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Abstract  This paper presents a novel intelligent and effective method based on an improved ant colony optimization (ACO) algo-
rithm to solve the multi-objective ship weather routing optimization problem, considering the navigation safety, fuel consumption, 
and sailing time. Here the improvement of the ACO algorithm is mainly reflected in two aspects. First, to make the classical ACO 
algorithm more suitable for long-distance ship weather routing and plan a smoother route, the basic parameters of the algorithm are 
improved, and new control factors are introduced. Second, to improve the situation of too few Pareto non-dominated solutions gener-
ated by the algorithm for solving multi-objective problems, the related operations of crossover, recombination, and mutation in the 
genetic algorithm are introduced in the improved ACO algorithm. The final simulation results prove the effectiveness of the im-
proved algorithm in solving multi-objective weather routing optimization problems. In addition, the black-box model method was 
used to study the ship fuel consumption during a voyage; the model was constructed based on an artificial neural network. The pa-
rameters of the neural network model were refined repeatedly through the historical navigation data of the test ship, and then the 
trained black-box model was used to predict the future fuel consumption of the test ship. Compared with other fuel consumption 
calculation methods, the black-box model method showed higher accuracy and applicability. 
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1 Introduction 
In recent years, the role and status of weather routing in 

ship maritime navigation have become increasingly promi- 
nent, and many algorithms for the optimization design of 
ship weather routes have been proposed. Common algo-
rithms include the isochrone method, dynamic program-
ming method, evolutionary algorithm, genetic algorithm, 
and ant colony optimization (ACO) algorithm. A single- 

objective optimization is no longer adequate for the weath- 
er routing optimization problem, as usually, multiple ob-
jectives with multiple constraints need to be simultane-
ously optimized. In the multi-objective weather routing 
optimization problem, several optimization objectives often 
conflict with one another, so that optimization cannot be 
simultaneously achieved. The Pareto dominance relation-
ship is often used to compare the multi-objective optimiza-
tion problem; it is necessary to find a set of compromise 
solutions to optimize each objective as much as possible. 

The isochronal method is the earliest algorithm for plan- 
ning the shortest time route for ships based on weather 
forecast data (James, 1957). However, the method does  
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not give the correct isochron, and its own ‘isochron loop’ 
problem makes it unsuitable for computer-aided calcula-
tions. A modified isochron method suitable for computer- 
aided calculations can calculate the minimum fuel con-
sumption and the shortest sailing time (Hagiwara and 
Spaans, 1987). In recent years, a three- dimensional modi-
fied isochrone method was proposed and it can achieve 
the minimum fuel consumption and expected arrival time 
under the premise of safe navigation (Lin et al., 2013; Fang 
and Lin, 2015). 

The basic idea of the dynamic programming method is 
similar to that of the isochrone method, and its core is 
Bellman’s optimization principle (Bellman, 1956). In the 
ship weather routing optimization problem, the dynamic 
programming algorithm transforms the route optimization 
problem into a multi-stage decision-making problem and 
obtains the global optimal solution by finding the local 
optimal solution of each stage (Fig.1). A new forward 
three-dimensional dynamic programming (3DDP) method 
can minimize fuel consumption during ship navigation 
(Shao et al., 2012). Experiments showed that the improved 
3DDP method is easier to program and has a better opti-
mization effect.  

Evolutionary algorithms are a cluster of algorithms that 
mimic Darwin’s theory of species evolution. Among them, 
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the genetic algorithm was first proposed (Holland, 1975), 
and it has been used in the traveling salesman problem 
(TSP) (Dorigo and Gambardella, 1997). Vector evaluated 
genetic algorithms proved that evolutionary algorithms 
have great advantages in searching the Pareto optimal solu-
tion set of multi-objective problems and laid a foundation 
for future evolutionary algorithms to solve multi- objec-
tive problems (Schaffer, 1985). Zitzler and Thiele (1999) 
proposed the strength Pareto evolutionary algorithm which 
is characterized by an elite retention mechanism. Deb et al. 
(2002) proposed a non-dominated sorting-based multi- ob-
jective evolutionary algorithm which is called the non- 

dominated sorting genetic algorithm II. This algorithm 
features an improved non-dominated sorting method and 
includes a selection operator; thus, it can find a better solu-
tion and create a more distant Pareto optimal frontier. 
Zhang and Li (2007) applied the concept of decomposi-
tion to a multi-objective evolutionary algorithm; they de-
composed the multi-objective problem into several scalar 
optimization subproblems and then optimized them. Wang 
and Li (2018) improved the real-coded genetic algorithm 
and presented a faster and more efficient method to de-
sign the shortest route in a dynamic environment with 
good results. 

