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Abstract  In this study, a 3D idealized model of tidal flow, in which the tidal elevation and velocities are solved analytically, is 
developed. The horizontal eddy viscosity is neglected, and the vertical eddy viscosity used in the study is assumed to be independent 
of time and only varies as a parabolic function in the vertical direction. The analytical solution is obtained in a narrow rectangular bay, 
with the topography varying only across the bay. The model results are compared with the field observations in the Xiangshan Bay. 
The results show that the influence of varying vertical eddy viscosity mainly has two aspects. On one hand, it amplifies the magni-
tude of the tidal elevation, particularly the amplitude near the head of the bay. On the other hand, it adjusts the axial velocity profile, 
resulting in an obvious frictional effect. Furthermore, the tidal elevation and velocities are more sensitive to the magnitude of the 
eddy viscosity near the bottom than the structure in the upper water layer. 
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1 Introduction 

The tide is often the dominant process in shallow seas 
and bays and plays an important role in mass transport 
and water mixing. Therefore, it is essential to understand 
tidal motion accurately, which is meaningful to oceanog-
raphy and ocean engineering. 

Many studies of the tide and tidal current can be 
broadly divided into two categories: numerical models, 
which are appropriate for detailed studies of tidal flow in 
realistic settings, and analytical solutions, which consider 
only the dominant factors with simplified geometric pro-
files. 

Early numerical models are mainly horizontal 2D 
models (An, 1977; Choi, 1980; Fang et al., 1984; Fang 
and Yang, 1985; Carbajal and Backhaus, 1998). The 2D 
models can reproduce the surface elevation well but can-
not obtain information about the vertical velocity profiles, 
thus prompting the transition from 2D models to 3D 
models. For example, Jan et al. (2004) adopted a tidal 
model, in which the vertical eddy viscosity is constant 
everywhere. Meanwhile, Guo and Yanagi (1998) and 
Warner et al. (2005) simulated tidal current by using dif-
ferent turbulence closure methods. It seems that tidal flow 
can be solved on the basis of such studies mentioned pre-  
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viously. However, Davies and Gerritsen (1994) and Guo 
and Yanagi (1998) pointed out that the closure schemes 
for eddy viscosity are crucial to the accuracy of the model 
results. 

Analytical solutions that rely on simple formulations of 
vertical eddy viscosity have been used to investigate tidal 
motion for a long time. In most cases, the breadth- aver-   
aged 2D model was used with a constant (Wang and Craig, 
1993; Li and Valle-Levinson, 1999) or parameterized hor-  
izontally varying vertical eddy viscosity (Chernetsky et al., 
2010). For example, Ianniello (1977) used the breadth- 

averaged 2D model with a vertically varying vertical eddy 
viscosity. For 3D solutions, Li (2001) presented a solution 
for tides in channels to show the effect of bathymetry and 
friction with a constant eddy viscosity. Winant (2007) 
obtained a more typical 3D result by analytically studying 
the tidal flow in an elongated rectangular bay with a con-    
stant eddy viscosity. Ensing et al. (2015) expanded the 
model of Winant (2007) by including the exponentially 
decaying width, and Ross et al. (2017) made further modi-    
fications to investigate the effect of channel width con-    
vergence and friction on tidal flow, in which the vertical 
eddy viscosity is a constant again. 

Summarizing the previously mentioned studies, it is 
clear that, currently, there is no analytical model of 3D 
tidal motion that considers the spatially varying vertical 
eddy viscosity. The horizontal eddy viscosity is consid-
ered to have only a slight influence on tide (e.g., Davies 
et al., 1997), whereas the vertical eddy viscosity that 



CHEN et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2019 18: 771-783 

 

772 

represents the interior friction of the tidal current has a 
considerable effect on tidal flow. Although the vertical 
eddy viscosity has no uniform profile, field observations 
indicate that the vertical eddy viscosity roughly follows a 
parabolic form, with a small value near the bottom and 
approximately reaching the maximum value near mid- 

depth (Bowden et al., 1959; Lu and Lueck, 1999; Xu et al., 
2013). A numerical research that used a turbulence clo-
sure model in a narrow bay also obtained a similar profile 
of tidally averaged vertical eddy viscosity (Deng et al., 
2017). 

