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Abstract  The present article deals with multi-waves and breathers solution of the (2+1)-dimensional variable-coefficient Caudrey- 

Dodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method. The obtained solutions for solving the current 
equation represent some localized waves including soliton, solitary wave solutions, periodic and cross-kink solutions in which have 
been investigated by the approach of the bilinear method. Mainly, by choosing specific parameter constraints in the multi-waves and 
breathers, all cases the periodic and cross-kink solutions can be captured from the 1- and 2-soliton. The obtained solutions are extended 
with numerical simulation to analyze graphically, which results in 1- and 2-soliton solutions and also periodic and cross-kink solutions 
profiles. That will be extensively used to report many attractive physical phenomena in the fields of acoustics, heat transfer, fluid 
dynamics, classical mechanics, and so on. We have shown that the assigned method is further general, efficient, straightforward, and 
powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics 
and engineering. We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena. 

Key words  variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation; Hirota bilinear operator method; soliton; multi- 
waves and breathers; periodic and cross-kink; solitray wave solutions 

 

1 Introduction 
Partial differential equations (PDEs) play important roles 

in the numerous areas such as biology, physics, chemistry, 
fluid mechanics and many engineering and sciences appli- 
cations among others (Dai et al., 2008; Dehghan et al., 2011; 
Ma and Zhu, 2012; Manafian and Lakestani, 2016a; Forou-
tan et al., 2018). Furthermore, the approaches to solving 
these types of equations alongside nonlinear PDEs ranging 
from analytical to numerical methods are very important 
in many engineering and sciences applications. Some of 
these methods include finding the exact solutions by using 
the special techniques in which can be manifested to new 
works with the vigorous references (Dehghan and Mana- 
fian, 2009; Wang et al., 2010; Manafian, 2015; Baskonus 
and Bulut, 2016; Manafian and Lakestani, 2016b; Tang   
et al., 2016; Zhou et al., 2016; Gao, 2017; Wang and Liu, 
2018; Chen et al., 2019a). 

The nonlinear (2+1)-dimensional Caudrey-Dodd-Gibbon- 
Kotera-Sawada equation is given as  

 
* Corresponding author. E-mail: j_manafianheris@tabrizu.ac.ir 

   236 15( ) 45 5t xxxxx xx x x xxyu u uu u u u      

1 115 15 5 = 0y x x y x yyuu u u u     ,     (1) 

in which = ( , , )u u x y t , and 
1 = ( )dx x   which was first pro- 

posed by Konpelchenko and Dubrovsky by the help of the 
inverse scattering transform method (Konopelchenko and 
Dubrovsky, 1984). The nonlinear (2+1)-dimensional Caud- 
rey-Dodd-Gibbon-Kotera-Sawada equation has been inves- 
tigated for finding the exact solutions in which can be 
pointed to vigorus works containing the algebraic method 
with symbolic computation (Yang, 2006), the solitary 
waves and lump waves with interaction phenomena by the 
way of vector notations (Peng et al., 2018), the quasi- peri- 
odic solutions by the Riemann theta functions (Cao et al., 
1999; Geng et al., 2019), some novel group invariant solu- 
tions by utilizing the classical symmetry reduction method 
(Cheng et al., 2019), and in continue we take the (2+1)- 

dimensional variable coefficient Caudrey-Dodd-Gibbon- 

Kotera-Sawada (VC CDGKS) equation which reads 

  2
1 2 3 4 5t xxxxx x xx xxx x xxyu b u b u u b uu b u u b u       
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1 1
6 7 8 9 = 0x yy x x y yb u b u u b uu b u      ,   (2) 

in which bj = bj(t) (j = 1, 2, ···, 9) are functions with respect 
to t. Cheng et al. (2014) obtained the bilinear form, bilinear 
BT, Lax pair, and infinite conservation law for Eq. (2). 
Moreover, the VC CDGKS equation with essential 
applications in the incompressible fluid has been investi- 
gated by Wang et al. (2019a), and new non-traveling lump 
solutions, their interaction solutions, and mixed lump-kink 
solutions for the considered equation have been achieved 
to explain relative physics or expect some new physical 
phenomena.  