 

Fig.1 Schematic diagram of the route design method based 
on dynamic programming. 

In recent years, the ACO algorithm has been widely 
applied to multi-objective problems and weather routing 
problems. It was proposed by Dorigo et al. (1991). It was 
also applied to the TSP and achieved good results (Dorigo 
and Gambardella, 1997). The ACO algorithm can effec-
tively solve complex optimization problems and has strong 
parallelism and robustness. The electronic chart display 
and information system (ECDIS) as a platform, combin-
ing the ACO algorithm and genetic algorithm, was used 
to establish an optimization model for trans-ocean route 
planning; the results showed that a single target could be 
effectively optimized (Tsou and Cheng, 2013). A two-way 
search ACO algorithm was proposed in which the ant 
colony started from the starting point and the destination; 
this approach enhanced the practicability of the algorithm 
(Cui et al., 2014). Moreover, a new route decision- mak-
ing method was used to accelerate the algorithm conver-
gence speed and avoid local optimization.  

Guntsch and Middendorf (2002) first proposed the con-
cept of ‘population’ and combined it with the ACO algo-
rithm. This algorithm is very competitive in solving dy-

namic optimization problems. Pareto solution set-based 
ACO algorithm solves multi-objective combinatorial op-
timization problems (Doemer et al., 2004). The results 
proved the superiority of the algorithm. Multi-objective 
ACO framework based on the concept of decomposition 
solves the bi-objective TSPs (Cheng et al., 2012). 

In this paper, the authors propose an intelligent and ef-
fective method based on an improved ACO algorithm to 
solve the multi-objective ship weather routing optimiza-
tion problem. The contributions are as follows: 

1) The mathematical models of multi-objective weather 
route optimization problems are presented, including the 
geographical coordinates; the ship motion position equa-
tion is discretized in time to build the ship motion model. 
In addition, the marine navigation area modeling grid to 
construct the environmental grid model is presented. 

2) A novel method for the multi-objective weather rout-
ing of ships is proposed based on the ACO algorithm. To 
increase the algorithm effectiveness, besides modifying 
the algorithm parameters, the authors also propose a new 
control operator. Owing to the introduced control operator, 
the algorithm can plan a smoother route and can be applied 
to a long-distance ship weather route. 

3) The authors combine the excellent operators of the 
genetic algorithm with the traditional ACO algorithm to 
improve the population richness and increase the number 
of Pareto non-dominated solutions. 

4) A black-box model of oil consumption is built. The 
model is based on an artificial neural network (ANN). The 
parameters of the black-box model are trained by the his-
torical navigation data of the test ship, and then the trained 
black-box model is used to predict the future fuel con-
sumption of the test ship. Compared with other fuel con-
sumption calculation methods, the value obtained by the 
black-box model is more accurate. 

The rest of the paper is organized as follows: Section 2 
describes the mathematical model of the ship weather route 
design. Section 3 introduces the principle of the improved 
ACO algorithm. Section 4 describes the fuel consumption 
black-box model building. Section 5 shows the route simu- 
lation results of the improved algorithm. Section 6 pre-
sents the conclusions. 

2 Mathematical Model of Ship             
Weather Routing 

2.1 Ship Motion Model 
Under geographical coordinates, the equations for cal-

culating the ship motion position are as follows: 

 1 cosN N R       ,             (1) 

 1 sinN N R       ,             (2) 

where φN and λN represent the latitude and longitude of 
the ship location at the current time, respectively, and φN+1 
and λN+1 represent the latitude and longitude of the ship 
location at the next moment, respectively. These parame-
ters are the ship motion state variables that describe the 
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ship position. Also, R represents the ant movement step 
length, θ is the ship sailing direction, ∆φ is the distance of 
one latitude-difference, and ∆λ is the distance of one lon-
gitude-difference. 

If the earth is regarded as a regular sphere, the longi-
tude lines are equal in length; therefore, ∆λ can be calcu-
lated using the following formula. 

= cos N    .                (3) 

2.2 Navigation Environment Model 
In this paper, the ship navigation area is modeled as a 

grid map; that is, the navigation area is equally spaced 
along the horizontal direction and the vertical direction to 
form several grids. Each node of the grids will be assigned  

a unique label number. The grid spatial resolution can be 
0.25˚×0.25˚, 0.5˚×0.5˚, 1˚×1˚, and so on. The higher the 
spatial resolution, the more the data that need to be stored, 
and the more steps the ants will take in the movement 
process, which means that the algorithm will consume 
more time to solve the problem. Considering this situation, 
a spatial resolution of 1˚×1˚ is adopted in this paper. 