In this study, a 3D analytical tidal model with spatially 
varying vertical eddy viscosity is solved in a narrow bay. 
The vertical eddy viscosity is regarded as a function of 
the vertical coordinate only and follows a parabolic form 
according to Ianniello (1977) who used a 2D flat-bottom 
analytical model to investigate the tide-induced residual 
current and according to Tee (1979) who adopted a 3D 
numerical model to analyze the tidal current. This study 
mainly aims to improve the analytical solution for tidal 
flow by involving the spatially varying eddy viscosity and 
to understand the influence of the spatially varying verti-
cal eddy viscosity on the 3D tidal flow analytically. The 
analytical solution can also be the benchmark for the 
validation of the numerical model. 

The paper is organized as follows: The formulation of 
the model is given in Section 2. The solution procedure of 
tidal flow is described in Section 3. The results and com-
parisons are presented in Section 4. The discussions are 
made in Section 5. The conclusions are drawn in Section 6. 

2 Formulation 

Winant (2007) solved the 3D tidal motion in a narrow 
bay analytically under weakly nonlinear assumptions. 
Jiang and Feng (2014) eliminated the unnecessary hy-
pothesis and revisited the problem by using the double 
perturbation method in analyzing the residual current. In 
this study, the framework of the model follows those of 
Winant (2007) and Jiang and Feng (2014), and the solu-
tion procedure follows that of Jiang and Feng (2014). 

2.1 The Non-Dimensional Tidal Equations 

In this study, the 3D tidal current in a semi-enclosed 
rectangular bay will be solved. The x and y coordinates 
are along the two horizontal sides of the bay with x = 0 
being at the open boundary and x = L being at the head of 
the bay. The lateral boundaries are y = yb and y = ye. The 
surface of still water is set at z = 0, and the sea bottom is 
set at z = −h. The tidal signal is imposed at the open 
boundary so the tidal current is the main movement in the 
area. 

We assume that the variables have the following char-
acteristic values: xc = λ, yc = B, zc = hc, and tc = 2π/ωc, 
where /c cgh   is the wavelength, hc is the typical 
water depth of the sea area, ωc is the circular frequency of 
the tide, and ζc is the characteristic value of tidal eleva-
tion. 

Given the basic balance of tidal movement =
u

O
t

 
  

 

O g
x

 
  

, the characteristic value of u has the following  

relation: /c c cu g h . If the continuity equation is 
considered, then the characteristic values of v and w can 
be obtained, i.e., /c c c cv B h   and c c cw   . 

Then, the nondimensional form of the governing equa-
tions can be expressed as follows: 

0 u ,                   (1) 

u u
u

t x z z

               
u ,        (2) 
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u ,     (3) 

where δ = B/λ, κ = ζc/hc, and  2= //c c ch   , with υc  

being the characteristic value of the vertical eddy viscos-
ity. 
  At the sea surface, z =κζ, 
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  At the sea bottom, z = −h, 

0u .                   (5) 
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d 0 at  and 

d 0 at 

b eh

h

v z y y y

u z x L
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




  

  




.       (6) 

  At the open boundary, x = 0, 

open  .                (7) 

Thus, Eqs. (1) to (7) define a non-dimensional system 
of 3D tidal flow. The entire system has two basic dimen-
sionless numbers. One is κ, the tidal amplitude over the 
average water depth, which reflects the nonlinear effect of 
the system. The other is δ, the aspect ratio, which reflects 
the asymmetric feature of the horizontal geometry of the 
model area. In the present study, the case of ( ) 1O    and 

( ) 1O    is investigated, which indicates that tidal motion 
is a weakly nonlinear case in a narrow bay, in which the 
Coriolis effect is negligible. 

2.2 The Perturbation in a Narrow Bay 

To solve the tidal equations, the double-perturbation 
method is used to expand the tidal equations with small 
parameters κ and δ2. The equations of different orders 
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used to solve the zeroth-order tidal current are listed in 
Subsection 2.2.1, and the details of the mathematical 
procedures used to obtain these equations are shown in 
Appendix A. 

