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Abstract  Internal tides generated by a rough sea floor are an important source of mixing in the abyssal ocean. Two linear models are 
employed to evaluate the conversion rate from barotropic tides to internal tides and the energy distribution in each mode. Considering 
the periodicity of internal tides, the topography is represented by periodically distributed knife edges and sinusoidal ridges within one 
wavelength of mode-1 internal tides. The knife edges generate greater internal tides than the sinusoidal ridges due to their sharp 
shape, which approximates an extremely supercritical condition. Energy flux concentrates in modes whose numbers are multiples of 
the knife edge or ridge number. Then, a fully nonlinear model that integrates viscosity and diffusion is implemented, and its results 
are compared with those of the linear model. Internal wave rays generated in the nonlinear model show a distribution similar to the 
linear models’ prediction. High dissipation rates coincide with the rays, suggesting that nonlinear wave-wave interaction is a domi-
nant mechanism for internal tide dissipation in the abyssal ocean. 
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1 Introduction 

In a stratified ocean, interaction between barotropic 
tides and rough topography generates internal tides. Ap-
proximately 1 TW energy is estimated to be lost from 
barotropic tides through conversion to internal tides in the 
deep ocean (St. Laurent and Garrett, 2002). As a result of 
instability, nonlinear processes, and interactions with to-
pography, internal tide energy cascades into instability 
and turbulence (Sarkar and Scotti, 2017). Their dissipa-
tion provides half of the energy input to global diapycnal 
mixing, which maintains oceanic stratification and over-
turning circulation (Garrett, 2003). However, many open 
questions still exist with regard to the entire process of 
internal tide generation, evolution and dissipation. The 
relationship between internal tide energy loss and sea 
floor roughness in particular is still not thoroughly known, 
although observations have already revealed a direct 
connection between them (Polzin et al., 1997). 

The conversion rate from barotropic tides to internal 
tides is given by a series of linear analytical models. The 
topographic steepness parameter ε, which is a slope ratio 
between topography and internal wave characteristics, is 
an important factor for internal tide generation. The effi- 
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ciency of internal tide generation is improved considera-
bly if critical or supercritical conditions (ε ≥ 1) exist. The 
first analytical formula for the conversion rate was pro-
vided by Bell (1975) for subcritical (ε < 1) and small to-
pography in infinitely deep water and is proportional to 
the power spectrum of the topography. For a special case 
with sinusoidal topography, the conversion rate is propor-
tional to the square of topographic height. Pétrélis et al. 
(2006) extended the calculation of conversion rates to 
supercritical conditions (ε > 1) for an isolated submarine 
ridge. St. Laurent et al. (2003) used knife edges and top 
hat-like ridges to represent the topography; these edges and 
ridges are not continuously differentiable but can be treated 
as limit cases of supercritical topography. Constructive 
and destructive interference of internal tides generated 
from different ridges can change the conversion rates con-
siderably (Balmforth and Peacock, 2009; Kelly and Nash, 
2010; Klymak et al., 2013). Relevant evidence is found in 
Luzon Strait, where semidiurnal internal tide generation 
is enhanced while diurnal generation is reduced because 
the separation between the two ridges in Luzon Strait is 
approximately one wavelength of semidiurnal internal 
tides.  

Local mixing is mainly sustained by the dissipation of 
high-mode internal waves generated from small topog-
raphic features through nonlinear wave-wave interaction 
(Polzin, 2004, 2009; Nikurashin and Legg, 2011) or con-
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vective and shear instability (Muller and Bühler, 2009). 
Low-mode internal tides escape from their generation 
sites due to their long wavelengths. St. Laurent and Garrett 
(2002) estimated that about 30% of generated internal 
tides dissipate locally, while recent observations and theo-
retical estimates suggest that this fraction depends on lo-
cal forcing and Coriolis frequency (Klymak et al., 2013). 
This fraction estimate is especially important for the 
oceanographic community, because it provides a basis for 
tidal mixing parameterization in climate models. 