The longitude range of the simulation experiment navi-
gation area is selected as [20˚N, 60˚N], and the latitude 
range is selected as [80˚W, 0˚W]. The navigation area is 
divided by the above grid method. Fig.2 is the grid map, 
with 41×81 nodes in total. All nodes are numbered; the 
upper left node is numbered ‘1’, the node below is ‘2’, 
and so on. Points S and E represent the starting point and 
the end point of the route planning, respectively.

 

Fig.2 Grid map model and label numbers. 

The relationship between the actual geographical coor-
dinates of a grid node and its corresponding number is as 
follows:  

  top1 1N l w        ,          (4)  

   1N w l      ,             (5) 

 top= % 1N w    ,            (6) 

where N is the grid node number; λ and φ represent the 
longitude and latitude of the geographic coordinates of a 
grid node, respectively; w is the width of the grid map; l 
is the length of the grid map; and φtop represents the maxi- 
mum latitude of the navigation area. 

In general, it is impossible to ensure that all route points 
fall on the grid nodes. When a route point falls outside the 
grid nodes, the meteorological data of the point can be 
obtained by the bilinear interpolation algorithm. Suppose 
(λ+ω, φ+υ) is the geographical coordinate of the current 
ship position, where λ and φ are the integer part of the 
floating-point coordinate, and ω and υ are the fractional 
part of the floating-point coordinate when the value in-
terval is [0,1). Then, the weather data ξ of the current 
route point can be obtained according to the weather data 
corresponding to the four grid nodes around it: 

       1 2 3 41 1 1 + 1                          . 

 (7) 

3 Principle of the Improved Ant Colony 
Optimization Algorithm 
Presently, there are few examples that apply the ACO 

algorithm to multi-objective ship weather routing optimi-
zation design. The traditional ACO algorithm is not suit-
able for the ship weather routing optimization design on 
sea. The main reasons are as follows: First, the route de-
signed by the traditional ACO algorithm is not smooth; 
this problem is especially prominent in the long-distance 
path planning. Second, the operation speed of the tradi-
tional ACO algorithm is slow, and the code execution 
efficiency is not high, which leads to the result not being 
ideal. Also, when the traditional ACO algorithm tends to 
be stable, it is difficult to find other new solutions to en-
rich the population, so the Pareto non-dominated solu-
tions produced by the algorithm are too few. 

To address the above problems, Li et al. (2018) im-
proved the ant movement rule and pheromone-updating 
method in the ACO algorithm to solve the single- objec-
tive problem and obtained good results. Based on this, this 
paper adds some new improvements to solve the multi- 

objective problem. The specific improvement ideas are 
described in the following subsections. 

3.1 Improvement of Algorithm Basic Parameters 
In general, a basic route needs to be selected during 
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ship weather routing. To make the optimized route better 
fit the great circle route – especially so that when the route 
deviates from the basic route to avoid obstacles, the algo-
rithm can quickly modify the route – the authors introduce 
a new coefficient to the formula of the transition prob-
ability–route control factor (RCF). 

According to the above functions, the RCF expression 
can be fitted by MATLAB curve fitting toolbox: 

     21 2 3, exp ,k kRCF a v f i Dist f i a a      
 

,  (8) 

where aj is the introduced coefficient, j[1, 3]; f is the 
number of times the ants move; i is the serial number of 
route points; i[1, 2NS+1]; v is the actual speed of the 
ship; and Dist is the longitudinal distance from the ship’s 
position to the great circle route. 

Thus, the state transition probability in the ACO algo-
rithm is described as follows: 

     
   
, ,

,
, ,

k k
k

k k

f i f i
P f i RCF

f i f i

 

 
 
 


 


,      (9) 

where τ is the pheromone concentration, α is the relative 
importance degree of the residual pheromone concentra-
tion, β is the relative importance degree of the expected 
value, and ηk(f, i) is heuristic information of the ith route 
point. 

In general, in the traditional ACO algorithm, the heu-
ristic information ηk of a point is equal to the reciprocal of 
the distance from the point to the target point. However, 
the definition of heuristic information is not suitable for 
long-distance path planning; therefore, the authors rede-
fine the heuristic function as shown in the next equation: 

       , , ,
n

k S E GCRf i L f i L f i L   ,    (10) 

where LS is the distance from the current waypoint to the 
starting point S. LE is the distance from the current way-
point to the end point E. LGCR is the distance of the great 
circle route between the starting point and end point. n is 
a constant used to control the magnitude of ηk(f, i). 