2.2.1 The zeroth-order equations 

0 0 u ,                  (8) 

0 0 0u u

t x z z

              
,          (9) 
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At the sea bottom, z = −h, 

0 0u .                   (12) 

At the fixed boundary, 
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0
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At the open boundary, x = 0, 

0 open  .                  (14) 

3 The Solution for Tidal Flow 

When the non-dimensional eddy viscosity is assumed 
to be independent of time, the zeroth-order tidal current 
system (i.e., Eqs. (8) to (14)) can be solved analytically 
by considering the O(δ2) order momentum equation in the 
y-direction: 

0 0 0v v

t y z z

  
           

.          (15) 

Given that the zeroth-order equations are linear and the 
open boundary condition is given as a single frequency 
tide, the solutions should be periodic. Thus, the solutions 
can be assumed to have the following forms: 

0 0Re[ e ]itu U  , 0 0Re[ e ]itv V  , 0 0 Re[ e ]itw W  , 

0 0Re[ e ]itN  , 0 0Re[ e ]itN   , 

where U0, V0, and W0 are the functions of (x, y, z) and N0 
is the function of (x, y) only. i.e. 

After the substitution of these equations into the mo-
mentum equations (i.e., Eqs. (9) and (10)), the following 

relations can be obtained: 

0 0
0

N U
iU

x z z
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00
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
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
.                (17) 

Then, N0 is independent of y and is a function of x only, 
which can be denoted as N0(x). Thus, the momentum equa-
tion (i.e., Eq. (15)) can be rewritten as follows: 

0 0
0
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iV

y z z
 
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and the boundary conditions of Eqs. (16) and (18) can be 
expressed as follows: 
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3.1 The Solution for the Momentum Equations 

With the non-dimensional vertical eddy viscosity being 
regarded as a function of z only, the Eqs. (16) and (18) 
can be expanded as follows: 

2
0 0 0

02

( ) 1
( )

U U Nz i
z U

z z xz


 
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.      (22) 

According to Ianniello (1977), ( )z  can be further as-
sumed to have the following parabolic form: 

1 2 3( ) ( )( )z a z a z a    ,          (23) 

where 

1 2
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1/ 2

3 0
1
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1m ma z z h

R
       

. 

As shown in Fig.1, υ has the minimum value of R (0 < 

R < 1) at z = −h0 and attains its maximum value of 1 at z = 

zm = −h0hm, where h0 is the maximum value of the water 
depth, which is 1 in the non-dimensional condition, and 
hm <1/2 is assumed according to the real situation. 
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After the substitution of Eq. (23) into Eqs. (21) and 
(22), the following relations can be obtained: 
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To obtain the solutions to Eqs. (24) and (25), a coordi-
nate transformation is introduced and the equations can 
be converted into non-homogeneous hypergeometric equa-
tions. On the basis of the properties of the standard hy-
pergeometric functions (Wang and Guo, 2000), the solu-
tions to Eqs. (24) and (25) can be derived as follows 

0
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x





,             (26) 

0
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N
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y





.             (27) 

The expression of q and the details of the solution pro-
cedure are shown in Appendix B. 

 

Fig.1 The profile of the non-dimensional vertical eddy 
viscosity. 

3.2 The Solution for the Continuity Equation 

When the water depth is considered to vary only along 
the lateral direction, the continuity equation can be solved 
using the same method as that used by Winant (2007)    
and Jiang and Feng (2014). The horizontal velocity is 
related to the sea surface elevation gradients in Eqs. (26) 
and (27). Then, the horizontal velocity is inserted into the 
depth- integrated form of the continuity equation to derive 
the equation for sea surface elevation. By solving this 
equation, the sea surface elevation can be obtained as 
follows 

0
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The following equation can also be obtained, 

2
0 0

2
0

N NG

y P x

 



 

,             (29) 

where 
2

00
( )d

y
G P y y y    . 

Then, the zeroth-order velocities U0, V0 and W0 can be 
expressed as follows, 
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  .  (32) 

Thus, the tidal elevation and velocities with spatially 
varying eddy viscosity are obtained analytically. The pa-
rameters that control the solutions are as follows: β is the 
quadratic ratio of the frictional depth ( /d c ch   ) and 
the undisturbed water depth (hc), R and hm together decide 
the vertical eddy viscosity, and L is the length of the bay 
relative to the tidal wavelength. 