Several hot spots are usually present on a rough sea 
floor for internal tide generation. Interference of internal 
tides, which come from different generation sites, may 
enhance or reduce the total conversion from barotropic to 
internal tides. In this paper, we intend to demonstrate the 
whole process of internal tide generation by periodic 
ridges and their evolution and dissipation above. Consid-
ering the periodicity of internal tides, the ridges are 
evenly distributed within one wavelength of mode-1 in-
ternal tides. Parameter space that corresponds to our 
model configurations is first analyzed in Section 2 to 
clarify how important the nonlinear effects are and which 
instability may be triggered during internal tide genera-
tion. In Section 3, two simplified linear models are ap-
plied with two types of idealized topography: knife edge 
and sinusoidal ridges. In Section 4, the results from the 
linear models are compared with those of a fully nonlin-
ear numerical model to demonstrate the internal tide dis-
sipation related to nonlinear effects, viscosity, and diffu-
sion. Conclusions are presented in Section 5. 

2 Parameter Space 

Here, we consider internal tide generation by rough 
bathymetry in a deep ocean. The topographic height h is 
presumed to be much less than the total water depth H. 
Internal tide generation by abrupt ridges or a shelf break 
is not within the scope of this paper. Six parameters de-
termine internal tide generation: the tidal frequency ω, the 
Coriolis frequency f, the buoyancy frequency N, the to-
pographic height h, the topographic wavenumber k, and 
the magnitude of barotropic tidal flow U0 (Garrett and 
Kunze, 2007). Aside from the topographic height pa-
rameter δ = h/H, internal tide generation is also related to 
two other important nondimensional parameters. One is 
the excursion number 

0U k


 ,                   (1) 

which is a ratio of net advection by barotropic tides to the 
topographic length scale. If μ << 1, then the generated 
internal tides are nearly symmetric at all phases. If μ > 1, 
then lee waves will be generated during the high-velocity 
state and then released when the tidal flow slackens 
(Sarkar and Scotti, 2017). The other one is the steepness 
parameter 
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in which hx is the gradient of the topography and 
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is the slope of internal wave characteristics. Internal tide 
generation is efficient if the topography is critical (ε = 1) 
or supercritical (ε > 1). Internal wave beams are emitted 
from the critical slope, related to energetic high-mode 
internal waves. Here we assume that the topography is 
sinusoidal and take the hydrostatic and non-rotational 
approximations so that 

0kNh


 .                    (4) 

Internal tides play an important role in abyssal mixing 
either by causing turbulence due to instability or breaking 
small-scale waves due to nonlinear interaction. In the 
scale analysis, we use the amplitude U0 of the barotropic 
tidal flow to represent the velocity scale of internal tides. 
Specifically for internal tides, the Richardson number can 
be written as 
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where kn is the wavenumber of mode-n mode internal 
tides. The Richardson number Ri < 0.25 is a necessary 
condition for shear instability. The Froude number 
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U k U
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c 
                  (6) 

is usually used to measure the nonlinear wave-wave in-
teraction, which is equal to Ri−1/2 for internal tides.  

Garrett and Kunze (2007) proposed the conditions for 
linearization in the ε-μ plane (Fig.1). One linear regime is 
in εμ << 1, and the other one requires large U0/Nh0 for  

 

Fig.1 Parameter space of internal tide generation. Gray 
dot lines indicate the parameters used in this paper for 1, 
2, 4, 8, and 16 sinusoidal ridges with different tidal 
forcing U0 = 0, 0.1, 0.2, ···, 1.0 m s−1 (dots). 
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large excursion. However, to avoid nonlinear wave-wave 
interaction, a requirement is that Fr << 1, thereby further 
reducing the latter linear regime. In our following analy-
sis, N = 0.005 s−1, h = 100 m, and H = 1000 m. Their loca-
tions in the parameter space are shown as gray lines and 
dots in Fig.1 for varied ridge separation and U0. 

3 Linear Internal Tide Generation 

Given the periodicity of internal tides, we consider the 
internal tide generation by small Periodic topography 
within one wavelength λ1 of mode-1 internal tides. The 
topography is characterized using the topographic wave- 
number k, which is selected to be multiples of the wave- 
number k1 of mode-1 internal tides so that we can estab-
lish a relationship between internal tide generation and 
rough topography in a perspective of the Fourier trans-
form. In this section, we will use two linear analytical 
models with the topography represented by knife edges 
and by sinusoidal ridges. Detailed model parameters are 
shown in Table 1. 

