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Abstract  Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivari-
ate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current ve-
locity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal 
distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, 
wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probabil-
ity distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, 
namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal 
information and the dependence among the three variables. The design return values of these three variables can be obtained by three 
methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations 
are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are 
further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the 
conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among 
variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design. 
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1 Introduction 
Offshore platforms have been widely utilized for oil 

and gas production in the Bohai Sea (Yang and Zhang, 
2013), which must be designed under low failure prob-
abilities with complicated structures and high costs 
(Ewans and Jonathan, 2014). Fixed offshore platforms are 
subjected to various ocean environmental loads, such as 
waves, wind, current, storm surges, and earthquakes, dur-
ing their lifetime. Designers need to estimate the return 
values of these environmental conditions, and extreme 
frequency analysis should be conducted (Zhang et al., 
2015). However, previous design criteria of ocean envi-
ronmental parameters are calculated by univariate distri-
bution (API, 2005), which regards ocean environmental 
factors (waves, wind, and current) as independent vari-
ables. This method may result in overestimation of the 
extreme loads and conservative designs. Considering the 
dependence among variables, multivariate joint probabil-
ity distributions are more suitable to actual circumstances 
than univariate distributions (De Michele et al., 2007). 

Traditional multivariate statistical analyses of wave  
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height and wind speed can be found in the literature. For 
example, Duan et al. (2002) established the joint prob-
ability distribution of wind speed and significant wave 
height based on multivariate extreme theory. Morton and 
Bowers (1996), Zachary et al. (1998), Nerzic and Prevosto 
(2000), Dong (2007), and Dong et al. (2008) accounted 
for the dependence between wave height and wind speed 
using the bivariate logistic model, bivariate extreme value 
model, and bivariate lognormal distribution. However, the 
prerequisite of the above models is the same type of mar-
ginal distribution for different variables. 

Copula functions proposed by Sklar (1959) can com-
bine the marginal distributions of different ocean envi-
ronmental conditions with some correlations among them 
and eventually lead to a joint probability distribution 
(Nelsen, 2006). The margins can be chosen from different 
types of distributions, which may be useful in coping with 
limitations of traditional multivariate models. Copulas 
have an accurate and reliable statistical description of all 
the relevant margins, so they are efficient tools to con-
struct multivariate joint distributions (Joe, 1997; Nelsen, 
2006; Wist et al., 2005; De Michele et al., 2007; Muha-
isen et al., 2010; Dong et al., 2012; Corbella and Stretch, 
2013; Dong et al., 2015). In recent years, copula func-
tions have been extensively applied in coastal and off-
shore engineering. Qin et al. (2007) established the joint 
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probability distribution of maximum effective wave height 
and maximum wind speed using copula functions. Chen 
(2011) used bivariate copula functions to analyze the joint 
probability distribution of extreme wave height and wind 
speed in the Shanwei sea area. Yang and Zhang (2013) 
utilized Gumbel-Hougaard and Clayton copulas to con-
struct joint probability distributions of winds and waves. 
Zhai et al. (2014) built the bivariate distribution of annual 
maximum wave height and corresponding wind speed 
with Clayton copula, and they applied it in the calculation 
of load design standards for ocean platforms to decrease 
the load design standards. Dong and Li (2015) applied 
Plackett copula to construct the trivariate joint probability 
distribution of wave height, wind velocity, and current 
velocity. Dong et al. (2016) constructed multivariate dis-
tributions with the fully nested copulas to compute the 
reliability of vertical breakwater. 

The bivariate copulas are widely used in coastal and 
ocean engineering, but the trivariate or higher dimensional 
copulas are rarely utilized. In this paper, the trivariate 
joint design criteria of wave height, wind speed, and cur-
rent velocity are proposed in accordance with the 30-year 
data from the Bohai Sea. The content includes three as-
pects: the analysis of dependence among wave height, 
wind speed, and current velocity; the construction of their 
trivariate joint probability distributions; and the adoption 
of joint design criteria to calculate metocean parameters 
for platform design. Section 2 presents four kinds of 
bivariate and trivariate Archimedean copulas. Section 3 
shows the model selection methods of univariate, bivari-
ate, and trivariate probability models. In Section 4, a case 
study is conducted to verify the efficiency of joint distri-
butions and design criteria. Some conclusions are sum-
marized in Section 5. 