For getting to the lump solutions and their interactions 
authors have conjugated sufficient time to search the exact 
rational soliton solutions, for example, the Kadomtsev- 

Petviashvili (KP) equation (Ma, 2015), the B-Kadomtsev- 
Petviashvili equation (Yang and Ma, 2016), the reduced 
p-gKP and p-gbKP equations (Ma et al., 2016), the (2+1)- 

dimensional KdV equation (Wang, 2016), the (2+1)-dimen- 
sional generalized fifth-order KdV equation (Lü et al., 
2018), the (2+1)-dimensional Burger equation (Wang et al., 
2016), the nonlinear evolution equations (Tang et al., 2016), 
the generalized (3+1)-dimensional Shallow water-like 
equation (Zhang et al., 2017), (2+1)-dimensional Sawada- 
Kotera equation (Huang and Chen, 2017), and (2+1)-di- 
mensional bSK equation (Lu and Bilige, 2017; Manafian 
and Lakestani, 2019). Various types of work for finding 
the periodic solitary wave solutions on the (2+1)- dimen- 
sional extended Jimbo-Miwa equations (Manafian, 2018), 
the interaction between lump and other kinds of solitary, 
periodic and kink solitons for the (2+1)- dimensional 
Breaking Soliton equation (Manafian et al., 2019), the 
lump and interaction between different types of those on 
the variable-coefficient Kadomtsev-Petviashvili equation 
(Ilhan et al., 2019), and periodic type and periodic cross- 

kink wave solutions (Ilhan and Manafian, 2019) are achi- 
eved through the Hirota bilinear operator.  

Due to simplifications obtained by Cheng et al. (2019) 
as the below form, we have  

1 1
2 3 9 4 92

0 0

2 1 1
5 1 1 6 1 1 7 8 9

0

15 45
= = exp( d ),  = exp(2 d )

15
= 5 ,  = 5 ,  = = exp( d )

b b
b b b t b b t

b
b b b b b b b t

 
 






 

 


, (3) 

in which λ0 and λ1 are the free constants. Through the re- 
lation between u and f, one can get to the following con- 
version as 

9 ( )d

0= 2 e (ln )
b t t

xxu f
 .            (4) 

Then, by using Eq. (4) in Eq. (2), the following bilinear 
model concludes  

 6 3 2 2
1 1 1 1 15 5 = 0x t x x y yD D b D b D D b D f f     .   (5) 

Suppose the Hirota derivatives in terms of the functions f 
and g can be written as  

4 4

=1 =1
=

= ( ) ( )
i

i
ji i ii i

j j

D f g f j g j
j j







       
  ,   (6) 

where the vectors j = (j1, j2, j3, j4) = (x, y, z, t), j' = (j'1, j'2, j'3, 
j'4) = (x', y', z', t') and β1, β2, β3, β4 are the arbitrary non- 
negative integers, and its corresponding bilinear formal- 
ism equals as below form  

  2( )xt x tff f f   

  2
12 ( 6 15 10 )xxxxxx x xxxxx xx xxxx xxxb ff f f f f f     

  1 110 ( 3 3 )xxxy y xxx xxy x xx xyb ff f f f f f f      

2 2
1 110 ( ) = 0yy yb ff f  .                        (7) 

The soliton solutions to a few (3+1)-dimensional gener- 
alized nonlinear integrable equations have been construct- 
ed. Recently, a special kind of reductions of soliton so- 
lutions to rational functions that are actively studying is 
lump solutions to nonlinear partial differential equations 
by Ma and Zhou (2018), their interactions with solitons to 
Hirota-Satsuma-Ito equation in (2+1)-dimensions by Ma 
(2019a), and even for linear PDEs by the same author (Ma, 
2019b). Also, Ma (2020) presented the inverse scattering 
transforms and soliton solutions for nonlocal reverse-time 
nonlinear Schrodinger equations. The same author offered 
an application of the nonlinear steepest descent method to 
a three-component coupled mKdV system associated with 
a 4×4 matrix spectral problem (Ma, 2019b). Nowadays 
NLPDEs have been creating a significant opportunity for 
the researchers to explain the tangible incidents. Therefore, 
mathematicians and scientists are working tirelessly to 
bring out different kinds of soliton solutions. As a result, 
in the past few years several effective, rising and realistic 
methods have been initiated and dilated to extract closed- 