4 Results 

The solution for a bay with the water depth varying 
along the transverse direction can be expressed as fol-
lows: 

 21 0.99 2 1h y   . 

The length of the bay is set 1.5 times of the wavelength 
with fixed values of R and hm. The phase and amplitude 
of N0 are presented in Fig.2. When β is small, the mini-
mum point of the amplitude is observed near the open 
boundary. As β increases, the minimum point moves to-
ward the head of the bay. When β is large, the minimum 
point is not apparent anymore. The amplitude near the 
head decreases with the increase in β. Meanwhile, the 
phase decreases gradually with the increase in β. 

According to the definition, β represents the magnitude 
of the vertical eddy viscosity, whereas R and hm together 
decide the specific profile of the non-dimensional vertical 
eddy viscosity, which is different from that of the constant 
eddy viscosity condition. The tidal elevation obtained 
with varying vertical eddy viscosity is compared with that 
obtained with constant eddy viscosity (υ = 1) when the 
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value of β is kept constant. The results show that the trend 
is mainly consistent but exhibits a distinct difference in 
magnitude between the present result (solid lines) and 
that with the constant eddy viscosity (dashed lines). In the 
present results, the minimum point of the amplitude is 
close to the open boundary, and the amplitude near the 
head increases apparently. The relative variation rates of 
the amplitude between constant and varying eddy viscosi-
ties at the head of the bay for β = 0.02, 0.125, and 0.5 are 
11%, 24%, and 66%, respectively. The vertically varying 

eddy viscosity also leads to a general increase in phase, 
and the relative variation rates in the middle of the bay for 
β = 0.02, 0.125, and 0.5 are 3%, 9%, and 11%, respec-
tively. 

Fig.3 shows the velocities at six tidal phases starting 
from the phase of high water in the middle of the bay 
with three different values of β. At high water, the axial 
velocity u0 is weak and changes sign. As time progresses, 
u0 becomes negative throughout the section, which cor-
responds to an ebb tide. When β is small, u0 is nearly  

 

Fig.2 Amplitude and phase of N0 for three different values of β (R = 0.15, hm = 1/4). Solid and dashed lines represent the 
results with varying and constant vertical eddy viscosities, respectively. 

 

Fig.3 Velocities at six tidal phases for three different values of β (R = 0.15, hm = 1/4). The section is located in the middle 
of the bay. The leftmost column corresponds to the phase of high water. The axial velocity is negative in the shaded area. 
The lateral and vertical velocities are represented by arrows. 



CHEN et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2019 18: 771-783 

 

776 

constant over the section, with the shear confined near the 
bottom. As β increases, the shear in u0 will be distributed 
throughout the entire section, and the lateral and vertical 
velocities will also increase. 
  The vertical profiles of u0 at six phases for three dif-
ferent values of β are presented in Fig.4. The red solid 
lines represent the results with varying vertical eddy vis-
cosity, and the blue dashed lines represent the results with 
constant vertical eddy viscosity. With the constant vertical 
eddy viscosity, the maximum |u0| is detected only at the 
surface in the middle of the bay (mid-basin and mid- 

width) when the value of β is large, and the maximum 
point submerges when the value of β is small. As shown 
in Fig.4, the profiles obtained in the present study are 

better than those of the results with constant vertical eddy 
viscosity. The maximum |u0| at the surface is more pro- 
minent when the value of β is large, and the maximum 
point submerges lower as the value of β decreases. More- 
over, u0 is nearly constant over the section with the shear 
constrained near the bottom, and the frictional effect is 
more obvious with the varying eddy viscosity. 

According to the expression of β presented previously, 
a small β indicates a relatively small ratio of hd to hc. 
Thus, the frictional effect is limited near the bottom and 
the rest of the water column is approximately uniform. 
When β is large, the proportion of hd increases, resulting 
in the frictional effect breaking the limit and reaching the 
middle layer of the water column.

 

Fig.4 Vertical profiles of u0 at six tidal phases for three different values of β (R = 0.15, hm = 1/4). The section is located in 
the middle of the bay. Red solid lines and blue dashed lines represent the results of varying and constant vertical eddy 
viscosities, respectively. 