3.2 Introduction of Genetic Operators 
Two crucial issues must be considered in finding the 

Pareto optimal solution set for multi-objective problems. 
The first, algorithm convergence, is how quickly the Pareto 
optimal solution is found. The second, population diversity, 
is how to make the distribution of non- dominated solutions 
on the Pareto front more symmetrical. The traditional 
ACO algorithm is not rich in solutions, especially when 
the algorithm tends to be stable; it is difficult to find other 
new solutions to enrich the population, resulting in too few 
non-dominated solutions when multi-objective problems 
are solved. To address this problem, the authors introduce 
the excellent evolution operator of the genetic algorithm 
into the ACO algorithm. 

The genetic algorithm is also widely used in ship route 
planning. Compared with the ACO algorithm, the genetic 

algorithm has better randomness and route optimization 
ability. When the crossover probability is higher, many 
new individuals can be created in each iteration. However, 
the genetic algorithm does not make full use of heuristic 
information, which leads to the slow speed of solutions. 
Therefore, to prevent the ACO algorithm from falling into 
a local optimum at an early stage and increase the diversity 
of solutions to multi-objective problems, the crossover, 
recombination, and mutation operations of the genetic 
algorithm are mixed into the ACO algorithm in this paper. 
The specific related operations are implemented as de-
scribed below: 

Crossover: After each iteration of the algorithm, all solu-
tions are sorted according to the non-dominated rules to 
divide the individual’s non-dominated level rank. The in-
dividuals with rank 1 are selected and added to the Pareto 
optimal solution set. Afterward, the route points in all the 
non-dominated solutions are randomly crossed and reor-
ganized except for the starting and end points. If a new 
non-dominated solution occurs, the route is retained and 
passed on to the next iteration. 

Mutation: The position of a waypoint on the route is 
randomly changed; if the variation solution is better than 
the original solution, it is kept; otherwise, it is discarded. 

3.3 Description of Optimization Problem 
This section describes the use of the improved ACO 

algorithm to solve the multi-objective ship weather routing 
problem. During ship route optimization, it is necessary to 
select a basic route as a reference to make the route search 
more purposeful, avoid blindness, and speed up the search. 
Especially, when the route deviates from the basic route to 
avoid obstacles, the algorithm can quickly correct the cur-
rent course according to the basic route. The basic routes 
available for selection generally include the great circle 
route and the rhumb line (Fig.3). 

 

Fig.3 The great circle route and the rhumb line. 

The shortest route between two points on the sea is the 
great circle route; therefore, this route is used as the basic 
route of ship weather routing, and the basic route is fixed. 

The method of improving the ACO algorithm to search 
for route points is illustrated in Fig.4. Point S and point E 
represent the starting and end points of the ship weather 
routing, respectively. Point A and point B represent two 
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random waypoints on the optimized route. The algorithm 
has K iterations, and M ants are released in each genera-
tion. Each ant starts to build its route from the starting 

point S, and every time the ant arrives at a waypoint, the 
great circle route between the current point and the target 
point is established. 

 

Fig.4 Schematic diagram of route search. 

Taking route point A as an example, the datum course 
Co must first be determined in the ants’ search of the next 
waypoint. The course Co can be obtained through the fol-
lowing equations: 

 tan sin cos tan sin coso n d nC D D       ,  (11) 

d nD    ,             (12) 

, 0

180 , 0

o o
o

o o

C C
C

C C


 
 ,          (13) 

where Dλ is the difference in longitude between the cur-
rent route point and the end point, and φn and φd are the 
latitude values of the current point and the end point, re-
spectively. 

Afterward, NS expansions are performed on both sides 
of the datum course in units of discrete angles ∆θ to form 
2NS+1 movement directions, that is, 2NS+1 reachable way- 
points. The computational complexity is o(K·M·(2NS+1)2). 
In addition, ships may encounter dangerous areas during 
navigation. Therefore, it is necessary to avoid island reef 
areas, restricted areas, and sea areas where relevant mete-
orological parameters are beyond the limits of the ship 
tolerance. Then, the reachable waypoints in the forbidden 
area are deleted to reduce computational complexity. Fi-
nally, among the remaining waypoints, an optimal way-
point B is selected to replace the current point A accord-
ing to the state transition probability. The cycle is re-
peated until ants complete the route search, and then the 
optimization objective function value is calculated. 

