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Abstract  In this paper, the improved version of the meshless singular boundary method (ISBM) is developed for analyzing the 
hydrodynamic performance of bottom-standing submerged breakwaters in regular normally incident waves. Both the single and dual 
prismatic breakwaters of rectangular and trapezoidal forms are examined. Only the impermeable breakwaters are considered in this 
study. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion 
with the appropriate mixed-type boundary conditions, and it is solved numerically using the ISBM. The numerical results are pre-
sented in terms of the hydrodynamic quantities of reflection and transmission coefficients. The values are first validated against the 
data of previous studies, computed, and discussed for a variety of structural conditions, including the height, width, and spacing of 
breakwater submergence. An excellent agreement is observed between the ISBM results and those of other methods. The breakwater 
width is found to feature marginal effects compared with the height. The present method is shown to accurately predict the resonant 
conditions at which the maximum reflection and transmission occur. The trapezoidal breakwaters are found to generally present a 
wide spectrum of reflections, suggesting that they would function better than the rectangular breakwaters. The dual breakwater sys-
tems are confirmed to perform much better than single structures. 

Key words  meshless improved singular boundary method; regular normal waves; rectangular and trapezoidal breakwaters; reflec-
tion; transmission 

 

1 Introduction 
The submerged breakwaters are popular structures used 

to safeguard coastal areas in situations where complete 
protection from waves is unnecessary. These structures 
reduce the wave energy by reflecting most of the incident 
waves, hence reducing the wave transmission. The sub-
merged breakwaters can effectively create calmer areas in 
their leeward side similar to those in harbor entrances and 
marinas and possess the capability to decrease the sedi-
ment transport capacity. At the same time, the fish pas-
sage and exchange of waters between the sea and shore 
sides of submerged breakwaters is incompletely inhibited. 
If well-designed, the submerged breakwaters can offer 
potentially cost-effective solutions. 

To identify the resonant conditions at which maximum 
reflections, which are widely known as Bragg resonant 
reflections, would occur, the wave interactions with sub-
merged breakwaters have been studied both experimen 
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tally and theoretically. 
Dattatri et al. (1978) conducted a comprehensive labo-

ratory investigation to evaluate the performance charac-
teristics of the submerged breakwaters of various types and 
shapes. They observed that the breakwater crest width 
and depth of submergence are important parameters that 
influence the performance of the submerged breakwaters. 
Abul-Azm (1994) developed an analytical solution based 
on the eigenfunction expansion method (EFEM) and po-
tential flow linear theory to study the interaction of 
monochromatic oblique waves and impermeable sub-
merged wide breakwater. The theoretical results were 
presented to show the effect of different wave and struc-
tural parameters on the transmitted and reflected waves 
and the hydrodynamic loadings on the breakwater. The 
results of the solution showed good agreement with the 
corresponding experimental findings and approximate 
analytical expressions obtained by other investigators. 
Hsu et al. (2002) carried out a series of laboratory ex-
periments to compare the wave reflections from sandbars 
of rectangular, cosine, and triangular shapes. They showed 
that the rectangular sandbars generate the highest reflec-
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tions. Cho et al. (2004) carried out a series of experimen-
tal tests in a laboratory and separately developed an ana-
lytical solution based on the EFEM to investigate the 
wave reflection from rectangular and trapezoidal imper-
meable submerged breakwaters. The analytical and ex-
perimental results exhibited a good agreement and the 
trapezoidal shape breakwater was recommended for an 
overall desirable performance. Twu and Liu (2004) inves-
tigated the wave damping characteristics of a periodic 
array of porous bars using the EFEM. The effect of the 
porosity was found to further reduce both the reflection 
and transmission and increase the wave dissipation. Liu   
et al. (2016) recently conducted experimental laboratory 
tests and independently developed complete analytical 
linear potential solutions using the multipole expansion 
method for Bragg reflections of obliquely and normally 
incident water waves by a series of submerged semi- cir-
cular bars lying on the bed. An overall reasonable agree-
ment was observed between the analytical results and the 
experimental data. Similarly, Zhao et al. (2017) devel-
oped an analytical solution based on the EFEM for oblique 
wave scattering by a submerged porous breakwater with a 
leeside partially reflecting vertical wall. 