5 Discussion 

5.1 Application in the Xiangshan Bay 

To test the applicability of the solution, the analytical 
model is applied in the Xiangshan Bay and the results of 
the tidal elevation and velocities are compared with the 
field data. 

The Xiangshan Bay is a semi-enclosed bay in Zhejiang 

Province, China. The bay is approximately 70 km long 
and 10 km wide, with an average depth of approximately 
10 m. The bay is characterized by a dominant M2 tide 
with limited freshwater input and weak wind. The 
bathymetry of the entire bay is rather complex, i.e., the 
outer part is wide with large mudflats, whereas the inner 
part is narrow. The field data were obtained at three sta-
tions (Quan, 2014; Xu et al., 2016, 2017), as shown in 
Fig.5. Station B1 is near the head of the bay, and station 
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B2 is approximately 5 km away from station B1. The tidal 
elevation and current profile data were collected at the 
two stations from 11:00 AM, December 19, 2012 to 12:00 
AM, December 20, 2012 using the bottom-mounted 
ADCP and the RBR XR420 CTD. Station D1 is near the 
open boundary, where the tidal elevation data were col-
lected for 25 h. 

The crude idealization of the Xiangshan Bay is 70 km 
long and 10 m deep. The characteristic value of the verti-
cal eddy viscosity was set at υc = 5.5×10−3

 m2
 s−1. Thus, 

the M2 tide in the Xiangshan Bay is represented by non- 

dimensional parameters β = 0.39 and L = 0.16 in the model. 
The simulated amplitude and phase of N0 obtained using 
the analytical model are compared with the M2 harmonic 
constants obtained by analyzing the observational data of 
tidal elevation at the three stations. As shown in Fig.6, the 
analytical results are consistent with the field results and 
are capable of reproducing the tidal elevation well. The 
simulated axial velocity profiles at three main tidal phases 
are compared with the velocity profiles obtained at sta-
tions B1 and B2 in Fig.7. Notably, the simulated velocity 
profiles generally follow the tendency of the measured 
profiles from the surface to the lower layer, except for an  

apparent difference near the bottom. This finding reflects 
a limitation of the analytical model, i.e., it cannot repre-
sent the complex reality, such as the no-slip bottom con-
dition used in the analytical model. 

 

Fig.5 The location and bathymetry of the Xiangshan Bay. 
The black dots mark the observational stations B1, B2, 
and D1. At stations B1 and B2, the tidal elevation and 
current profile data were collected. At station D1, only 
the tidal elevation data were collected. 

 

Fig.6 Simulated amplitude and phase of N0 for the M2 tide in the Xiangshan Bay (red lines, R = 0.3, hm = 1/4) compared 
with the harmonic constants analyzed from field data (black marks). 

 

Fig.7 Comparison between simulated (red solid lines, R = 0.3, hm = 1/4) and measured (blue dashed lines) axial velocity 
profiles at three tidal phases for stations B1 (left panel) and B2 (right panel). 
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5.2 Sensitivity to the Vertical Eddy Viscosity 

The present study adopted a parabolic form for the ver-
tical eddy viscosity, as proposed in many studies. As dis-
cussed in Section 3.1, the vertical eddy viscosity υ is a 
function of two non-dimensional parameters, i.e., R and 
hm. R is the value of υ near the bottom, which determines 
the mean value of υ. hm is the vertical position of the 
maximum υ, which represents the structure of υ in the 
upper water layer. The sensitivity of the tidal elevation 
and velocities to the structure of the vertical eddy viscos- 

ity is examined by changing the values of R and hm. 
Control experiments are conducted to determine the 

effects of R and hm. In Fig.8, the amplitude and phase of 
N0 is drawn for different values of R and hm. As R in-
creases, the minimum point of the amplitude slightly 
moves toward the head of the bay and the maximum am-
plitude decreases, as well as the phase. The increase in 
the value of hm has the same effect, but the change is 
minimal. For the axial tidal velocities (Fig.9), the ratio of 
u(z)/u(0) decreases with the increase in the value of R but 
is insensitive to the variation of hm.

 

Fig.8 Amplitude and phase of N0 for different R (left panel) and hm (right panel) values, with β = 0.125. 

