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Abstract  This study investigated the cytotoxicity of gemcitabine using the marine ciliate Euplotes vannus as the test organism. The 
median lethal concentrations (LC50 values) were determined using acute toxicity tests within an exposure time of 30 min with 0, 6, 12, 
24, and 48 mg mL−1 gemcitabine. The median inhibition effect (IC50 value) on the growth of the ciliate cells was examined using 
chronic toxicity tests within 5 days (120 h) after exposure for 30 min with 0, 0.7, 3.5, 7, and 14 mg mL−1 gemcitabine. The 30-min LC50 
value was 10.66 mg mL−1. The LC50 values decreased with increasing exposure times and well fitted to the toxicity curve equation LC50 

= 10.93 + 28.4e−0.19t (R2
 = 0.93; P < 0.05, t = exposure time). The IC50 value for growth rates was 7.05 mg mL−1, and the inhibition effect 

on growth rates well fitted to the model equation r% = 0.8681e−0.0782Cgem (r% means growth rate with inhibition by gemcitabine, Cgem 
means concentrations of gemcitabine, R2

 = 0.99 and P < 0.05). The LC50 values of a wide range of gemcitabine concentrations could 
therefore be predicted for any given exposure time. These results suggest that the clinical dose of gemcitabine (20 mg mL−1) was higher 
than the 30-min LC50 value, which was almost the same as the 6-min LC50 value (19.88 mg mL−1) for E. vannus cells. The results also 
demonstrate that E. vannus can be used as a robust test organism for bioassays of chemotherapeutic drugs during short exposure pe-
riods. 
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1 Introduction 
Gemcitabine is a chemotherapeutic drug that kills cells 

during their division process (Zhang et al., 2017). This 
drug is used to kill cancer cells that show  rapid division 
rates. However, it also target several essential cells that can 
divide, e.g., the cells in the skin, scalp, and lining of 
stomach, testes, and bone marrow (Rachel, 2009). There-
fore, gemcitabine has numerous adverse side effects, in-
cluding suppression of bone marrow function; loss of 
white blood cells, platelets, and red blood cells; and 
harming the sperm (Siddall et al., 2017; Zhang et al., 
2017). Nevertheless, although gemcitabine has been used 
clinically via intravenous delivery or direct perfusion, 
there are only a few reports regarding its cytotoxicity 
(Krown, 2011; Dubey et al., 2016; Birhanu et al., 2017; 
Dyawanapelly et al., 2017; Pishvaian and Brody, 2017). 

Ciliated protozoa have been widely used as test organ-
isms in bioassays of chemical drugs as they have several 
advantages such as ease of culture, short generation time, 
and simple developmental stages (Gray and Ventilla, 1973;  
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Dive and Leclerc, 1975; Rogerson, 1983; Moreno-Garrido 
and Canavate, 2001; Xu et al., 2004). Furthermore, as they 
are separated from their environment only by a cell 
membrane, they respond rapidly to changes in their sur-
roundings and are hence used as bioassay tools for as-
sessing cytotoxicity (Dive and Leclerc, 1975; Bearden et al., 
1999; Girling et al., 2000; Herllung-Larsen et al., 2000; 
Seward et al., 2001; Fuma et al., 2003; Xu et al., 2004). 

In this study, the model ciliated protozoan Euplotes 
vannus was used as a test cell to determine the lethal and 
threshold concentrations of gemcitabine. The aims of this 
study were to provide experimental evidence regarding the 
cytotoxicity of gemcitabine and to evaluate the potential of 
E. vannus as a model organism in bioassays of chemical 
drugs. 

2 Materials and Methods 
2.1 Cultivation of E. vannus and Preparation of 

Gemcitabine Solutions 

The marine ciliate E. vannus was obtained from the 
Laboratory of Protozoology, Ocean University of China, 
Qingdao, China, and was identified based on a combina-
tion of morphological and molecular data (Chen and Song, 
2002; Hong et al., 2017). Clonal and mass cultures of E. 
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vannus were grown at 25℃ in sterilized artificial marine 
water comprising 28 g of NaCl, 0.8 g of KCl, 5 g of 
MgCl2·6H2O, and 1.2 g of CaCl2 per 1000 mL of distilled 
water (salinity 28). 

Ammonia stock solutions (salinity 28, temperature 25℃) 
were prepared by adding gemcitabine to artificial marine 
water. Test solutions with different concentrations of gem- 
citabine were prepared by mixing the stock solution with 
artificial marine water in appropriate proportions. 