After the completion of one iteration, the obtained so-
lutions are ranked according to the Pareto dominance 
relation, and the rank of individuals is divided. Then, the 
population is sorted; the non-dominated individuals with 
high ranks are selected to obtain a new solution set after 
crossover, recombination, and mutation operations. The 

new solution set is passed on to the next generation, which 
continues until the maximum number of iterations is 
reached. After all iterations are completed, the output is 
the Pareto optimal route set, and the route optimization 
simulation map and the Pareto frontier are drawn. 

The process through which the improved ACO algo-
rithm solves the multi-objective ship weather routing op-
timization problem is illustrated in Fig.5. 

4 Calculation of Ship Fuel Consumption 
In general, there are three common methods for calcu-

lating the fuel consumption of the main engine: the inter-
polation method, formula method, and black-box model 
method. This chapter introduces the three methods, and 
finally, the best method is adopted in this paper to calcu-
late the fuel consumption in ship weather routing. 

4.1 Interpolation Method 
Interpolation is a common method to calculate the fuel 

consumption of ships. According to the ship historical 
navigation data, one can set up the ship speed and fuel 
consumption table and estimate the fuel consumption by 
interpolation. This method is simple to implement and has 
no complex calculation process. However, the fuel con-
sumption values are all estimations; thus, accurate values 
cannot be obtained. 

4.2 Formula Method 
When the ship is running at a constant speed, the main 

engine of the ship consumes fuel to rotate the propeller. 
The effective thrust of the ship is equal to the total resis-
tance it encounters. Therefore, the fuel consumption is 
determined by the resistance and the propulsion of the 
main engine. Therefore, the core idea of the formula me- 
thod is to use the relationship between the machinery 
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horsepower, effective horsepower, and total resistance to 
determine the ship fuel consumption. 

 

Fig.5 Flowchart of the improved ACO algorithm for solv-
ing the multi-objective problem. 

4.2.1 Power conversion relationship 
The power transmission diagram of the main engine is  

shown in Fig.6, which specifically depicts the gradual con-
version process of the main engine power. 

Since the effective thrust and the total resistance of the 
hull are balanced at a constant speed, the effective power 
of the ship at this time is expressed as follows: 

E SP R v  ,                (14) 

where PE represents the effective horsepower, R repre-
sents the resistance of the ship, and vS represents the ship 
current speed. 

According to the power transfer relationship of the 
main engine, PS can be derived from PE, and then the ship 
fuel consumption in unit time can be obtained: 

S R S P H EP P    ,             (15) 

FOC SF S P  ,               (16) 

where PS represents the machinery horsepower, F repre-
sents the fuel amount used by the ship in unit time, SFOC 
represents the fuel consumption efficiency (kg (kW h)−1). 

4.2.2 Resistance component analysis 
The above section shows that the ship fuel consump-

tion can be obtained when the effective horsepower is 
known, and the effective horsepower is related to the ship 
speed and the total resistance. In general, the total resis-
tance of a running ship can be divided into water resis-
tance Rwater and air resistance Rwind, and water resistance 
can be subdivided into hull resistance Rhull and wave re-
sistance Rwave. To simplify the description, the specific 
expressions of resistance are not presented in this paper. 
Therefore, the expression of total resistance is  

water wind hull wave windR R R R R R     .     (17) 

The formula method is more suitable for theoretical 
calculations but not for solving the actual fuel consump-
tion of ships. It contains too many unknown variables, 
most of which are related to the ship’s own characteristics; 
it is difficult to obtain these parameters. Moreover, the 
calculation process of the formula method is too complex 
and tedious; thus, this method is infrequently used to 
study practical problems. 

4.3 Black-Box Model of Fuel Consumption 
The black-box model is a mathematical model of the 

experimental object constructed by input and output ex-
perimental data. Based on the study of the model system 

 

Fig. 6 Power transmission diagram of main engine. 
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performance, the future trend of the experimental object 
can be predicted. The modeling process of the black-box 
model is essentially the continuous optimization of model 
parameters. Assuming that there is sufficient ship naviga-
tion data, a black-box model of the ship fuel consumption 
can be established. A large and effective historical ship 
navigation data set is crucial for building an accurate fuel 
consumption model. 

The data used in this paper to build the black-box 
model were collected from a domestic ferry, MS Smyril, 
in the Faroe Islands, and the ferry was also used as a test 
vessel for multi-objective weather routing optimization 
simulation experiments. The ship belongs to the Strand-
faraskip Landsins Transportation Company and makes a 
daily round trip between Torshavn and Suduroy; each trip 
lasts approximately 2 hours one way. The main scale pa-
rameters of the ferry are presented in Table 1 (Petersen, 
2011). 