 

Fig.9 Vertical distributions of u(z)/u(0) at three tidal phases for different R (left panel) and hm (right panel) values, with a 
moderate value of β = 0.125. 
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These results indicate that the tidal elevation and ve-
locities are more sensitive to R (the value of the eddy 
viscosity near the bottom) than hm (the structure in the 
upper water layer). This finding is consistent with the 
result of Ianniello (1977) who examined the velocity pro-
files for a wide range of R and hm in a breadth-averaged 
2D idealized bay. The results of the sensitivity test can be 
explained by the findings presented in Section 4. With a 
certain tidal frequency, the characteristic value of vertical 
eddy viscosity decides hd, i.e., the frictional effect. This 
frictional effect is often limited in the lower layer of the 
water column or even near the bottom. Thus, the vertical 
eddy viscosity near the bottom (R) that decides the mean 
value of υ is important, and the specific structure of υ in 
the upper water layer (hm) is insignificant. 

6 Conclusions 

A 3D idealized model of a semi-enclosed narrow bay 
with depth varying along the lateral direction has been 
developed. The 3D tidal flow with the vertical eddy vis-
cosity varying with z is solved analytically. 

For a narrow bay with a given depth profile and length, 
three parameters control the solution. β is the quadratic 
ratio of the frictional depth and the undisturbed water depth, 
which measures the importance of friction. R and hm to-
gether decide the profile of the vertical eddy viscosity. 

The results show that the patterns of tidal elevation and 
velocities are consistent with previous analytical solutions 
with constant vertical eddy viscosity. The influence of 
varying vertical eddy viscosity mainly involves amplify-
ing the magnitude of the tidal elevation and adjusting the 
axial velocity profile. 

With the varying vertical eddy viscosity and a moder-
ate value of β, the amplitude of the tidal elevation near 
the head of the bay has a variation rate larger than 20%. 
Meanwhile, the variation rate of the phase in the middle 
of the bay is approximately 10%. The frictional effect on 
the axial velocity profile is more obvious under the vary-
ing vertical eddy viscosity than that under the constant 
vertical eddy viscosity. 

The analytical model is applied in Xiangshan Bay, 
China, using parameters generalized from the real condi-
tion. The model shows that the calculated tidal elevation 
and axial velocity profiles are consistent with the field 
results. 

The results of the control experiments indicate that the 
tidal elevation and velocities are more sensitive to the 
magnitude of the eddy viscosity near the bottom than the 
detailed structure in the upper water layer, which is con-
sistent with the findings of prior studies. 

Thus far, the results show that the present analytical 
solution is appropriate. The main limitation is that the 
vertical eddy viscosity used is constant and independent 
of time. The influence of the time-varying eddy viscosity 
may be important but is beyond the scope of the present 
study and needs further investigation. 
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Appendix A: The Perturbation           
in a Narrow Bay 

If the weakly nonlinear case in a narrow bay is consid-
ered, then κ and δ are small parameters. We assume that 
the following equations hold for the expansion with re-
gard to κ and δ2, 

2 2
0 1 0 1       u u u u u ,       (33) 

2 2
0 1 0 1           .       (34) 

The substitution of Eqs. (33) and (34) into Eqs. (1) to 
(7) ensures that the perturbation equations are accurate to 
the order of O(κδ2), 

2 2
0 1 0 1 0          u u u u ,     (35)

    2 20 01 1
0 0 0

u uu u
u u u

t t t t
  

                    
 
 
 

0 0 0u u u  

2 20 0 0 01 1 1 1u uu u

x z z x z z x z z x z z

            
                                                  

   
   

      
,   (36) 

2 2 2 20 0 0 0 01 1 1
0 0

v vv v
v

t t y y z z y z z y

          
                           

    
            

u .       (37)

Given that the sea surface is set at 

2 2
0 1 0 1( )z            , 

the Taylor expansion will be used to transfer the boundary 
conditions to z = 0, as follows, 

  2 2
0 0 1 0 1 0| | ( ) |z z z zu u u                 

        2 2 2 2
0 1 0 1 01/ 2 ( ) |zz zu           , 

  2 2
0 0 1 0 1 0| | ( ) |z z z zv                  

        2 2 2 2
0 1 0 1 01/ 2 ( ) |zz zv           , 

  2 2
0 0 1 0 1 0| | ( ) |z z z zw w w                 
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        2 2 2 2
0 1 0 1 01/ 2 ( ) |zz zw           . This relation can be inserted into the surface condition 

to obtain the following boundary conditions at z = 0,

     2 20 0 0
0 1 0 0 1 0 0

w w w
w w w w

z z z
     

               
 