Numerical methods have also been applied success-
fully in the study of submerged breakwaters. The most 
popular domain type methods comprise the finite element 
method and finite volume method. These methods involve 
meshing over the domain and special integration over the 
elements. On the other hand, boundary-type methods em-
ploy singular kernels to circumvent the physical domain 
and therefore only require solution on the domain bound-
ary. These methods include the boundary element method 
(BEM), and meshless methods, such as the method of fun-
damental solutions (MFS), regularized meshless method 
(RMM), and singular boundary method (SBM). The MFS, 
RMM, and SBM are advantageous as only source nodes 
are distributed on the domain boundary, contrary to the 
BEM, which requires meshing using boundary elements. 
Moreover, in meshless methods (MFS, RMM, and SBM) 
discretization of the equations governing the physical 
problem involves only the singular kernels to find simple 
relations between the boundary nodes, whereas the BEM 
discretization requires intricate mathematics and difficult 
numerical integration of the singular kernels over the 
mesh elements. The MFS is a classical method that has 
been around for several decades. Fairweather and Kara-
georghis (1998) provide a comprehensive review of the 
method. The MFS uses single-layer potentials as its ker-
nel (basis) functions. To avoid the singularity of the ker-
nels when the source and collocation points coincide, the 
sources are placed on a nonphysical (fictitious) boundary 
other than the physical one. This condition is a major 
drawback of the method. To remedy the MFS, Young   
et al. (2005) proposed the RMM. This method uses double- 

layer potentials as kernel functions and the same physical 
boundary for both collocation and source points. To re-
move the hyper-singularities of the kernels upon the co-
incidence of the collocation and source points, a desingu-
larization process is introduced by using the regulariza-

tion technique of the subtracting and adding-back meth-
ods. However, the regularization of the singularities in the 
double-layer potentials can affect the method accuracy. 
The SBM is another recent meshless method proposed by 
Chen and Wang (2010) and Chen and Fu (2010). This 
method uses single-layer potentials as its kernel functions 
and the same physical boundary for both collocation and 
source points. The desingularization of the kernel func-
tions is carried out by introducing the concept of the ori-
gin intensity factors. In the traditional SBM, the origin 
intensity factors are evaluated by an inverse interpolation 
technique. However, to carry out this technique, the SBM 
requires a cluster of sample nodes within the physical 
domain. The solution accuracy may be sensitive to the 
location of the sample nodes. To overcome the shortcom-
ing of the sample nodes Chen and Gu (2012), Gu et al. 
(2012) and Gu and Chen (2013, 2014) proposed an im-
proved version of the original SBM (ISBM). In this 
method the desingularization is carried out by the regu-
larization technique of subtracting and adding-back and 
an improved inverse interpolation technique that requires 
no sample nodes. 

Koley et al. (2015b) studied by a suitable combination 
of the EFEM and BEM oblique-wave scattering and trap-
ping by bottom-standing porous breakwaters on a sloping 
bed. In another investigation, Koley et al. (2015a) studied 
oblique-wave trapping by bottom-standing and surface- 

piercing porous structures in front of a vertical rigid wall 
using the EFEM and separately, the multi-domain BEM. 
Chen et al. (2011) successfully applied the RMM to solve 
the problem of obliquely incident water waves past a sin-
gle submerged breakwater with rigid and absorbing bound- 
ary conditions. Ouyang et al. (2016) developed a nu-
merical solution based on the RMM to study the Bragg 
reflections for a train of surface water waves from a series 
of impermeable submerged bottom breakwaters. Chen  
et al. (2014) made the first attempt to test the feasibility 
of the ISBM to a two-dimensional (2D) problem of ob- 
liquely incident water waves past a submerged breakwater. 
Fu et al. (2015) applied the ISBM to various exterior 
wave problems. The efficiency of the method was con-
firmed by several numerical tests. Li et al. (2016) applied 
the ISBM to investigate the interaction of obliquely inci-
dent water waves past single and dual submerged break-
waters with rigid and absorbing boundary conditions. A 
dual breakwater system was found to trap more water 
wave energy than a single breakwater one.  