Table 1 Parameters in the linear models 

Parameter Notation Value 

Tidal frequency (M2) ω 1.4×10−4
 s−1 

Buoyancy frequency N 5.0×10−3
 s−1 

Coriolis frequency f 0 
Ridge height h0 100 m 
Total depth H 1000 m 
Viscosity  ν

 
0 

3.1 Knife Edge Model 

The topography is represented by multiple knife edges 
that are evenly distributed in one wavelength of mode-1 
internal tides 

( )
0 if  for 1, 2,...,

 
0 otherwise

j
rh x x j N

h
   


.        (7) 

The internal wave velocities (u, w) on each side of the 
knife edge are written in a composition of normal modes 
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where �n and �wn are the vertical structure function for u 
and w of mode-n internal waves, respectively. an and bn 
are the amplitude of mode-n internal waves propagating 

in the ±x direction, respectively (Fig.2). Through match-
ing the velocity at each knife edge, i.e., 
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and also considering the orthogonality of normal modes, 
we obtain the following equations written in a matrix 
format:  
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Here, * represents the conjugate, and the matrix ele-
ments are 
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Fig.2 Schematics of internal tide generation model with 
knife edges (top) and sinusoidal ridges (bottom). Arrows 
indicate the propagation of generated internal tides. 

Given that no incident internal waves exist, a(1) and 
b(Nr+1) are known to be zero. Thus, the amplitudes a(j) and 
b(j) of generated internal tides are obtained through an 
inversion of a series of linear Eq. (10) (St. Laurent et al., 
2003; Kelly et al., 2013). The energy fluxes of eastward- 
and westward-propagating internal tides are  
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respectively. Here, * represents the conjugation. Fig.3 
shows wave field u for internal tide generation by 1, 2, 10, 
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and 16 knife edges, respectively. Four internal wave 
beams are emitted from the peak of each knife edge. Two 

propagate upwards and the other two propagate down-
wards along their characteristic slope α.

 

Fig.3 Wavefields u show internal tide generation by 1, 2, 10, and 16 knife edges. 

3.2 Sinusoidal Ridges 

We extend the topography from knife edges to sinu-
soidal topography represented by 

 0 1 11 sin( ) , 0rh h N k x x     .          (13) 

Then, the internal tide generation problem is solved us-
ing the iTides software developed at MIT (http://source-
forge.net/projects/itides/), which solves the internal wave  

equation using the Green’s function method by treating 
the bottom boundary as a series of singularity points 
(Balmforth and Peacock, 2009; Echeverri and Peacock, 
2010). The model parameters are same as those of the 
knife edge model (Table 1). The bottom slope is subcriti-
cal (ε < 1) for the cases with 1 and 2 ridges; therefore, no 
obvious beams radiate from the ridges. Fig.4 shows wave 
field u for internal tide generation by 8, 11, 15, and 16 
sinusoidal ridges. For the case with 8 ridges (Fig.4a), the 
beam that is emitted from the west flank of the western-  

 

Fig.4 Wavefields u show internal tide generation by 8, 11, 15, and 16 sinusoidal ridges. 
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most ridge and is then reflected from the surface is coin-
cident with the beam emitted from the east flank of the 
easternmost ridge. This constructive beam interference 
markedly enhances the internal tide generation (Balm-
forth and Peacock 2009). 

3.3 Energy Flux and Conversion 

The knife edge model and the Green’s function method 
are based on the linearity assumption. However, the en-
ergy flux of generated internal tides, i.e., the barotropic to 
baroclinic conversion rate, is not a linear sum of the rates 
for each ridge. Its variation is related to constructive or 
destructive interference of rays (Balmforth and Peacock, 
2009; Klymak et al., 2013).  

For the knife edge model (Fig.5), the average energy 
flux by each knife edge reaches its maximum with 10 
knife edges. In this case, the downward propagating ray 
from the peak of one knife edge, after its reflection from 
the bottom, is coincidently overlapped with the upward- 

propagating ray emitted from the peak of the neighbor 
knife edge (Fig.3c). The interference is in phase, thereby 
enhancing the internal tide generation. In Fig.3d (Nr = 16), 
the downward propagating ray is bounced back after two 
reflections from the bottom and the neighbor knife edge. 
This ray is out-of-phase with the upward-propagating ray 
emitted from the same knife edge. Therefore, the internal 
tide generation is reduced. 