2 Joint Probability Distributions Based 
on Copula Functions 

2.1 Copula Theory 

Copulas model dependence between random variables 
separately from a marginal distribution. Therefore, the 
use of copulas in environmental science is rapidly devel-
oping. If H is a multivariate distribution function with 
marginal cumulative function ui = FX(xi), then a n- dimen-
sional copula C exists; for all XRn, the link between a 
multivariate distribution H and the associated n- dimen-
sional copula C is given by the functional identity stated 
by Sklar’s Theorem (Sklar, 1959; Salvadori, 2004; Nelsen, 
2006; Prokhorov, 2008): 

   1 21 2 , , , 1 2, , , , , ,nn U U U nH x x x C u u u    

      1 2, , , 1 1 2 2, , ,nF F F n nC F x F x F x   ,     (1) 

 1 2, , , 1 2, , , 0,  0nU U U n iC u u u u   ,          (2) 

   1 2 1 2, , , 2 , , , 10, , , ,0, ,n nU U U n U U U nC u u C u u    

 1 2, , , 1 2, , ,0 0nU U UC u u   ,              (3) 

   1 2 1 2, , , 2 , , , 11, , , ,1, ,n nU U U n U U U nC u u C u u    

 1 2, , , 1 2, , ,1 1nU U UC u u   .             (4) 

A multivariate copula  1 2, , , 1 2, , ,nU U U nC u u u   is sim-
ply a joint distribution over In = [0, 1]n with uniform mar-
ginal. If  ii X iu F x  is continuous, C is unique; otherwise, 
C is uniquely defined on Ran(u1) × Ran(u2) × ··· × Ran(un). 

Let  1 2, , , 1 2, , ,nX X X nF x x x   represent the joint den-
sity distribution of (X1, X2, ···, Xn). The density function 
c[u1, u2, ···, un] of the copula together with a marginal 
probability density distribution fi(xi) of variables xi are 
then used to construct a joint probability density function 
f(x1, x2, ···, xn)  
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where c(u1, u2, ···, un) is the copula density, and fi(xi) is the 
probability density function of the univariate variable xi. 

2.2 Archimedean Copulas 

Sklar (1959) proposed the concept of copula to cope 
with the difficulty of constructing joint probability distri-
bution for dependent random variables. Since then, vari-
ous copulas have been proposed, such as Archimedean 
copula (Clayton copula, Frank copula, Gumbel-Hougaard 
copula, and Ali-Mikhail-Haq (AMH) copula), elliptic type 
of copula (Gaussian copula, and student t copula), Plack-
ett copula, and extreme value copula (Nelson, 2006; 
Gudendorf and Segers, 2010). The Archimedean copulas, 
which are extensively used in various research fields, 
have a simple structure and less unknown parameters than 
the other copulas. Genest and MacKay (1986) define 
Archimedean copulas as follows (Genest and Rivest, 
1993; Joe, 1997): 

 1 2, , , nC u u u  

          1
1 2

1

, 0

0, otherwise

n

n i
i

u u u u     




   





, (6) 

where φ(·) is the generator of the copula, and it is de-
creasing for all u[0, 1] and φ(1) = 0; φ−1(·) is the inverse 
function of φ(·), and φ−1(·) satisfies 

     
 

1
1 , 0 0

0, 0

t t
t

t

 



    

 
.           (7) 

Archimedean copulas play an important role because 
they present several desired properties through a simple 
symmetric structure with one parameter. Therefore, Clay-
ton, Frank, Gumbel-Hougaard, and AMH copulas are 
adopted in this study to construct bivariate and multivari-
ate joint distributions. These four kinds of common Archi-
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medean copulas are as follows: 
1) Bivariate and trivariate Clayton copula: 