Table 1 Detailed parameters of test ship 

  Parameter  Value 

Tonnage 12650 GT 
Length 135.0 m 
Beam 22.7 m 
Draught 5.6 m 
Speed 21.0 kn 
Host power 4×3360 kW 
Auxiliary power 4×515 kW 
IMO number 9275218 

 
The construction of the fuel consumption black-box 

model includes two parts: the preprocessing of the ship 
navigation data and the construction of the neural network 
model. The following two parts are described in detail. 

4.3.1 Data preprocessing 
Various kinds of sensors were installed onboard the 

ferry to collect and record ship navigation data. The ferry 
company recorded and published data on all voyages from 
February to April 2010.  

Furthermore, owing to the great uncertainty of the en-
vironment in which the data were collected, the obtained 
original data had defects and could not be directly applied 
to the training of the neural network model. Therefore, 
before the use of the collected data to build the fuel con-
sumption black-box model, they were processed to ensure 
a uniform data format of each measurement. 

1) Fuel volume flow rate and voyage speed 
The fuel flow measurement period was 1 s, and the speed 

measurement period was 3 s. To ensure the reliability of 
the data, the initial navigation data was first screened; that 
is, the voyages whose flight time was too short or too 
long were removed from the initial sample. Since the trip 
duration was approximately 2 h, the navigation data with 
sailing times between 5000 and 8000 s were used. A cer-
tain voyage was randomly selected from the screened data, 
and the changes in the fuel flow and speed of the ship 
during the voyage were plotted, as shown in Fig.7 and 
Fig.8. 

 

Fig.7 Time-varying curve of main engine fuel consumption 
rate. 

 

Fig.8 Ship speed variation curve during the sailing cycle. 

2) Wind direction and wind speed 
The sampling period of wind direction and wind speed 

was 2 s. To unify the data format, the wind direction data 
and the wind speed data were processed into two vertical 
velocity components, as shown in Fig.9. 

The two wind speed components can be calculated by 
the actual wind speed and the relative wind direction, as 
shown in the following formulas: 

head wind windcosV V   ,            (18) 

cross wind windsinV V   ,            (19) 

where Vwind is the wind speed, θwind is the relative wind 
direction angle, Vhead is forward wind speed, and Vcross is 
the lateral wind speed. 
  Since the sampling period of each measurement data is 
different, it is not guaranteed that each data point has a 
corresponding value at a certain moment. Therefore, be- 

 

Fig.9 Wind speed decomposition diagram. 



ZHANG et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2021 20: 45-55 

 

52 

fore the training of the network model parameters, the 
eigenvalue extraction of the data is required. First, the 
discrete intercept time was determined; the screened ef-
fective range was divided into several flight segments in 
discrete time units. Then, the average value of various 
data in each time period was calculated as the characteris-
tic value. This way, the formats of model input data and 
output data were unified. 

4.3.2 Construction of artificial neural network 
After the preprocessing of the ship historical navigation 

data, the black-box model of fuel consumption was built 
based on the ANN. The preprocessed navigation data were 
used to train the model parameters, and the trained black- 

box model was used to predict the ship future fuel con-
sumption. 

An ANN is a mathematical tool (Harris and Yann, 1992) 
that mimics the working characteristics of human brain 
neurons and carries out distributed parallel processing of 
data; it is very suitable for the construction of black-box 
models. The structure of an ANN model includes an input 
layer, an output layer, and many hidden layers. In this 
paper, a feedforward backpropagation (BP) ANN with a 
hidden layer is adopted for constructing a fuel consump-
tion black-box model. The BP ANN was proposed by 
Rumelhart and McClelland in 1986 and is one of the most 
widely used networks. 

As shown in Fig.10, the black-box model is constructed 
by the BP ANN with a three-layer network structure. Ex-
cessive input data can complicate the analysis of the model, 
and some of the insignificant inputs may also bias the 
final result. Therefore, properly selecting the input layer 
variables of the model is crucial. In this paper, the fuel 
consumption of the ship is taken as the output layer vari-
able of the model, while the eigenvalues of the navigation 
speed, heading wind speed, lateral wind speed, significant 
wave height, and the encounter angles of swell and wave 
directions are taken as the input values of the model. 

 

Fig.10 Fuel consumption black-box model diagram. 