Ray interference is more complicated for sinusoidal 
ridges due to multiple reflections and critical slopes. The 

downward propagating ray will move upwards after re-
flection if it reaches a subcritical slope (Figs.6a and 6b). 
Otherwise, it will move downwards if it reaches a super-
critical slope (Figs.6c and 6d). After one or several reflec-
tions, the ray will escape from the trough between ridges. 
Depending on its interference with the upward- propagat-
ing ray directly emitted from the ridge, internal tide gen-
eration will be enhanced or reduced. For example, in 
Figs.6a and 6c, the reflected rays are in phase with the ray 
generated from the neighbor ridge; the average energy 
flux by ridge reaches its maximum, as shown in Fig.7; 
and out-of-phase interference corresponds to the mini-
mum energy flux. 

 

Fig.5 Average conversion rate by each knife edge. 

 

Fig.6 Ray tracing (black lines) for sinusoidal ridges. Thin gray lines represent the sinusoidal ridges, and thick gray lines 
represent supercritical slopes. Black circles are the critical point where the ray originates.  
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Fig.7 Average conversion rate by each sinusoidal ridge, 
solved using the Green’s function method. Black circles 
denote multiple ridges, and gray squares indicate a sin-
gle ridge with the same shape as the multiple-ridge case. 

The distribution of energy flux in each mode shows a 
direct relationship with the ridge number Nr. The energy 
flux of generated internal tides concentrates on the modes 
whose numbers are integer multiples of Nr (Fig.8). This 

energy flux distribution is probably related to the forcing 
term on the right-hand side of the internal tide generation 
equation (Garrett and Gerkema, 2007) 

2 2 2
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Its Fourier transform is 

 
2 2 2

2 2
02 2 2 2zz

f N H
k k U z

H hN N

 
 

          
. (15) 

The top hat represents the Fourier transform with x. For 
sinusoidal topography,   

   0 1sin rh Nh k xx  ,          (16) 

the Fourier transform of H/(H−h) reveals peak values at 
integer multiples of Nrk1. We do not have an analytical 
expression of it so far. According to the calculation using 
the Green’s function method, this phenomenon is more 
obvious for small topography (h <<H). This condition 
implies that only high-mode internal waves can be gener-
ated in the deep ocean if the wavenumber of rough 

 

Fig.8 Energy flux in each mode calculated using the knife edge model (left) and the Green’s function method (right). 



LI et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2019 18: 761-770 

 

767

bathymetry is larger than the mode-1 wavenumber. High- 
mode waves are easy to dissipate due to their short length 
scale, causing enhanced local mixing, as observed in the 
rough bathymetry in the Brazil Basin (Polzin et al., 1997). 

4 Nonlinear Model 

Internal tides play an essential role in diapycnal mixing 
in the abyssal ocean (Garrett and Gerkema, 2007) via shear 
instability or nonlinear interaction forming smaller-scale 
breaking internal waves. The knife edge model and the 
Green’s function method are both linear models and also 
assume no viscosity or diffusion. They cannot be directly 
used to describe dissipation caused by internal tides. There- 
fore, a regional ocean model, the MITgcm (Marshall et al., 
1997), is implemented to avoid these limitations of sim-
plified linear models. 

4.1 MITgcm and Configuration 

The MITgcm setup is consistent with the linear models 
in a 2D x-z plane. The total depth is 1000 m, with a verti-
cal resolution of 10 m. The horizontal resolution is 50 m 
in the center and gradually becomes coarse near the two 
lateral boundaries. The sinusoidal ridges are in the center 
of the domain, outside of which the bottom is flat. Tidal 
forcing is induced by imposing a vertically uniform tidal 
flow on each boundary. The tidal frequency is ω = 1.4× 

10−4
 s−1, corresponding to the M2 tides. A rigid lid is used 

for the upper boundary to filter out fast-propagating baro-
tropic gravity waves, which may cause unpredicted forc-
ing in addition to tidal flow. Sponge layers are added at 
each lateral boundary to absorb all baroclinic signals 
propagating out of the domain. The earth’s rotational ef-
fects are neglected (f = 0) to avoid parametric subhar-
monic instability. Hydrostatic approximation is applied to 
save computational time. The horizontal and vertical vis-
cosity coefficients are set to Ah = 1.0×10−3

 m2
 s−1 and Av = 

1.0×10−3
 m2

 s−1, respectively. Sensitivity experiments re-
veal quantitatively similar results with non-hydrostatic 
runs and a relatively broad range of viscosity coefficients 
(Nikurashin and Legg, 2011). Other model parameters are 
shown in Table 2. 