The present paper aims to develop a numerical model 
based on the ISBM and non-viscous flow theory to ana-
lyze numerically the performance of bottom-standing 
single or dual submerged impermeable breakwaters in 
regular normally incident waves. The breakwaters are of 
rectangular and trapezoidal forms. The effects of several 
parameters relating to the geometry of the breakwaters 
(submergence height and width) are examined. 

2 Formulation of the Problem 
In this study, we consider single and dual bottom- 
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standing submerged impermeable breakwaters of rectan-
gular and trapezoidal shapes as shown in Fig.1. For the 
sake of generality, the method is developed for a system 
of dual trapezoidal breakwaters. 

Fig.2 shows the idealized geometry of a 2D problem in 
a Cartesian system (x-y). The regular normal waves of 
small amplitude a, period T, and wavelength L impinge 
from the left in water of depth d. Assuming an irrotational 
flow and incompressible fluid motion, the problem is 
formulated using a velocity potential Φ(x, y, t) = Re[(x, 
y)exp(−iσt)], where Re denotes the real part, (x, y) refers 
to the time-independent spatial velocity potential, i 1,   

σ = 2π/T is the wave angular frequency, and t is the time. 
The wave number k = 2π/L corresponds to the solution of 
the dispersion relation gktanh(kd) = σ2, where g is the 
gravitational acceleration. The wave field is completely 
specified if the 2D velocity potential  is known. 

The breakwaters feature a height h, bottom width wb, 
and top width wt. For rectangular breakwaters, wb = wt = w. 
The dual breakwaters are separated by a distance XS 
measured from the centers of the breakwaters. The total 
fluid domain is divided in three regions, as shown in 
Fig.2. Region I at (−∞) denotes the region with incoming 
(inflow) waves, and region III at (+∞) is where the waves 
are transmitted (outflow). Region II lies between regions I 
and III and is delimited by the rigid (impermeable) walls  

of the breakwaters (Γb1, Γb2, and Γb3 for the front break-
water 1 and Γb4, Γb5, and Γb6 for the back breakwater 2), 
the free surface boundary Γf, the seabed boundary Γs, and 
the radiation boundaries Γ− and Γ+ of the inflow and out-
flow regions, respectively. The spatial velocity potential  
satisfies the following conditions: 

2 2

2 2
 = 0, in the fluid region II

x y

  
 

,       (1) 

2

0,   (free surface boundary )fy d
n g

      


,  (2) 

= 0, 0 (seabed boundary  )sy
n

  


,       (3) 

1 2 3 4 5 6 =0,  ( ) b b b b b bx, y
n

      


, 

(breakwaters boundaries  )b , (4) 

where n is the normal to the boundary pointing out of the 
flow region and Γb = Γb1 + Γb2 + Γb3 + Γb4 + Γb5 + Γb6 denotes 
the total rigid (impermeable) boundaries of the breakwa-
ters. 

The radiation conditions at the inflow and outflow re-
gions are respectively expressed as follows: 

 

Fig.1 Breakwater systems considered in this study. 