form solutions to the NLPDEs, videlicet, observational/ 

experimental consideration on certain (2+1)-dimensional 
waves in the cosmic/laboratory dusty plasmas (Gao, 2019), 
a vector nonlinear Schrodinger equation in a birefringent 
optical fiber (Yin et al., 2020), dark-bright semi-rational 
solitons and breathers for a higher-order coupled nonlinear 
Schrodinger system (Du et al., 2020), conservation laws 
of a (2+1)-dimensional nonlinear Schrodinger equation 
(Du et al., 2019), rogue waves, and modulation instability 
for the coherently coupled nonlinear Schrodinger equa-    
tions (Chen et al., 2019b), the higher-order Boussinesq- 

Burgers system, auto- and non-auto-Bäcklund transfor-   
mations (Gao et al., 2020), lump wave- soliton interactions 
for a (3+1)-dimensional generalized Kadomtsev- Petvia-     
shvili equation (Hu et al., 2019), rogue waves for a (2+1)- 

dimensional reduced Yu-Toda-Sasa- Fukuyama equation 
(Wang et al., 2019b), and interactions of the couple Fokas- 

Lenells system (Zhang et al., 2020). We clearly confirm 
that others’ published papers do not cover theirs and made 
work is really new. 

Our purpose here is to discover exact solutions of the 
VC CDGKS equation under consideration of the Hirota 
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bilinear method for getting the multi-waves, breathers 
solution, periodic solution, cross-kink solution, and new 
solitary wave solutions in which can be captured from the 
1- and 2-soliton. Discussion about the nonlinear VC 
CDGKS equation and the Hirota bilinear method is given. 
In the continuation, we will offer the graphical illustrations 
of some solutions of the considered model. After that, we 
will deal with the probe of solutions and we will finish by 
a conclusion.  

 

2 New Multi-Waves Solutions for VC 
CDGKS Equation 
Here, we will compose multi-waves solutions of the Eq. 

(2), we choose the three waves hypothesis which can be 
discovered through employing Hirota operator (Geng and 
Ma, 2007). The solution can be expressed in the below 
form as:  

1 1 2 2 3 3

1 1 2 3 4 2 1 2 3 4 3 1 2 3 4

=

cos( ),  cos( ),  cos( )

f q H q H q H

H a x a y a t a H b x b y b t b H c x c y c t c

 
            

, 

9
2 2 2 22( )d
1 1 1 1 2 2 1 3 3 1 1 1 1 2 2 1 3 3

0 2 2

( )
= 2 e ln( ) = 2

b t t a q H b q H c q H a q H b q H c q H
u f

fx f
         

   

 ,          (8) 

where ai, bi, ci, qj, i = 1, ···, 4, j = 1, 2, 3 are the free 
parameters in which are to find later. Plugging relations 
(8) into the Eq. (7) and then collecting the coefficients, 

we get to system of the nonlinear algebraic equations. 
Solving the obtained equations we achieve to obtained 

cases:  

3 3
5 51 1

1 1 2 3 1 1 4 4 1 1 2 3 1 1 4 4
1 1

3
51

1 1 2 3 1 1 4 4 1 1 2 2 3 3
1

= ,  = ,  =9 ,  = ,  = ,  = ,  =9 ,  =

= ,  = ,  = 9 ,  = ,  = ,  = ,  =                   

a b
a a a a a a a b b b b b b b

c
c c c c c c c q q q q q q

 
 









 


.                  (9)

Inserting Eq. (9) into Eq. (8), we get a multi-wave solu- tion of the Eq. (2) as follows: 