Table 2 Parameters in the MITgcm 

        Parameter Notation    Value 

Horizontal eddy viscosity coefficient Ah 1.0×10−3
 m2

 s−1

Vertical eddy viscosity coefficient Av 1.0×10−3
 m2

 s−1

Horizontal diffusion coefficient Kh 1.0×10−5
 m2

 s−1

Vertical diffusion coefficient Kv 1.0×10−5
 m2

 s−1

Horizontal grid size Δx 50 – 2696 m 
Vertical grid size Δz 10 m 
Time step Δt 2.5 s 
Gravitational acceleration g 9.8 m s−2 
Coriolis frequency f 0 
Buoyancy frequency N 5×10−3

 s−1 
Reference density ρ0 1000 kg m−3 
Ridge height h0 100 m 
Domain width L 590 km 
Domain depth H 1000 m 

 

4.2 Model Decomposition 

Constant buoyancy frequency N=5×10−3
 s−1 is used. 

Thus, the vertical modal structure is sinusoidal. Modal 
decomposition is implemented every hour at the edge of 
the ridges through vertical integration of horizontal ve-
locity u multiplied by the vertical structure function of 
each mode 

0 π
cos dm H

m z
A u z

H
  ,            (17) 

where Am is a function of time. Each experiment runs for 
20 tidal periods (TM2), and the energy balance of modeled 
internal tides reaches a quasi-steady state after 10 tidal 
periods. For comparison with the linear models, the mo-
dal amplitude <Am> is calculated using a time average in 
the last 6 M2 tidal periods 
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A A
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  
  
 .             (18) 

The energy flux in each mode is calculated using Eq. 
(12) and then compared with the linear model results cal-
culated using the Green’s function method for 8 and 16 
ridges, shown in Fig.9. For the case with 8 ridges, the 
MITgcm results also show that energy concentrates on 
dominant modes, which are multiples of 8, consistent 
with the linear model. However, the energy in the domi-
nant modes is considerably smaller than that in the linear 
model results due to dissipation. For the case with 16 
ridges, if tidal forcing is weak (U0 = 0.01 m s−1), then en-
ergy flux concentrates on the dominant modes, which are 
multiples of 16. However, the energy concentration is not 
obvious for strong tidal forcing (U0 = 0.10 m s−1) probably 
because the vertical wavelength of mode-16 internal tides 
is λ16 = 125 m, comparable with the ridge height. The gen- 

 

Fig.9 Normalized energy flux in each mode for 8 ridges 
(top) and 16 ridges (bottom). Blue represents the results 
calculated using the Green’s function method. Green 
and yellow are obtained using the MITgcm with tidal 
forcing U0 = 0.01 and 0.10 m s−1, respectively. 
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erated mode-16 internal tides are blocked to prevent them 
from escaping from the ridges. Interestingly, a large en-
ergy flux appears at mode 8. This inverse cascading proba-
bly results from nonlinear interaction between internal 
tides. 

4.3 Energy Dissipation 

The modelled dissipation over the ridges can be di-
rectly calculated using 

2 2

dz hA

u u
D A A A

z x

                
 ,        (19) 

where Az and Ah represent the vertical and horizontal vis-
cosity coefficients. The dissipation are calculated every 
time step in the MITgcm and integrated every tidal period 
after the model reaches its quasi-steady state. High dissi-
pation rates, as in the four examples shown in Fig.10, 
approximately coincide with the internal wave ray distri-
bution obtained using the Green’s function method (Fig.4) 
in deep water. This coincidence becomes less obvious if 
tidal forcing is strong (U0 = 0.10 m s−1), implying that non- 
linear wave-wave interaction, which is sensitive to the 
velocity amplitudes, plays an important role in dissipation. 
The ray structure becomes blurred about 500 m above the 
ridges. Strong dissipation is especially obvious near the 
ridges through high-mode internal wave generation and 
reflection or scattering by topography. The latter effect is  

especially obvious if the internal wave ray reaches a su-
percritical slope. 