 
Fig.2 Problem definitions for the breakwater system. 
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   =0 radiation condition at I
Iik x

n

 
 

 
  


 

(boundary ) ,   (5) 

   =0 radiation condition at ik x
n





 


, 

 (boundary ) ,   (6) 

where I is the incident velocity potential. 
The radiation conditions in the infinite strip problem 

are treated by transferring the far-field potentials at two 
fictitious vertical boundaries at finite distances x = −xR and 
x = +xR, which represent the left (Γ−) and right (Γ+) 
boundaries, respectively, of the fluid domain. The ana-
lytical series at these boundaries are given by the follow-
ing: 

( )cosh( )
=  e  and =

sinh( )
Rik x x

I
ky

A
kd n x

  
 

     
 

 

for  (boundary )Rx x    , (7a) 

( )cosh( )
= e  and =

sinh( )
Rik x xky

A
kd n x

 
 

   
 

 

for  (boundary )Rx  x    , (7b) 

where A− and A+ are unknown complex coefficients to be 
determined. The disturbances are guaranteed to be out- 

going waves only (see for example Chioukh et al., 2017; 
Bakhti et al., 2017). The incident velocity potential is de-
fined as follows: 

( )cosh( )
= e

sinh( )
Rik x x

I
aL ky

T kd
  .          (8) 

The unique matching conditions at the interfaces Γ− 
and Γ+ of the flow regions ensure the smooth transfer of 
the mass flow from one region to the next. Once the po-
tentials − and + are calculated by satisfying the radiation 
boundary conditions of Eqs. (5) and (6), they are matched 
to those of Eqs. (7a) and (7b), respectively; then, the un-
known coefficients A− and A+ are evaluated following the 
method of Yueh and Chuang (2012): 

0
0

 = ( ) ( , )d
cosh( )

d

R
aL k

A x y y
T N kd

     ,  (9a) 

 

0
0

= ( , )d
cosh( )

d

R
k

A x y y
N kd

   ,        (9b) 

where  

0
1 2

= 1  
2 sinh(2 )

kd
N

kd

 
 

 
. 

The reflection and transmission coefficients (Cr and Ct) 
are respectively determined from the following expres-
sions (see for example Chioukh et al., 2017; Bakhti et al., 

2017): 

0 0= | |  and = | |
T T

Cr A Ct A
aL aL

  .         (10) 

3 Numerical Solution by the ISBM 
For the numerical solution, the total boundary of the 

whole computational domain is discretized for single and 
double breakwaters (Fig.3). 

 

Fig.3 Domain discretization for (a) single and (b) double 
breakwaters. 

In the ISBM, the nodal values of the potentials and 
their fluxes are expressed as linear combinations of the 
fundamental solutions and their derivatives (Chen and Gu, 
2012; Gu et al., 2012; Gu and Chen, 2013): 

1,

( ) ( , )
N

i j i j i
ii

j i j

x Q x s   
 

  ,       (11) 

1,

( ) ( , )
( )

i i

i i jN
i j i

ii
j i jx x

x Q x s
q x q

n n

  
 

   
  ,   (12) 

where αj is an unknown coefficient to be determined, xi 
and sj are the collocation points (xi, yi) and source points 
(x'j, y'j), respectively, and N is the total number of points. 
(xi) refers to the essential boundary condition (Dirichlet), 
q(xi) denotes the natural boundary condition (Neumann), 
and ix

n  is the normal at the collocation point xi. The co-
efficients ii and qii are source intensity factors corre-
sponding to the fundamental solution and its derivative, 
respectively. Q(xi, sj) is the fundamental solution of the 
2D Laplace equation. This variable depends only on the 
Euclidean distance rij

 = |xi − sj| between the collocation 
point xi and source point sj, i.e., 

2 2( ) ( )ij i j i jr x x y y     , 

and is given together with its normal derivative as fol-
lows: 

1 1
( , ) ln  

2
i j

ij

Q x s = 
π r

 
  
 

,            (13a) 
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2

[( )( ) ( )( )]( , )

2π( )

i i

i

i j
i j i jx x

ijx

nx x x ny y yQ x s

n r

     


, (13b) 

where ix
nx  and ix

ny  are the components of the normal at 

the collocation point xi. 
The coefficients ii and qii are the diagonal elements of 

the ISBM interpolation matrices. These variables arise 
when the collocation and source points coincide (xi