2.2 Acute Toxicity Test 

For the acute toxicity test, 1 mL of gemcitabine solution 
was added to each well of a 48-well cell culture plate. To 
each well, ten E. vannus cells were added. The acute tox-
icity test was carried out in the dark at 25℃. The 30-min 
experiments were designed as five treatments (including 
one control), with each treatment as three independent 
lines (replicates). The concentrations of gemcitabine for 
the five treatments were 0, 6, 12, 24, and 48 mg mL−1, 
respectively. For each line, the number of dead cells, in-
cluding those unable to swim or creep on the bottom of the 
well, was recorded every 6 min in vivo under a stereomi-
croscope. 

The median lethal concentrations (LC50) for 6, 12, 18, 
24, and 30 min were calculated using the probit-regression 
routine of the program IBM SPSS Statistics version 22.0, 
International Business Corp, USA. The toxicity curve e- 
quation was determined using the program SigmaPlot 12.5, 
Systat Software Inc, USA. 

2.3 Chronic Toxicity Test 

The inhibition effect of gemcitabine on the growth of E. 
vannus was also investigated in 48-well culture plates at 
25℃. To each well, 1 mL of test solution and ten E. vannus 
cells were added. The concentration of bacteria in each 
well was maintained at 108 cells mL−1 by adding Vibrio sp. 
The tests were performed using five different concentra-
tions of gemcitabine, 0, 0.7, 3.5, 7, and 14 mg mL−1, with 
three replicates of each concentration. The ciliate cells in 
each well were enumerated in vivo every 12 h under a 
stereomicroscope for up to 120 h. 

The increase of the number of ciliate cells over the total 
experimental period was evaluated to ascertain whether it 
is fitted to the following logistic model: 

( )
max /[1 e ]a rt

tN N   , 

where Nt, the density of ciliate cells at time t; Nmax, the 
estimated maximum density; r, the growth rate; a, the 
coefficient constant of initial density; and T50, the time to 
50% Nmax. 

All parameters were estimated using the program Sig-
maPlot. Fitness tests were conducted to determine whether 
the growth curve fits to the logistic model at the 0.05 sig-
nificance level (Zhang et al., 2012). 

The median inhibition concentration (IC50) was com-
puted using regression analysis of the relationship between 
the concentration of gemcitabine and the treatment/control 
ratios (r%) of growth rates using SigmaPlot 12.5 (Zhang    

et al., 2012). 

3 Results 
3.1 Acute Toxicity and Toxicity Curves 

Based on the probit-regression analysis of log-dose and 
mortality data at exposure times of 6, 12, 16, 24, and 30 

min, the LC50 values were calculated and are shown in 
Fig.1. The LC50 values decreased with increasing duration 
of exposure. The regression analysis demonstrated that the 
toxicity curve significantly fitted to the following equa-
tion: 

0.19
50 10.93 28.4e tLC   , 

where R2
 = 0.93; P < 0.05, t = exposure time (Fig.1). 

Using this model equation, it is possible to predict LC50 
values of gemcitabine with different concentrations at a 
wide range of exposure times. 

 

 
Fig.1 Toxicity curve of gemcitabine for Euplotes vannus 
up to 30 min of exposure. 

3.2 Inhibition Effect of Gemcitabine on Cell Growth 

The inhibition effect of gemcitabine on the population 
growth of E. vannus for up to 120 h is depicted in Fig.2. 
Regression analyses revealed that the growth curves of the 
four treatments (except 14 mg mL−1) significantly fitted to 
the logistical model equation (R2

 > 0.95; P < 0.05). The data 
pertaining to the treatment with 14 mg mL−1 of gemcitabine 
were omitted due to the absence of growth. 

 

 
Fig.2 Growth curves showing the inhibition effect of 
gemcitabine on individual growth of Euplotes vannus after 
an exposure time of 30 min. 
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Fig.3 Effects of gemcitabine on the maximum cell density (a), initial cell density (b), growth rate (c), and the time to 50% 
maximum cell density (d) of Eulpotes vannus. 

Based on the model equation, the estimated maximum 
density, the initial density, the growth rate, and the time to 
reach 50% of maximum density of the ciliate cells were 
obtained (Fig.3). The maximum density values of gem-
citabine with concentrations of 3.5 and 7.0 mg mL−1 were 
significantly lower than those of the control (P < 0.05) 
(Fig.3a), whereas in terms of growth rate, the values at all 
gemcitabine treatments were significantly lower than those 
of the control (P < 0.05) (Figs.3b and c). 