     
1

1 2 1 2, ; ,  0,C u u u u   
     ,       (8) 

     
1

1 2 3 1 2 3, , ; ,  0,C u u u u u u    
       .  (9) 

2) Bivariate and trivariate Frank copula: 

     
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 R , (10) 

 1 2 3, , ;C u u u    

        
  

1 2 3

2

exp 1 exp 1 exp 11
ln 1

exp 1

u u u  
 

         
   

 

R . (11) 

3) Bivariate and trivariate Gumbel-Hougaard copula: 

       
1

1 2 1 2, ; exp ln ln , 1,C u u u u   
             

 

(12) 

 1 2 3, , ;C u u u    

     
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1 2 3exp ln ln lnu u u
   

            
, 

 1,  .  (13) 

4) Bivariate and trivariate AMH copula: 
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(15) 

2.3 Parameter Estimation 

The common parameter estimation methods of copula 
functions are Maximum Likelihood Method (MLM), Cor-
relation Index Method, Inference Function for Margins 
Method, and Moment Method. Among these methods, the 
Kendall rank correlation coefficient is usually applied on 
bivariate copulas. However, it is unsuitable for trivariate 
or much higher dimensional copulas. The MLM maxi-
mizes sample data and copula functions, so it is adopted 
to estimate parameters for bivariate and trivariate copulas. 
The basic idea of the MLM for copulas is expressed as 
follows. 

Assuming that the sample is (u1, u2, ···, un)[0, 1], the 
expression of the likelihood function in the case of copu-

las (Favre et al., 2004; Hou et al., 2010) is as follows: 

     1 2
1 2

1 21 1
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, , , ;
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C u u u
L c u u u
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 


 
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




. 

(16) 

The logarithm likelihood function lnL(θ) (Eq. (17)) is 
associated with the likelihood function L(θ), and they 
reach the maximum simultaneously. 

     1 2 1 2
11

ln , , , ; ln , , , ;
n n

n n
ii

L c u u u c u u u  


    . 

(17) 

The maximum likelihood estimator 
ˆ
ML  satisfies 

   ˆln ln ,  MLL L     ,         (18) 

where Θ is the parameter space. 
Taking lnL, a partial derivative with respect to θ (Eq. 

(19)), the parameter θ of the copulas can be obtained by 
solving the likelihood equations. 

 ln
0

L 






.                (19) 

3 Model Selection 
Before using multivariate copulas to construct the joint 

probability distribution model, tests of goodness must be 
conducted to ensure that these models fit the sample well. 
Three tests are conducted, namely, 1) Kolmogorov- Smir-
nov (K-S) test for univariate margins, 2) Pearson χ2 test 
for bivariate copulas, and 3) root mean square error (RMSE) 
method and Akaike information criterion (AIC) for tri-
variate distributions. 

3.1 K-S Test for Univariate Distributions 

The K-S test is a goodness-of-fit statistics to assess if a 
random variable X can have the hypothesized, continuous, 
and cumulative distribution function. Assume that F(x) 
denotes the actual distribution for the sample data and 
F0(x) is the theoretical distribution (Zhai et al., 2014). 

Choose the statistics 0sup ( ) ( )n n
x

D F x F x
 

  , and 

 
(1)

0

(2)
1 0

( ) ( )
1, 2, ,

( ) ( )

n k kk

n k kk

d F x F x
k n

d F x F x

   
 

 .    (20) 

The observation of Dn can be defined as 

 (1) (2)

1

ˆ max ,n k k
k n

D d d
 

 .              (21) 

If the significance level is α, the K-S critical value is 
Dn(α) for different sample size n. If ˆ ( )n nD D a , the hy-
pothetical theoretical distribution is accepted to fit the 
sample data; otherwise, we refuse the hypothetical distri-
bution. 
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3.2 Pearson χ2 Test for Bivariate Copulas 

Hu (2002) introduced a statistics of M, which follows 
χ2 distribution and can be utilized to estimate the fitting 
quality between the bivariate copula and observations. 
Statistical results will test whether this model can de-
scribe the dependence between these two variables (Tao 
et al., 2013). 