 = sj). 
Direct evaluation of these coefficients is unfeasible given 
the singularities inherent in the fundamental solution and 
its derivative. In this study, the coefficient ii is evaluated 
by the integration of the fundamental solution on the line 
segments, leading to simple analytical expression, as in 
the works of Brebbia and Dominguez (1992) and Gu and 
Chen (2014): 

1 1 2
( , )d ln 1

2πs

i
ii s

i i

Q x s


  
     

   
 

.     (14) 

For the coefficient qii, a simple expression is derived by 
Gu et al. (2012) using the regularization process of sub-
tracting and adding-back to remove singularities: 

1,

1 ( , )

j

i jN

ii j
i j i j s

Q x s
q

n 


 


,         (15) 

where i  and j  represent the half distances between the 
collocations points (xi−1 and xi+1) and the source points  
(sj−1 and sj+1), respectively. js

n  is the normal at the source  

point sj. 
The boundary conditions given by Eqs. (2)–(6) are sat-

isfied by a linear combination of Eqs. (11) and (12). The 
discretization process leads to the following system of 
equations. 

For nodes xi
  Γf (the free surface boundary), 

2 2

1,

( , )
( , ) 0

i

i jN
j i j i

ii ii
j i j x

Q x s σ σQ x s q
n g g
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 

              
 . 

(16) 

For nodes xi
  Γ− (the radiation boundary at x = −xR), 

 
1,
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. ( , )
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i jN
j i j i

ii ii
j i j x

Q x s
i.k Q x s q ik

n
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i
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iI

I
x

x
ik x

n








. (17) 

For nodes xi
  Γ+ (the radiation boundary at x = +xR), 

 
1,

( , )
( , ) 0

i

i jN
j i j i

ii ii
j i j x

Q x s
ikQ x s q ik

n
  

 

        
 . 

(18) 

For nodes xi
  Γs and Γb (seabed and the breakwater 

boundaries), 

1,

( , )
0

i

i jN
j i

ii
j i j x

Q x s
q

n
 

 

  
 .           (19) 

The resulting discretized Eqs. (16)–(19) are written in a 
more compact matrix form as follows: 

   
 x 

H  B ,  , 1,2, ,i
ij i NN N N

i j N      ,     (20) 

where N specifies the total number of nodes on the whole 
domain boundaries, e.g., N = Nf + N− + N+ + Nb + Ns, where 
Nf, N−, N+, Nb and Ns are the number of nodes on the 
boundaries Γf, Γ

−, Γ+, Γb, and Γs, respectively. The alge-
braic system of equations expressed by Eq. (20) is solved 
numerically using a Gaussian elimination algorithm to 
yield the vector of unknown {αi}. The potential and its 
derivative at the nodes are then computed using Eqs. (11) 
and (12). 

4 Validation of the Numerical Method 
The sensitivity of the numerical results in terms of 

conservation of energy with respect to the total number of 
boundary nodes N and the position x = xR of the vertical 
fictitious boundaries is tested for single and dual rectan-
gular breakwaters for two values of the relative water 
depth: kd = 0.5, and kd = 4. This process ensures that tests 
are applicable for small and large values of kd. Energy 
conservation is expressed as |1 − (Cr)2

 − (Ct)2| and can be 
regarded as an error indicator of the numerical solutions. 
Fig.4(a) displays the results of errors against N for a sin-
gle breakwater with relative breakwater height h/d = 0.75 
and relative breakwater width w/d = 1. Fig.4(b) shows the 
results for the dual breakwaters separated by a distance XS, 
with h/d = 0.75, and w/d = 1. To plot the results of the er-
rors with respect to the location of the vertical fictitious 
boundaries, the criteria of Li et al. (2016) are followed. 
Fig.5(a) plots the errors against the quantity 2xR/w for a 
single breakwater with N = 400 nodes, whereas Fig.5(b) 
presents the plot against the quantity [2xR