9
2 2 2 22( )d
1 1 1 1 2 2 1 3 3 1 1 1 1 2 2 1 3 3

2 0 2 2

1 1 2 2 3 3

( )
= 2 e ln( ) = 2

=

b t t a q H b q H c q H a q H b q H c q H
u f

fx f

f q H q H q H

   
        

   
  


,      (10) 

3 3 3
5 5 51 1 1

1 1 1 1 1 4 2 2 1 1 1 4 3 3 1 1 1 4
1 1 1

= cosh 9 ,  = cos 9 ,  = cosh 9
a b c

H q a x y a t a H q b x y b t b H q c x y c t c  
  

     
                  

     
,  

where 1 1= sinh( )H q  , 3 1= sinh( )H q  , a1, a4, b1, b4, c1, 
c4, q1, q2 and q3 are arbitrary values. 

Moreover, we obtained five sets of solutions as men- 
tioned above, we neglect to bring those categories of solu- 
tions (see Fig.1). 

3 New Breather Solutions for VC CDGKS 
Equation 
Here, we will compose breather wave solutions of the  

 

Fig.1 Diagram of multi-waves Eq. (10) using values a1 = 0.6, a4 = 1, b1 = 0.5, b4 = 1, c1 = 1.2, c4 = 1, q1 = 2, q2 = 0.5, q3 = 2, δ1 = 

0.5, λ0 = −1, λ1 = 1, b9(t) = cos(t), y = −10, and (a) 3D plot, (b) density plot, and (c) 2D plot with (red x = −1, blue x = 0, and 
green x = 1). 
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Eq. (2), we choose the following function that can be expressed in the below form as: 

1 1 2 2 3 3

1 1 2 3 4 2 1 2 3 4 3 1 2 3 4

=

exp( ),  cos( ),  exp( )

f q H q H q H

H a x a y a t a H b x b y b t b H a x a y a t a

 
             

, 

9 9
2 2 2 22( )d ( )d
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0 02 2
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= 2 e ln( ) = 2 e

b t t b t t a q H b q H a q H a q H b q H a q H
u f

fx f
          

   

  ,     (11)

where ai, bi, qj, i = 1, ···, 4, j = 1, 2, 3 are the free para- 
meters in which are to find later. Plugging Eq. (11) into 
the Eq. (7) and then collecting the coefficients, we get to 

system of the nonlinear algebraic equations. 
Solving the obtained equations we achieve to obtained 

cases:
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Inserting Eq. (12) into Eq. (11), we get a breather wave solution of the Eq. (2) as follows: 

9 9
2 2 2 22( )d ( )d
1 1 1 1 2 2 1 3 3 1 1 1 1 2 2 1 3 3

2 0 02 2
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where 2 =sin( )H   , 1 3= = exp( )H H   , a4, b1, b4, q2 and q3 are the arbitrary values (see Fig.2). 
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Fig.2 Diagram of breather wave Eq. (13) using values a1 = 1, a2 = 1.2, a4 = 2, b1 = 1.5, b4 = 1, q2 = 1, q3 = 2, δ1 = 0.5, λ0 = −1, 
λ1 = 1, b9(t) = cos(t), y = −10, and (a) 3D plot, (b) density plot, and (c) 2D plot with (red x = −1, blue x = 0, and green x = 1).  

4 New Instanton Wave Solution for VC 
CDGKS Equation 
Here, we will compose a special rogue-wave that is gen- 

erated by cutting the lump wave through a pair of reso- 
nance stripe soliton waves of the Eq. (2), we choose the 
following function that can be expressed in the below 

form as:  
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  ,           (14)

where ai, bi, ci (i = 1, ···, 4) and q1, are the free parameters 
in which are to find later. Plugging Eq. (14) into the Eq. 