Suppose that the observation data of X and Y are {xt} 
and {yt} and the marginal distributions of X and Y are 
FX(x) and FY(y). Let ut = FX(xt), vt = FY(yt), t = 1, 2, ···, n. 
Build a square matrix with k × k dimension. The unit in 
the ith row and jth column is denoted by R(i, j), i, j = 1, 
2, ···, k. For each {ut, vt}, if both (i–1)/k ≤ ut ≤ i/k and 
(j–1)/k ≤ vt ≤ j/k exist, then denote {ut, vt}R(i, j). Let Aij 
be the number of actual observation points that fall into 
the unit R(i, j), and Bij be the number of predicted points 
produced by the copula model that fall into the unit R(i, j). 
Then, 

 
2

2 2

1 1

( )
~ ( 1)

k k
ij ij

iji j

A B
M k

B 


   .      (22) 

If the significance level is α, the rejection region is {M 

2 2(( 1) )k  }, in which 
2 2(( 1)k   is the downside 

1−α quantile of the χ2 distribution with (k−1)2 free de-
grees. If 

2 2(( 1)M k  , the copula is refused; otherwise, 
the copula is accepted to construct bivariate models. 

3.3 RMSE 

The RMSE is used to measure the goodness of fit of 
the univariate or multivariate distribution. RMSE can be 
expressed as 

    2
0

1

1
RMSE

n

c
i

F i P i
n 

    ,        (23) 

where n is the sample size, Fc is the theoretical probabil-
ity obtained from a model, and P0 is the empirical prob-
ability: P0 = mi/ (n+1), where mi is the number of x ≤ xi, x ≤ 

xi; y ≤ yi, or x ≤ xi, y ≤ yi; and z ≤ zi for different dimensional 
distributions. 

3.4 AIC 
The AIC is proposed to identify the appropriate prob-

ability distribution (Akaike, 1974). The AIC includes two 
parts (Zhang and Singh, 2007): lack of fit of the model, 
which can be obtained either by maximizing the likeli-
hood function of the distribution or the MSE of the model, 
and the unreliability of the model due to the number of 
model parameters. The AIC is expressed as 

AIC 2ln( ) 2L m  ,                 (24) 

AIC ln(MSE) 2n m  ,                (25) 

      22
0 0

1

1
MSE

n

c c
i

E F P F i P i
n m 

       ,   (26) 

where L is the likelihood function of the model, and m is 
the number of model parameters. In this paper, Eq. (25) is 
applied to calculate AIC. A small AIC implies that the 
model has a good fit. 

4 Case Study 
4.1 Univariate Data Analysis 

The data for a period between 1970 and 1999 at the 
Bohai Sea are hindcast and sampled in this study. The 
data set includes observations of simultaneously occurred 
wave height (H), wind speed (W), and current velocity (C) 
(Fig.1). Annual extreme environmental element series can 
be selected for frequency analysis. 

 

Fig.1 Observations of ocean environmental elements (H, W, and C). 

In coastal and offshore engineering, the Gumbel, Log-
normal, Weibull, and Pearson Type III distributions are 
commonly used for frequency analysis (Muir and El- 

Shaarawi, 1986; Dong et al., 2003; Tao et al., 2013). Ta-
ble 1 shows these four probability distributions adopted to 
fit H, W, and C. 

The MLM is applied to fit the parameters of all the 
above distribution curves. The K-S test results are listed in 
Table 2. The actual statistic values D̂n of all distributions 
for H, W, and C are smaller than the test statistic D30(0.05) 

= 0.2417; thus, these distributions pass the statistical test. 
The fitting curves of H, W, and C are shown in Figs.2–4,  
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respectively. A low RMSE or AIC implies good fitting 
result of the theoretical distribution. For H, W, and C, the 
RMSE and AIC values of Pearson Type III are all smaller 
than those of the other distribution types. Therefore, 
Pearson Type III is the preferred marginal distribution for 
H, W, and C to construct a joint probability model. 