 − (XS
 − w)]/2w 

for dual breakwaters with N = 600 nodes. 
In all the numerical computations to follow and based 

on the results in Figs.4 and 5, the whole boundary of the 
computational domain is discretized with 400 source 
nodes for single breakwaters and 600 source nodes for 
dual breakwaters. This process would ensure that the 
computational errors remain small and below 10−2, pro-
vided that the vertical boundaries are selected, such that 
(2xR/wb) ≥ 3, and [2xR−(XS−wb)]/2wb ≥ 3 for single and dual 
breakwaters, respectively. For rectangular breakwaters, 
wb is adequately exchanged by w. 

To demonstrate the validity of the present method, the 
numerical results of the ISBM for a number of limiting 
cases are compared against those of other investigators. 
The first case examined is a bottom-standing single im-
permeable rectangular breakwater for h/d = 0.75, and w/d = 

1. This case was previously studied by Abul-Azm (1994) 
using the EFEM and Chen et al. (2011) using both the 
BEM and RMM. Fig.6 presents the variations in the coef-
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ficients of reflection and transmission (Cr and Ct, respec-
tively) with respect to kd, including those of the present 
investigation. A high agreement is observed among the 

results of all methods. Noticeably, at large values of kd, 
the results of the ISBM still follow those of the EFEM 
and BEM, but those of the RMM exhibit fluctuations.

 

Fig.4 Error indicator versus the number of boundary nodes. 

 

Fig.5 Error indicator versus the location of vertical fictitious boundaries. 

 

Fig.6 Variations in Cr and Ct versus kd for single rec-
tangular breakwater under different methods. 

The second case examined is a structure of bottom- 

standing dual impermeable rectangular breakwaters, such 

that h/d = 0.5, w/d = 0.5, and XS/d = 3. For the same condi-
tions, the trapezoidal impermeable breakwaters (wb/d = 

0.5, and wt/wb = 0.5) are also inspected. These cases were 
previously studied experimentally by Cho et al. (2004), 
who also provided analytical solutions using the EFEM. 
Similarly, Ouyang et al. (2016) carried out numerical tests 
on the same cases using the RMM. Fig.7 displays the re-
sults of the reflection coefficients (Cr), including those of 
the present study, for rectangular breakwaters; Fig.8 
shows those for the trapezoidal breakwaters. In general, 
the results of all methods are in close agreement. 

5 Results and Discussion 
Given the large number of parameters on hand, a con-

siderable number of cross-correlations must be investi-
gated. For single breakwaters, the parameters of interest 
include kd, h/d, and w/d (wb/d and wt/wb for trapezoidal 
breakwaters), whereas XS/L is the parameter of interest for 
dual breakwaters. All these parameters must be cross- 
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correlated to reveal meaningful conclusions. In this work, 
only a subset of the data gathered from this study is shown. 

 

Fig.7 Variation in Cr versus kd for double rectangular 
breakwaters under different methods. 

 

Fig.8 Variation in Cr versus kd for double trapezoidal 
breakwaters under different methods. 

5.1 Single Breakwaters 
Fig.9 shows the variations in the values of Cr and Ct  

versus the kd for different values of h/d. The results in 
Fig.9(a) for rectangular breakwater with w/d = 1 show the 
occurrence of several peaks for certain values of kd. The 
larger primary peaks occur at lower values of kd. In-
creasing the breakwater height increases the reflection 
and lowers the transmission, indicating that elevated 
breakwaters provide better shelter. For a trapezoidal 
breakwater with a base of the same width as the rectan-
gular breakwater (wb/d

 = 1) and top width half of the 
width of the base (wt/wb

 = 0.5), the results in Fig.9(b) also 
show that increasing the height of the breakwater in-
creases the reflection and lowers the transmission. How-
ever, although the primary peaks have slightly decreased 
compared with those of the rectangular breakwater, the 
spectrum width around these primary peaks have broad-
ened, suggesting that the trapezoidal breakwater is a bet-
ter alternative than the rectangular breakwater in terms of 
shoreline protection. 