4.3.3 Model training and testing 
The preprocessed ship navigation data were divided into 

two sets: a training data set and a test data set, both of 
which contain input variables and outputs. The training set 
was used to train the parameters of the black-box model, 
while the test set was used to detect the errors of the model. 
The black-box model training error function is set as shown 
below: 

 2s oloss y y i  ,             (20) 

where loss is the error function value, ys is the actual 

measured fuel consumption, and yo is the model output 
fuel consumption. 

In the parameters training process, the error function 
value of the black-box model drops rapidly and is finally 
controlled at approximately 0.0021; the error function curve 
is shown in Fig.11. 

 

Fig.11 Error function value curve of the black-box model. 

The black-box model method can build the unique fuel 
consumption model of the corresponding ship according 
to different ship navigation data. Compared with the in-
terpolation method and the formula method, the black- 

box model method has better accuracy and applicability 
and is easier to operate. In addition, the accuracy of the 
model is directly proportional to the input amount of the 
model and the amount of training data. The larger the 
amount of data, the better the model can combine real- 

time meteorological information and provide a fuel con-
sumption value closer to the actual navigation conditions. 
Therefore, the black-box model method is adopted in this 
paper as the calculation method of fuel consumption in 
ship weather routing. 

5 Analysis of Simulation Results 
Generally, in multi-objective optimization problems, 

several optimization objectives are often conflicting, and 
the optimum values cannot be simultaneously achieved. 
Therefore, in solving multi-objective problems, the Pareto 
dominance relation is often used to compare the qualities 
of several solutions. For a feasible solution x of a multi- 

objective problem, if there is no other feasible solution y 
so that F(y) dominates F(x), then x is called the Pareto 
optimal solution of the problem. The Pareto optimal solu-
tion is not unique, but multiple solutions are possible. All 
Pareto non-dominated solutions form the Pareto optimal 
solution set, and the surface formed by the optimal solu-
tions is called the Pareto front surface. In other words, 
there is no better solution than the individual performance 
corresponding to the Pareto optimal solution in the feasi-
ble solution set, and there is no difference between Pareto 
optimal solutions. Since any solution in the Pareto opti-
mal solution set can be the optimal solution, designers can 
design according to their own choices and the goal. 
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The multi-objective ship weather routing mentioned in 
this paper refers to balancing the relationship between the 
sailing time and fuel consumption on the premise of en-
suring the ship navigation safety. The selected simulation 
object is the ferry Smyril, and the ship parameters are 
presented in Table 1. In the simulation experiment, the 
optimal route was computed for departure S (62˚W, 44˚N) 
and arrival E (13˚W, 28˚N) points. The length of the great 
circle between the points S and E was 2523.41 nautical 
miles. The speed of the experimental ship was 15 kn in 
calm water. The ship was required to leave the departure 
port at 00:00 March 7, 2016, and the weather forecast 
data from ECMWF were updated every 6 h. Combined 
with the ship speed in still water, the step length of each 

ant colony algorithm could be estimated. In addition, to 
ensure the ship navigation safety, the sea areas where the 
wave height exceeded 5 m or the wind speed exceeded 16 

m s−1 were defined as dangerous areas, and navigation 
was prohibited in these areas. As shown in Fig.12, the 
ship navigation position of the ship was selected four 
times during a simulated route on March 7, 2016, with the 
corresponding wind and wave information. The figure 
shows the diagram of the wind and wave alarm area. The 
light and dark color areas represent the dangerous area with 
wind speed greater than 16 m s−1 and wave higher than 5 

m, respectively. The figure shows that ships can timely 
avoid the dangerous areas encountered during navigation, 
thus ensuring safe navigation.

 

Fig.12 Real-time position and weather information of ship. 

During the voyage, since the optimized route is discre-
tized in units of fixed navigation steps, the ship sailing 
time is composed of several discrete time intervals ∆t, 
and the ship fuel consumption rate Sfoc per unit time is 
calculated by the fuel consumption black-box model. 
Therefore, the fuel consumption F can be obtained by the 
following formula: 

focF S t  .                (21) 

To prove the effectiveness of the improved ACO algo-
rithm in solving the multi-target ship weather routing opti-
mization problem, a multi-objective route optimization 
simulation was separately performed using three ACO 
algorithms of different optimization degrees, and the re-
sults were compared. The first algorithm is the traditional 
ACO algorithm without any improvement; the second is 
the ACO algorithm with improved basic parameters; the 
third is the improved ACO algorithm with added genetic 
operators.  

a) As mentioned earlier, when the traditional ACO al-
gorithm solved the route optimization problem, the ob-
tained planned route was not smooth, as shown in Fig.13. 