3.3 Median Inhibition Concentration on Growth Rate 

The relationship between gemcitabine concentration 
and the treatment/control ratios (r%) of growth rates is 
depicted in Fig.4. The regression analysis showed that the 

 

 
Fig.4 Relationships between dose of gemcitabine and 
growth rates of Eulpotes vannus. 

dose-r% significantly fitted to the following equation: 

gem0.0782
% 0.8681e

C
r

 , 

where r% is the growth rate with inhibition of gemcitabine, 
and Cgem is the concentration of gemcitabine; R2

 = 0.99 and 
P < 0.05. 

Based on this equation, the IC50 value was obtained, i.e., 
when r% = 50%, Cgem = 7.05 mg mL−1. 

4 Discussion 
E. vannus is a well-known model ciliate that has tradi-

tionally been used as a bioassay organism in ecotoxi-
cological studies (Coppellotti, 1998; Fernandez-Leborans, 
2000; Xu et al., 2004; Zhou et al., 2011; Li et al., 2014; 
Hong et al., 2015). In the present study, E. vannus exhib-
ited a measurable dose-response to gemcitabine and hence 
may be applied as a useful model organism in bioassays of 
cytotoxicity of this chemotherapeutic drug. 

Owing to its hydrophilic properties, gemcitabine is 
transported into cells via molecular transporters for nu-
cleosides and is pharmacologically active as gemcitabine 
triphosphate after the attachment of a phosphate ion to the 
gemcitabine molecule (Alvarellos et al., 2014). The thrice- 
phosphorylated gemcitabine molecule can masquerade as 
cytidine and thus be incorporated into DNA. This allows a 
native (or normal) nucleoside base to be added next to it 
and leads to ‘masked chain termination’ by creating an 
irreparable error that leads to inhibition of further DNA 
synthesis, thereby resulting in cell death (Alvarellos et al., 
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2014). Furthermore, the twice-phosphorylated gemcit-
abine can inhibit the enzyme ribonucleotide reductase and 
thus can drive the cell to uptake more gemcitabine from 
outside the cell (Cerqueira et al., 2007; Alvarellos et al., 
2014). 

Gemcitabine is clinically used to treat bladder cancer by 
irrigation of bladder with a dose of 20 mg mL−1 for 30 min 
(Alvarellos et al., 2014). In the present study, the 30-min 
LC50 value was 10.66 mg mL−1 (temperature, 25℃), and 
the LC50 values decreased with increasing exposure time 
following the toxicity curve equation 

0.19
50 10.93 28.4e tLC   , 

where R2
 = 0.93, P < 0.05, and t is exposure time. Therefore, 

from this equation, we predict that the clinical dose of 
gemcitabine (20 mg mL−1) is higher than the 30-min LC50 
value and almost the same as the 6-min LC50 value (19.88 

mg mL−1) for E. vannus cells. This implies that 20 mg mL−1 
gemcitabine kills 50% of E. vannus cells within 6 min. 
Based on these results, the IC50 value for inhibiting the 
growth of E. vannus cells was 7.05 mg mL−1. This finding 
suggests that the model ciliate is sensitive to gemcitabine. 

It should be noted that to test the cytotoxicity of gem-
citabine to the human bladder, mammalian (preferably 
human) bladder cell lines would be expected to better 
reflect the cytotoxic response. However, till date, there 
have been only a few reports on the successful cultivation 
of bladder cells in vitro (Burrows et al., 2017). In com-
parison, the ciliate E. vannus has several advantages in 
bioassays. For example, it can be maintained more easily 
and at less cost than human body cell lines. Furthermore, 
the preparation of test solutions for cytotoxicity tests is 
simpler as E. vannus lives in water rather than in a com-
plex physiological solution (Dayeh et al., 2005). On the 
other hand, E. vannus is a free-living marine ciliated pro-
tozoan and exhibits a higher degree of complexity of cell 
structure and function than mammalian tissue cells (Zhang 
et al., 2015). Additional tests are therefore needed to de-
termine whether E. vannus cells have the same sensitivity 
to gemcitabine as mammalian cells in general, and bladder 
cells in particular. Nevertheless, the present findings sug-
gest that E. vannus is a useful test organism in bioassays of 
the cytotoxicity of gemcitabine. 

5 Conclusions 
The model ciliate species E. vannus exhibited a sensi-

tive dose-dependent response to gemcitabine and can be 
used as a robust test organism in toxicology bioassays for 
short duration of exposure. The LC50 values decreased 
with increasing exposure time and well fitted to the toxic-
ity curve equation. These results show that the clinical 
dose of gemcitabine (20 mg mL−1) is higher than the 30- 
min LC50 value and is almost the same as the 6-min LC50 
value for E. vannus cells. 
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