Fig.10 shows the variations in the values of Cr and Ct 
versus kd for different values of the breakwater width. 
The results in Fig.10(a) for rectangular breakwater with 
h/d = 0.75 show that increasing the breakwater width 
leads to the appearance of more peaks in Cr and Ct at 
different values of kd. For a particular width of the 
breakwater, the magnitudes of these peaks decrease with 
the increase in kd. By increasing the width, the reflection 
of the major peaks increases, whereas the transmission 
decreases. However, the change shows no significance as 
in the case for increasing breakwater heights. Fig.10(b) 
shows the same effect for a trapezoidal breakwater with a 
base of the same width as the rectangular breakwater and 
top width half of the base width (wt/wb

 = 0.5). Further-
more, the primary peaks have slightly decreased com-
pared with those of the rectangular breakwater, but the 
spectrum width has expanded especially for shallow and 
intermediate waters (kd < 3.14). These results indicate the 
superior wave energy reflected by the trapezoidal break-
water. 

5.2 Double Breakwaters 
The double breakwaters in this study are considered to 

be of the same height and width. Fig.11 shows the varia- 

 

Fig.9 Variations in Cr and Ct versus kd for different values of h/d. 
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Fig.10 Variations in Cr and Ct versus kd for different values of the breakwater widths. 

 

Fig.11 Variations in Cr and Ct versus kd for different values of h/d. 

tions in Cr and Ct versus kd for different values of h/d. 
Fig.11(a) displays the occurrence of several peaks near 
the integer values of kd for rectangular breakwaters with 
w/d = 0.5 and XS/d = 3. The larger primary peaks occur at 
kd around 1. The secondary peaks are a bit distant from a 
kd of 2. Increasing the breakwater height increases the 
reflection and lowers the transmission. For trapezoidal 
breakwaters with a base of the same width as the rectan-
gular breakwaters (wb/d = 0.5) and top width half of the 
width of the base (wt/wb = 0.5), the results in Fig.11(b) 
show similar trends. However, all peaks occur much 
closer to the integer values of kd. Although the primary 
peaks have slightly decreased compared with those of the 
rectangular breakwater, the secondary and tertiary peaks 
have increased, leading to the broader width of the spec-
trum and suggesting the better performance of the trape-
zoidal breakwater. The overall width of both breakwaters 
(2w/d = 1 for rectangular and 2wb/d = 1 for trapezoidal) is 
similar to the single breakwater presented in Fig.9. How-
ever, a much better performance is observed with using 
two breakwaters separated by a distance than when using 
a single breakwater. By using a system of dual breakwa-
ters, the reflections increase, and the transmissions de-
crease. This result is demonstrated for the trapezoidal 
breakwaters. 

Fig.12 shows the variations in Cr and Ct versus the kd 

for different values of the breakwater widths. As shown 
in Fig.12(a), the results for rectangular breakwaters with 
h/d = 0.75 and XS/d = 3 indicate that the primary peaks are 
of nearly similar magnitudes. Hence, they are unremarka-
bly affected by the increase in w/d. The secondary and 
tertiary peaks are of different magnitudes, but those with 
a larger w/d are not necessarily the largest. This finding 
suggests that increasing the width of the breakwater 
causes no improvement in the performance of the system. 
Fig.12(b) shows the similar trends observed for trapezoi-
dal breakwaters with a base of the same width as the rec-
tangular breakwaters and wt/wb = 0.5. The spectrum shows 
no remarkable difference from that of the rectangular 
breakwaters. Thus, adopting trapezoidal breakwaters is 
advised, bearing in mind the massive conservation in 
terms of construction time and costs. Comparing the re-
sults in Fig.12 for dual breakwaters and those in Fig.10 
for single breakwaters, using two breakwaters separated 
by a distance performs much better than using a single 
breakwater due to increased reflections and decreased 
transmissions. 