(7) and then collecting the coefficients, we get to the 
follow- ing results:
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= ,  = ,  = ,  =
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= ,  = ,  =
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ba b a b
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




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     
 
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4 44

1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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2 2 4 4
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1
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2
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b b

c a a b b c a a b a b a b b
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q a b a b
c













      



  


.    (15) 

Inserting Eq. (15) into Eq. (14), we get a instanton wave solution of the Eq. (2) as follows:  

9
2 2 2 2( )d
1 1 1 1 3 1 1 1 2 1 1 3

3 0 2

2 2 2 2 4 4
1 2 1 1 1 1 32

1

2 2 (2 2 )
= 2 e

2
= 6

b t t a b c q H a H b H c q H
u

f f

f H H a b a b H
c

 
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  
   
    



,                    (16) 
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3 3 2 45 7 28 14 20
=

16 256

= cosh
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




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


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

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where 3 = sinh( )H   , a1, a4, b1, b4, and c4 are the arbitrary values (see Fig.3). 

 

Fig.3 Diagram of instanton wave Eq. (16) using values b1 = 1.5, b4 = 1, c1 = 0.5, c2 = 0.2, c4 = 1, δ1 = 0.5, λ0 = −1, λ1 = 1, 
b9(t) = cos(t), q1 = 2, y = −4, and (a) 3D plot, (b) density plot, and (c) 2D plot with (red x = −1, blue x = 0, and green 
x = 1). 

5 Novel Periodic Wave Solutions of the 
VC CDGKS Equation 
To get for the periodic wave solutions of the VC CDGKS 

equation, we would like to commence from a function as 
below form  

1 2 3 4

1 2 3 4

1 2 3 4 4

1 1

2

3 2 1 2 3 4

4 3 1 2 3 4

=

= e

= e

= cos( )
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H
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H k c x c y c t c

  

   

   




   
   

, 

  
9 9

2 2 2 2 22( )d ( )d
1 1 1 2 1 3 1 4 1 1 1 2 1 3 1 4

0 02 2

( )
= 2 e ln( ) = 2 e

b t t b t t a H a H b H c H a H a H b H c H
u f

fx f
           

   

  ,     (17) 

where ai, bi, ci, kj (i = 1, ···, 4; j = 1, 2, 3) are the free 
parameters in which are to find later. Plugging Eq. (17) 
into the Eq. (7) and then collecting the coefficients, we 

get to system of the nonlinear algebraic equations. 
Solving the obtained equations we achieve to obtained 

cases: 

   

   

2 2
1 1 1 4 2 2 4

1 1 2 3 1 1 1 1 1 4 4
1

1 1 2 2 3 3 4 4

2 2
1 1 1 4 2 2 4

1 1 2 3 1 1 1 1 1 1 4 4
1

4 2
1 3

1 2 3 3 4 44
1

3 9
= ,  = ,  = 10 5 ,  =

4 16

= ,  = ,  = ,  =

3 9
= ,  = ,  = 10 5 ,  =

4 16

= ,  = 0,  = ,  =
4

a c a
a a a a a a c c a a

b b b b b b b b

c a a
c c c c c c a c a c c

c k
k k k k k k

a







 
   




 
   





.                 (18) 

Substituting Eq. (18) into Eq. (17), we obtain a periodic solution of the Eq. (2) as follows: 

9
2 2 2 2 2( )d
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 ,              (19) 
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where a1, a4, c1, c4, k1, k3, and k4 are the arbitrary values. 
  Moreover, we obtained twelve sets of solutions as 

mentioned above, we neglect to bring those categories of 
solutions (see Fig.4). 

 

Fig.4 Diagram of periodic wave (19) using values a1 = 0.5, a4 = 1, c1 = 1.5, c4 = 1, δ1 = 0.5, λ0 = −1, λ1 = 1, b9(t) = cos(t), 
k1 = 1, k3 = 1.5, k4 = 2, y = −4, and (a) 3D plot, (b) density plot, and (c) 2D plot with (red x = −10, blue x = 0, and green x 

= 10). 