4.2 Bivariate Data Analysis 

4.2.1 Dependence among variables 

Copula functions are used to describe the interdepen- 

dency of random variables. In this paper, Kendall’s rank 
correlation coefficient (Eq. (27)) (Li et al., 2013; van 
Doorn et al., 2016) and Spearman’s rank correlation coef-
ficient (Eq. (29)) (Hou et al., 2010) are utilized to evalu-
ate the dependence among H, W, and C (Table 3). 

    
1

2
sign

1
i j i j

i j n

x x y y
n n


  

      ,    (27) 

where τ is the Kendall rank correlation coefficient; n is 
the sample size; (xi, yi) are the pairs of H and W, W and C,  

Table 1 Four univariate probability distributions 

Distribution type Probability distribution function F(x) Parameter 

Gumbel exp exp
x 


      
  

 μ-location parameter; 
σ-scale parameter. 

Lognormal 
 2

20

ln1 1
exp d

22

x t
t

t




 
 

   
  μy-mean value of ln x; 

σy-standard deviation of ln x. 

Weibull 1 1 exp
x




        
     

 
α-scale parameter; 
γ-shape parameter; 
μ-location parameter. 

Pearson Type III      01
0

0
e d

x t at a t


 


  
  

a0-location parameter; 
α-shape parameter; 
β-scale parameter. 

Table 2 Parameter estimation and goodness-of-fit test results for different distributions of H, W, and C 

Distribution PA PB PC D̂n D̂n(0.05) RMSE AIC 

Gumbel 3.6788 0.2850 – 0.1882 0.0433 −182.36 
Lognormal 1.3419 0.0967 – 0.1470 0.0318 −200.75 
Weibull 2.4253 1.5560 4.3923 0.1636 0.0418 −181.36 

H 

Pearson Type III 1.9348 13.2096 25.2102 0.1437 

0.2417 

0.0311 −199.09 
Gumbel 19.4318 2.0469 – 0.1389 0.0633 −159.56 
Lognormal 3.0179 0.1300 – 0.1016 0.0457 −179.11 
Weibull 12.2288 9.3129 3.5416 0.1157 0.0425 −180.34 

W 

Pearson Type III 4.4×10−5 3.8748 79.8724 0.1237 

0.2417 

0.0384 −186.44 
Gumbel 0.9864 0.0773 – 0.1434 0.0670 −156.12 
Lognormal 0.0266 0.0881 – 0.1961 0.0969 −133.99 
Weibull 0.9395 0.0882 0.9242 0.1987 0.0397 −183.92 

C 

Pearson Type III 0.9300 11.3354 1.1450 0.0899 

0.2417 

0.0312 −198.84 

Note: PA, PB, and PC denote the location parameter, scale parameter, and shape parameter, respectively. 
 

 

Fig.2 Univariate fitting curves of H. 
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Fig.3 Univariate fitting curves of W. 

 

Fig.4 Univariate fitting curves of C. 

or H and C; and sign(·) is the sign function, and it satis-
fies 
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where ρn is Spearman’s rank correlation coefficient, and 
Ri and Si are ranks of random variables X and Y, respec-

tively. 
According to the Table 3, the Kendall’s rank correla-

tion coefficients τ and the Spearman’s rank correlation 
coefficients ρn of H and W, W and C, and H and C are 
more than zero. That is to say, there exists a positive cor-
relation between H and W, W and C, and H and C, re-
spectively. In addition, for H and W, and W and C, their p 
values of τ and ρn are smaller than the significant level 
α=0.05, then the correlation is significantly different from 
zero, which shows significant correlation. 