In numerical experiments, dissipation includes the mod-
elled dissipation and numerical dissipation. The total dis-
sipation D can also be obtained using the difference be-
tween the conversion C and radiated energy flux J 

D C J .                   (20) 

Sensitivity experiments reveal that, compared with the 
direct calculation using (19), this method can tolerate a 
relatively broad range of viscosity coefficients, because 
decreased modelled dissipation due to decreasing viscos-
ity coefficients can be offset by increased numerical dis-
sipation. Averaged dissipation in each ridge is shown in 
Fig.11 for different ridge number Nr and tidal forcing U0. 
For small tidal forcing (U0 = 0.01 m s−1), the variation of 
dissipation follows a similar trend as the conversion rate 
predicted by the linear model (Fig.7). It reaches a maxi-
mum at Nr = 8, in which constructive interference takes 
place between each ridge and a large amount of energy is 
converted from barotropic tides to internal tides. For large 
tidal forcing (U0 = 0.01 m s−1), the dissipation reaches a 
maximum at Nr = 8 and then decreases monotonically. The 
model results show that, with increasing ridge number for 
Nr > 8, the total conversion rate approximates a saturation 
but the radiated energy flux decreases. Therefore, the total 
dissipation increases at a relatively small rate and the 
averaged dissipation decreases. 

 

Fig.10 Time-averaged dissipation rate (log10 [W kg−1]) calculated from the MITgcm within the 10th tidal period. The 
amplitude of barotropic tidal flow in the top two panels is 0.01 m s−1 with 8 (left) and 11 (right) sinusoidal ridges, re-
spectively, and 0.10 m s−1 for the bottom two panels. 
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Fig.11 Averaged dissipation in each ridge (a) for the amplitude of tidal forcing U0 = 0.01 m s−1 and (b) for U0 = 0.10 m s−1. 

5 Conclusions 

The generation of internal tides from a rough sea floor 
is an important process that causes diapycnal mixing in 
the abyssal ocean, providing roughly half of the potential 
energy to maintain global stratification. Internal tide gen-
eration is first investigated using two linear models, in 
which the topography is represented by periodic knife 
edges and by sinusoidal ridges. In the models, the topog-
raphic height (100 m) is smaller than the total water depth 
(1000 m), imitating a rough sea floor in the abyssal ocean. 
The total length of the bottom topographic feature is one 
wavelength of mode-1 internal tides. The sharp shape of 
the knife edge is extremely supercritical. Therefore, the 
average energy flux by each knife edge is greater than 
that by each sinusoidal ridge. Interactions between inter-
nal wave rays emitted from each ridge may enhance or 
reduce the tidal conversion depending on their in-phase or 
out-of-phase interference. In addition, both linear models 
show that the energy flux concentrated on specific modes, 
with the mode numbers being multiples of the total num-
ber of knife edges or ridges, because of the power spec-
trum of the body force. High-mode internal waves dissi-
pate quickly. This phenomenon implies that, in a real 
ocean, most of the energy of internal tides generated by 
rough topography dissipates locally and cannot escape. 

A fully nonlinear numerical model that includes vis-
cosity and diffusion is then implemented and compared 
with the linear model. In the nonlinear model, internal 
wave rays are emitted from ridges, showing a pattern 
similar to the linear model prediction. The rays propagate 
upwards and dissipate quickly. The ray structure becomes 
blurred ~500 m above the ridges due to dissipation. The 
distribution of dissipation rates coincides with the ray 
distribution, suggesting that nonlinear wave-wave inter-
action is a dominant mechanism for dissipation. Com-
pared with the linear model, the energy flux in each mode 
is markedly reduced. Although we can observe that en-

ergy flux concentrates on modes whose mode number is a 
multiple of the ridge number, energy also disperses to 
other modes. An inverse cascade is observed especially 
for strong tidal forcing. 

The linear and nonlinear models in this paper use ide-
alized topography and stratification. The conclusions can 
provide some fundamental insights to the relationship 
between mixing and a rough sea floor. Low-mode internal 
tides can propagate away and high-mode internal tides are 
trapped locally; the latter is a major contributor to mixing. 
The efficiency of internal tide energy that is converted to 
local mixing is still an open question. Climate models use 
30% following the guidelines given by St. Laurent and 
Garrett (2002). Apparently, this fixed value is not always 
true, but depends on tidal forcing and topographic fea-
tures. For example, the model results in Fig.10 show var-
ied efficiency of conversion from internal tides to dissipa-
tion. Understanding the mixing mechanism and then us-
ing the linear model as a reference to evaluate the conver-
sion efficiency may be a feasible approach to developing 
a mixing ‘recipe’ in the abyssal ocean. 
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