were lower in summer 
than those in autumn (Fig.4). On the contrary, the shallow 
MLD indicated that the water temperature at certain depth 
where the species inhabits was relatively stable, and it al- 
so promoted the photosynthesis for phytoplankton, which 
was indirectly favorable for D. gigas concentration (Change 
et al., 2013; Bakun et al., 2015). Therefore, MLD rather 
than SSS was the key environmental factor affecting the 
distribution of D. gigas in summer. The situation was op- 
posite in autumn (Fig.4). Furthermore, the significant inter- 
monthly variations of key environmental factors and suit- 
able living ranges may be caused by the variation of ocean 
current in different seasons. The southeast Pacific is a wes- 
terly drifting cold-water mass and the north is an inverse 
equatorial warm current warm-water mass (Feng et al., 
2020a). Therefore, the Dosidicus gigas fishing ground was 
mainly affected by the intersection of cold and warm wa- 
ter masses in the south and north, which made SSH and 
MLD show the increasing trend as a whole. In summer and 
autumn, the northern warm-water mass was stronger than 
the southern cold-water mass, while the southern cold-wa- 
ter mass dominates in winter and spring. Therefore, in sum- 
mer and autumn, the temperature and salinity of shallow 
seawater increase in summer and decrease in autumn, and 
the deeper water temperature is less affected by this, show- 
ing a downward trend as a whole (Niu et al., 2009). 

4.3 Future Directions and the Forecast Results 

With the rapid growth and high productivity, D. gigas 
belongs to ecologically important species and plays an im- 
portant role in the worldwide marine fisheries (Yu et al., 
2016). Exploring the habitat hotspots of D. gigas in the 
Southeast Pacific Ocean can provide scientific basis for ex- 
panding the spatial range of pelagic fishing grounds and 
looking for new economic growth points. Therefore, it is 
useful to use the species distribution model to predict its 
potential suitable habitats in the future. The MaxEnt model 
only needs the distribution data of species and the external 
environmental variables data. It can calculate the potential 
distribution probability of species under five different con- 
straint characteristics including linear, product, hinge, qua- 
dratic and threshold, which can unbiasedly infer the un- 
known distribution of species from the limited longitude 
and latitude distribution information(Li et al., 2019).  

In this study, although the MaxEnt model can predict the 
potential habitat of D. gigas, there are still some biases in 
the prediction results due to the strong migration charac- 
teristics of the D. gigas. Therefore, in the future research, 
we will avoid the sampling limit to improve the feasibility 
of MaxEnt model in fisheries application. Furthermore, cli- 
mate-induced marine environmental changes and habitat 
variations may have significant influences on the fisheries 
(Kuczynski et al., 2018). For example, the high-frequency 
El Niño and La Niña events indirectly led to a large fluc- 
tuation in the abundance of the O. bartramii population by 
affecting the environmental conditions on the spawning and 
feeding grounds of O. bartramii (Alabia et al., 2015; Igara- 
shi et al., 2017). Therefore, in the future research, the cli- 

mate variability with different time-scale and intensity should 
be combined with key environmental factors to develop the 
species distribution model to accurately assess the relation- 
ship between the habitat pattern of marine pelagic species 
and biotic and abiotic factors.  
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