Fig.13 shows the effect of varying the distance between 
the breakwaters for different values of h/d. The distance 
between breakwaters is expressed in terms of twice the 
relative spacing 2XS/L. Fig.13(a) presents the results for 
the rectangular breakwaters with w/d = 1 and kd = 1, 
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whereas Fig.13(b) depict the findings for the trapezoidal 
breakwaters with wb/d = 1 and wt/wb

 = 0.5. All the Cr and 
Ct curves vary periodically with the increasing values of 
2XS/L. For low breakwaters (h/d = 0.25), the zero values 
of Cr and Ct occur at 2XS/L ≈ 0.5 + n (n = 1, 2, 3,···). On the 
other hand, the maximum values of Cr (corresponding to 
the minimum values of Ct) occur at integer values of 
2XS/L, i.e., 2XS/L ≈ n (n = 1, 2, 3,···). This finding is in ac-
cordance with those of previous studies, for example, that 
of Ouyang et al. (2016), who observed that when the in-
cident wave length is twice as long as the spacing be-
tween the crests of the breakwaters, Brag resonance oc-
curs, leading to amplification of reflection and subsequent 
reduction in the transmitted waves. When the height of 
the breakwaters is increased, reflection raises, and trans-
mission decreases, but the values of 2XS/L at which the 
optimum and zero values occur reduce. For the trapezoi-
dal breakwaters, similar trends are shown, but the opti-
mums are amplified as they are absent at the same kd 
values compared with those of the rectangular breakwa-
ters. 

Fig.14 shows the variations in Cr and Ct versus 2XS/L 
for different breakwater widths. Fig.14(a) displays the 
results for the rectangular breakwaters with h/d = 0.5 and 
kd = 1, whereas Fig.14(b) illustrates the findings for the  

trapezoidal breakwaters with a base of the same width as 
the rectangular breakwaters and wt/wb

 = 0.5. Again, all the 
Cr and Ct curves vary in a periodic fashion. The results 
also confirm that the increase in the breakwater widths 
causes no remarkable effect on the variations in Cr and 
Ct. 

6 Conclusions 
The work carried out in this numerical study has em-

ployed the improved version of the original SBM (ISBM) 
to evaluate the hydrodynamic quantities of reflection and 
transmission of bottom-standing submerged impermeable 
breakwaters in regular normally incident waves. Both 
single and dual prismatic breakwaters of rectangular and 
trapezoidal forms were examined. The correctness and 
accuracy of the results of the present method were con-
firmed by comparison with previously published results 
of other methods, including the EFEM, BEM, RMM, and 
experimental data. The effects of major design parameters, 
including breakwater height, width, and spacing, were 
investigated for several wave conditions. The results 
demonstrate that in places where only partial protection 
from waves is required, submerged breakwaters can be 
used successfully, as they can substantially attenuate 

 

Fig.12 Variations in Cr and Ct versus kd for different values of breakwater widths. 

 

Fig.13 Variations in Cr and Ct versus 2XS/L for different values of h/d. 
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Fig.14 Variations in Cr and Ct versus 2XS/L for different breakwater widths. 

waves. Dual breakwaters were found to perform better 
than single breakwaters. The resonant reflections and 
transmissions are amplified with the increase in both the 
height and width of the breakwaters. Nevertheless, the 
width was found to feature an extremely limited effect. 
The reflection and transmission coefficients vary peri-
odically with the spacing relative to the wavelength. Op-
timum values occur at integer values twice the relative 
spacing to the wavelength. In the trapezoidal breakwaters, 
the hydrodynamic quantities exhibit broader spectra than 
those in the rectangular breakwaters, suggesting the better 
performance of trapezoidal breakwaters. Therefore, adopt-
ing trapezoidal breakwaters is recommended for shoreline 
protection, bearing in mind the considerable savings in 
terms of construction time and costs. 
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