 
 

 

2 20 0 0 0 0 0 0 01 1
0 0 0 0 0 0u v u v u v

t t x y t t x y x y

          
                            

 
 
    

,    (38) 

and 

               
2 2 2

2 20 0 0 0 01 1
0 0 02 2 2

,
u u u u uu u

z z z zz z z
     
         

 
             
   

 

2 2 2
2 20 0 0 0 01 1

0 0 02 2 2
0

vv

z z z zz z z

v v v vv     
                   

  


   
 

 
.                      (39) 

At the sea bottom, z = −h, 

2 2
0 1 0 1 0u u u u       , 

2
0 0 1

2
1 0v vv v       , 

2 2
0 1 0 1 0w w w w       . 

At the fixed boundary, y = yb and ye, 

2 2
1 0 1 0( ) 2 2

1 0 1 0( )d 0
h

v v v v z
      

   
   


     . 

This expression can be rewritten as follows. 

0 2 2
1 0 1 0( )d

h
v v v v z   


      

2 2 2 2
1 0 1 0 1 0 1 0 0( )( )| 0zv v v v                     . 

  At the fixed boundary, x = L, 

2 2
1 0 1 0( ) 2 2

1 0 1 0( )d 0
h

u u u u z
      

   
   


     . 

This expression can be rewritten as follows. 

0 2 2
1 0 1 0( )d

h
u u u u z   


      

2 2 2 2
1 0 1 0 1 0 1 0 0( )( )| 0zu u u u                     . 

  At the open boundary, x = 0, 

2 2
0 1 0 open1           .       (40) 

Then, the equations for different orders can be obtained. 
For example, the zeroth-order equations are expressed as 
Eqs. (8) to (14), and the O(δ2)-order momentum equation 
in the y-direction is expressed as Eq. (15). The analytical 
solutions for the zeroth-order tide can be obtained based 
on these equations. 

Appendix B: The Solution Procedure to     
Eqs. (24) and (25) 

We introduce a coordinate transformation in the z- di-

rection, as follows, 

2

2 3

z a

a a
 




.                 (41) 

Thus, the notation of the variables depending on z  
can also be rewritten, as follows, 

0( , , ) ( , , )U x y U x y z  , 

0( , , ) ( , , )V x y V x y z  , 

because 

2 3 0

(1 )1
0

2( )m

R

a a z h


 

 
. 

Thus, ξ has its minimum value at z = −h0 and reaches its 
maximum value at z = 0, which are derived as follows, 

2 0
0

2 3

1 1
( )

2 2

a h R
h

a a
     


. 

Given that 0 < R < 1, we obtain 0 < ξ(−h0)
 < 1/2 by using 

the following equation 

2

2 3 0

11
(0)

2 2( )
m

m

z Ra

a a z h
 

  
 

. 

hm
 < 1/2 implies that 1/2 < ξ(0) < 1. Thus, in general, 0 < 

|ξ(z)| < 1. Then, we derive the following relations 

2 2 3( )z a a a   , 

3 2 3( 1)( )z a a a    , 

2 3 2 32 (2 1)( )z a a a a     , 

0 0 0 0

2 3

1
, ,

U V U V

z z a a  
                

 
, 

2 2 2 2
0 0 0 0

2 2 2 2 2
2 3

1
, ,

( )

U V U V

z z a a  
      

             

 
. 
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Therefore, Eqs. (24) and (25) can be rewritten as fol-
lows, 

2
0 0 0

02
1 1

1
(1 ) (1 2 )

U U Ni
U

a a x
  

  
  

     
 

 
 , (42) 

2
0 0 0

02
1 1

1
(1 ) (1 2 )

V V Ni
V

a a y
  

  
  

     
 

 
 . (43) 

In these two equations, only the derivative 0 0( , )U V   of 
ξ exists. Thus, these equations can be regarded as ordi-
nary differential equations. Notably, Eqs. (42) and (43) 
are hypergeometric equations, which can be solved ana-
lytically. The boundary conditions of these equations can 
be changed to the following forms accordingly. 

at 2
0

2 3

a

a a
  


, 0 ( )

0
U 








, 0 ( )

0
V 








,  (44) 

at 2

2 3
h

a h

a a
  
 


, 0 ( ) 0U   , 0 ( ) 0V   .    (45) 

The typical form of the hypergeometric equation is ex-
pressed as follows, 

         
2

2

d d
1 1 =0

dd

H H
r a b abH

 
   


        . 