The traditional ACO algorithm is not suitable for solving 
multi-objective optimization problems. On the same grid 
map, regardless of the algorithm number of runs, the same 
non-dominated solutions are always obtained. Fig.14 shows 
the Pareto optimal frontier drawn by the traditional ACO 
algorithm for solving multi-objective problems, where the 
abscissa is the voyage time and the ordinate is the fuel 
consumption. The number of non- dominated solutions is 
too small, and the solution quality is not high. 

b) For the ACO algorithm with improved basic para- 
meters, the shortest time route obtained is shown in Fig.15. 
The shortest time route could be timely corrected route 
after the dangerous area had been avoided, and the second 
half of the route was basically consistent with the great 
circle route. The total range of the great circle route was 
2523.41 nautical miles, the sailing time was 201.43 h, and 
the average speed was 12.78 kn. The total range of the 
ship weather route was 2560.84 nautical miles, which was 
37.43 nautical miles more than the Dayan route. However, 
the total voyage time was 192.75 h, which is shortened by 
nearly 9 h, and the average speed was approximately 13.35 

kn. In other words, under the dynamic weather conditions, 
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the improved ACO algorithm can find an optimal route 
from the departure port to the destination port according 
to the specific requirements.  

The Pareto optimal front obtained is shown in Fig.16, 
and the non-dominated solutions are significantly better 
in quantity and quality than those obtained by the first 
algorithm. 

c) The third group of multi-objective route optimiza-
tion experiments uses the improved ACO algorithm with 
added evolutionary operators. When searching for route 
points, the algorithm calculates the function values of the  

 
Fig.13 Comparison of simulation results between two al-
gorithms on route smoothness. 

 

Fig.14 Pareto optimal frontier obtained by the traditional 
ACO algorithm. 

 
Fig.15 Shortest time route obtained by the local improved 
ACO algorithm. 

two optimization objectives (sailing time and fuel con-
sumption). For each iteration, the algorithm sorts the ob-
tained solutions according to the Pareto dominance rela-
tion to select the Pareto optimal solutions. Then, the Pareto 
optimal solutions are passed on to the next itera- tion after 
a series of genetic operators are applied, thus repeating 
the process. 

Finally, once all iterations are completed, the set of all 
Pareto optimal routes is obtained as shown in Fig.17, and 
the corresponding Pareto front is shown in Fig.18. Com-
pared with the traditional ACO algorithm, the improved 
ACO algorithm designed a smoother route, which can be 
used for long-distance path planning. The algorithm gen- 

 

Fig.16 Pareto optimal frontier obtained by the local im-
proved ACO algorithm. 

 
Fig.17 The Pareto optimal set of routes. 

 

Fig.18 The Pareto optimal frontier obtained by the im-
proved ACO algorithm. 
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erated more Pareto optimal solutions, and the distribution 
of the Pareto frontier formed by the optimal solutions in 
space was also relatively uniform, which accords with the 
expected result. Therefore, the improved ACO algorithm 
has great advantages over the traditional ACO algorithm 
in solving the multi-objective ship route optimization 
problem, both in the number of non-dominated solutions 
and the distribution of the final Pareto front. 

6 Summary 
The optimal weather routing of ships is of great signifi-

cance for maritime transportation and has great economic 
and practical value. In recent years, the role and status of 
meteorological navigation in ship maritime navigation have 
become increasingly prominent. Additionally, the role and 
status of weather routing in the marine navigation of ships 
have become increasingly prominent. Therefore, many 
algorithms for ship weather routing optimization have 
been proposed, but most classical algorithms are only for 
single-objective optimization problems. Considering the 
ship navigation safety, fuel consumption, and sailing time, 
this paper proposes an intelligent and effective multi- tar-
get ship weather routing optimization method based on an 
improved ant colony algorithm to ensure the safe, eco-
nomical, and punctual navigation of ships at sea. 

However, the proposed algorithm features some short-
comings. First, in the process of environmental modeling, 
the accuracy of the used meteorological data is not very 
high, and the obstacles involved are not comprehensive. 
Second, when calculating the fuel consumption of a ship, 
the algorithm considers only the fuel consumption of the 
ship main engine during navigation; the fuel consumption 
of the auxiliary engine on board and the consumption 
during the ship navigation in and out of the port are not 
considered. Third, when calculating the ship arrival time, 
the algorithm does not consider the waiting time spent in 
the process of entering and leaving the port. Thus, more 
studies are needed to improve the ACO algorithm to alle-
viate the shortcomings and prepare the algorithm for prac-
tical applications. 
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