4.2.2 Parameter estimation of bivariate copulas 

Table 3 shows that the dependence among variables is 
strong. Four types of bivariate Archimedean copulas (Clay- 
ton, Frank, Gumbel-Hougaard, and AMH copulas) and 
margins (Pearson Type III distribution) are applied to 
construct the joint distribution models of H and W, W and 
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C, and H and C. The estimated correlated parameters  
for the above four models are shown in Table 4. 

4.2.3 Goodness-of-fit test of bivariate copulas 

The comparisons of empirical and theoretical frequent-
cies and P-P plot of the observed combinations of H and 
W, W and C, and H and C are depicted in Figs.5–7, re-
spectively. The empirical and theoretical frequencies ex-
hibit a robust fit. In addition, P-P plots show that these 
points are around the 45˚ oblique line. Intuitive graphical 
analysis methods demonstrate that the joint distribution 
models based on the above four copula functions are ra-
tional and robust to fit the observed combinations of H 
and W, W and C, and H and C. 

Simultaneously, Pearson χ2 test is used to evaluate the 
goodness of fit for bivariate copulas. To confirm suffi-
cient unit cells for model evaluation and guarantee suffi- 

cient sample points of each unit cell, the k value is taken 
from 4, 5, 6, and 7 (corresponding to 16, 25, 36, and 49 
equal-sized unit cells). Table 5 shows the Pearson’s χ2 
statistics M of different copulas for the combinations H  

Table 3 Dependence between variables 

Dependence 
index 

Kendall τ P-value Spearman ρn P-value

H and W 0.4704 0.0004 0.6037 0.0004 
W and C 0.2750 0.0378 0.3946 0.0309 
H and C 0.1818 0.1826 0.2579 0.1688 

Table 4 Parameter estimations θ of bivariate copulas 

Copula function H and W W and C H and C 

Clayton 0.5745 0.0539 0.1132 
Frank 4.8576 2.9494 1.9158 
Gumbel–Hougaard 1.7315 1.2057 1.1629 
AMH 0.8918 0.6966 0.7458 

 

 

Fig.5 Comparison of empirical and theoretical frequencies and P-P plot of the observed combination of H and W. 

 

Fig.6 Comparison of empirical and theoretical frequencies and P-P plot of the observed combination of W and C. 
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Fig.7 Comparison of empirical and theoretical frequencies and P-P plot of the observed combination of H and C. 

Table 5 Pearson’s χ2 test for copulas 

H and W W and C H and C Copula function 

4 × 4 5 × 5 6 × 6 7 × 7 4 × 4 5 × 5 6 × 6 7 × 7 4 × 4 5 × 5 6 × 6 7 × 7 

Clayton 8.2705 21.7326 36.1300 33.0379 12.2765 31.2313 38.9959 50.8658 8.2804 25.5546 40.5358 36.8410
Frank 4.3215 21.0239 34.7175 33.5098 10.9651 24.3043 34.7454 46.4509 8.6412 25.5608 41.5038 36.9851
Gumbel-Hougaard 5.9200 19.8065 33.4622 31.0905 9.3226 27.1242 34.7292 46.5444 9.5535 26.0660 40.9920 36.7794
AMH 6.8230 20.8487 34.6043 32.0040 10.9029 27.3808 36.1211 47.0161 7.3995 24.2203 39.5780 35.6161

Notes: For Pearson’s χ2 test, the χ2 test standard can be expressed as: k = 4, 
2 2
0.05 ( 1) 16.9190k   ; k = 5, 

2 2
0.05 ( 1) 26.2962k   ; k = 6, 

2 2
0.05 ( 1) 37.6525k   ; k = 7, 

2 2
0.05 ( 1) 50.9985k   . 

 
and W, W and C, and H and C. For the joint distribution of 
H and W, Clayton, Frank, Gumbel-Hougaard, and AMH 
copulas all pass the 2 tests when k takes any value of 4–7. 
For the joint distributions of W and C, only Frank copula 
can pass the 2 tests when k takes any value of 4–7. For 
the joint distributions of H and C, these four copulas can 
pass the 2 tests when k takes any value of 4, 5, and 7. 
According to Table 5, different selections of k can lead to 
varying orders of M. Thus, the best model cannot be se-
lected based only on the 2 test. 