6 Novel Cross-Kink Wave Solutions of    
the VC CDGKS Equation 
To get for the cross-kink wave solutions of the VC 

CDGKS equation, we would like to commence from a 
function as below form  

1 2 3 4

1 2 3 4

1 2 3 4 4

1 1

2

3 2 1 2 3 4

4 3 1 2 3 4

=

= e

= e
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9 9
2 2 2 2 22( )d ( )d
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= 2 e ln( ) = 2 e

b t t b t t a H a H b H c H a H a H b H c H
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fx f
           

   

  ,      (20) 

where ai, bi, ci, kj (i = 1, ···, 4; j = 1, 2, 3) are the free 
parameters in which are to find later. Plugging Eq. (20) 
into the Eq. (7) and then collecting the coefficients, we 

get to system of the nonlinear algebraic equations. 
Solving the obtained equations we achieve to obtained 

cases: 

3 3
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1 1 2 3 1 1 4 4 2 3 1 1 4 4
1 1

3
51
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1
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 



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

 


.                    (21) 

Plugging Eq. (21) into relations (20), we get a cross- kink wave solution of the Eq. (2) as follows: 

9
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where a1, a4, b1, b4, c1, c4, k1, k2, k3 and k4 are the arbitrary values. 
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7 Novel Solitary Wave Solutions of the    
VC CDGKS Equation 
To get for the new solitary wave solutions of the VC 

CDGKS equation, we would like to commence from a 
function as below form  

1 2 3 4

1 2 3 4

1 2 3 4
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                                                  

 ,  (23) 

where ai, bi, ci, kj (i = 1, ···, 4; j = 1, 2, 3) are the free 
parameters in which are to find later. Plugging Eq. (23) 
into the Eq. (7) and then collecting the coefficients, we 
get to the following results case: 

1 1 2 2 3 3 4 4

1 2 3 3 4 4

1 2 3 3 4 4

1 2 2 3 3

= , = , = , =

= 0, = 0, = , =
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


.        (24) 

Appending Eq. (24) into relations (23), we get a cross- 

kink wave solution of the Eq. (2) as follows: 

9
2 2 2( )d
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1 0 2

2 3 4

= 2 e
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b t t a H a H
u

f f

f H H H
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H k b t b

H k c t c

   

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, 

where a1, a2, a3, a4, b3, b4, c3, c4, k2 and k3 are the arbitrary 
values.  

We obtained twelve sets of solutions as mentioned 
above, we neglect to bring those categories of solutions. 
The three-dimensional dynamic graphs of the wave and cor- 
responding density plots, contour plots, and two-dimen- 
sional plots were successfully depicted in Figs.1–4 with 
the help of the Maple. We can see that the exponential 
function, the sine function, and the hyperbolic sine func-  
tion react with each other and move forward. Due to 
analyzing the dynamics properties briefly, we would like 
to discuss the evolution characteristic. 

8 Conclusions 
Through the symbolic calculation and employing the 

Hirota bilinear operator, we have discovered some novel 
analytic solutions for the VC CDGKS equation. As a con- 

sequence, some new solutions, which include the new 
multi-wave, breathers, periodic, cross-kink wave solutions 
were catched. Through of Maple, the evolution phenome-  
non of these waves is seen in Figs.1–4, respectively. The 
obtained solutions for solving the VC CDGKS equation 
shown some localized waves such as soliton, periodic and 
cross-kink solutions in which have been investigated by 
the approach of the bilinear method. Mainly, by choosing 
specific parameter constraints in all cases the two-dimen-  
sion, and three-dimension in solitons can be captured from 
the multi-wave, breathers, periodic, cross-kink wave solu-  
tions. The obtained solutions are extended with numerical 
simulation to analyze graphically, which results in multi- 

wave, breather wave, periodic, cross-kink wave solutions. 
The attained solutions are in broad-ranging form and the 
definite values of the included parameters of the attained 
solutions yield the soliton solutions and help to analyze 
the quantum mechanics, the signal processing waves, the 
meteorology, and biomedical engineering, etc. That will 
be extensively used to report many attractive physical 
phenomena in the fields of acoustics, heat transfer, fluid 
dynamics, classical mechanics, and so on. Moreover, the 
established results have shown that the Hirota bilinear 
method is further general, straightforward, and more 
powerful and helped to examine traveling wave solutions 
of NLPDEs. 
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