(46) 

In the present study, the parameters of Eqs. (42) and 
(43) are compared with those of Eq. (46) and the follow-
ing relation can be derived, 

 

1

1           

1      

/( )

r

a b

ab i a 


  
 

.              (47) 

The previously presented equations prove that 0 < |ξ(z)| 

< 1. Thus, according to standard textbooks on special func-
tions, such as that of Wang and Guo (2000), the two in-
dependent solutions to the homogeneous form of Eq. (46) 
around the singular point ξ = 0 under the present parame-
ter settings can be expressed as follows, 

1
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a b
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( ) ( ) 2 (1 ) ( ) ( ) 2 (1)[ ]a n b n n a b             . (49) 

In Eqs. (48) and (49), ( · )n and ψ are defined as follows, 
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and 
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d
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n
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 



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where Γ is the Gamma function, expressed as follows, 

1

1

1 1
( ) 1 1

z
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z n n

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

          
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 ,         (52) 

and γ is Euler’s constant, expressed as follows, 

1

1
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  .                (53) 

According to Eqs. (47) and (50), 
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Because ψ(z) has the following relation, 
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then 
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Thus, Eqs. (48) and (49) can be rewritten as follows, 
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where 

1
2

2
10

1

( !)
( )

n

n
j

i
b j j

an 




   , 

1 1
2

2 2
1 00 1

1 1 2 2

1( !) /( )
( ) ( )

n n

n
jj

i j
c j j

a jn j j i a 

 



    
 

 . 

Then, the solutions to the homogeneous forms of Eqs. 
(42) and (43) can be derived as follows, 

0 1 1 2 2( , , ) ( ) ( )U x y C H C H    ,      (59) 

0 3 1 4 2( , , ) ( ) ( )V x y C H C H    ,      (60) 

where C1 to C4 are the integration constants, which are 
the functions of (x, y). 

The acquisition of the special solutions to Eqs. (42) and 
(43) are trivial. Thus, the general solutions to Eqs. (42) 
and (43) have the following forms, 

0
0 1 1 2 2( , , ) ( ) ( )

N
U x y C H C H i

x
   

  


 ,    (61) 

0
0 3 1 4 2( , , ) ( ) ( )

N
V x y C H C H i

y
  


  


 .    (62) 

Then, C1 to C4 can be determined by considering the 
surface and bottom conditions in Eqs. (44) and (45), as 
follows, 

0
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0
2

0
3

0
4

N
C i A

x
N

C i B
x

N
C i A

y

N
C i B

y

  
  

  


  
 

,                (63) 

where 

2 0

2 0 1 1 0 2

( )

( ) ( ) ( ) ( )h h

H
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H H H H


   




 
, 

1 0

2 0 1 1 0 2

( )

( ) ( ) ( ) ( )h h

H
B

H H H H


   


 

 
. 

After the substitution of Eq. (63) into Eqs. (61) and 
(62), the solutions to Eqs. (42) and (43) can be derived, as 
follows, 

0 0
0 1 2( , , ) [ ( ) ( ) 1]

N N
U x y AH BH i iq

x x
    

   
 

  , (64) 

0 0
0 1 2( , , ) [ ( ) ( ) 1]

N N
V x y AH BH i iq

y y
  

  
   

 
  , (65) 

where 

1 2( ) ( ) 1q AH BH    . 

After reverse transformation of ξ to z, the solutions to 
Eqs. (24) and (25) can be rewritten as follows, 

0
0 ( , , )

N
U x y z iq

x





,             (66) 

0
0( , , )

N
V x y z iq

y





,             (67) 

where 

1 2( ( )) ( ( )) 1q AH z BH z    .        (68) 
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