The RMSE and AIC criteria are calculated to obtain the 
optimal copula to construct the joint distribution model 
(Table 6). A low RMSE or AIC value indicates a well- fit- 
ting model. Based on Table 6, Gumbel-Hougaard, Frank, 

and AMH copulas are separated to select the optimal 
copula to construct the joint distributions of H and W, W 
and C, and H and C. The joint probability density con-
tours and joint return periods of H and W, W and C, and H 
and C are shown as Figs.8–10, respectively. 

Table 6 Goodness-of-fit test of bivariate copulas 

H and W W and C H and C 
Copula 

RMSE AIC RMSE AIC RMSE AIC 

Clayton 0.0596 −167.19 0.0654 −161.61 0.0564 −170.54
Frank 0.0428 −187.06 0.0379 −194.34 0.0405 −190.32
Gumbel-
Hougaard

0.0409 −189.77 0.0476 −180.69 0.0466 −181.91

AMH 0.0543 −172.79 0.0464 −182.18 0.0403 −190.62

 

Fig.8 Joint probability density and return period contours of the observed combination of H and W (Gumbel- Hou-
gaard copula). 



ZHAI et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2017 16: 635-648 

 

643

 

Fig.9 Joint probability density and return period contours of the observed combination of W and C (Frank copula). 

 

Fig.10 Joint probability density and return period contours of the observed combination of H and C (AMH copula).

4.3 Multivariate Models and Analysis 

4.3.1 Trivariate joint model 

Four kinds of trivariate Archimedean copulas (Clayton, 
Frank, Gumbel-Hougaard, and AMH copulas) are used to 
construct the joint probability distribution model of H, W, 
and C. The estimated values of correlated parameters  
for the above four models are shown in Table 7. The fit-
ting curves of these four trivariate copulas are presented 
as Fig.11. 

As Fig.11 illustrates, Frank and Gumbel-Hougaard 

copulas are better than Clayton and AMH copulas to con-
struct the joint probability distribution model of H, W, 
and C. To obtain the best-fitting model, we calculate the 
RMSE and AIC values (Table 8). Based on the results in 
Table 8 and Fig.11, Frank copula is selected as the opti-
mal fitting model to construct the trivariate joint probabil-
ity distribution model of H, W, and C. 

Table 7 Parameter estimations θ of trivariate copulas 

Parameter Clayton Frank Gumbel-Hougaard AMH

θ 0.1650 2.8516 1.2916 0.4114

 

 

Fig.11 Comparison of empirical and theoretical frequencies and P-P plot of the combinations of H, W, and C.
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Table 8 Goodness-of-fit test of trivariate copulas 

Copula Clayton Frank Gumbel-Hougaard AMH 

RMSE 0.0862 0.0453 0.0577 0.0989 
AIC −145.05 −183.70 −169.13 −136.81

4.3.2 Design value under the multivariate joint   
distribution model 

1) Conditional probability method 
For many offshore structures, the dominating load is 

the one associated with the wave load, wind load, or cur-
rent load. When wave height, wind speed, or current ve-
locity is given, the trivariate joint distribution is trans-
formed as a bivariate joint distribution. We use Eq. (31) to 
calculate the conditional probability density of the other 
two variables. When the conditional probability density 
reaches its maximum with a given variable, the other two 
variables are most likely to occur (modes). Therefore, 
three pairs of data, namely, the maximum wave height 
extremes with concomitant wind speed and current veloc-
ity (Hmax, W, and C), the maximum wind speed extremes 
with concomitant wave height and current velocity (Wmax, 
H, and C), and the maximum current velocity extremes 

with concomitant wave height and wind speed (Cmax, H, 
and W), are considered for trivariate analysis. 

   
         , ,

, | , ,
f x y z

f x y z c x y z f x f y f z
f z

     . 

(31) 

The conditional probability density contours are shown 
in Figs.12–14 for maximum wave height, wind speed, or 
current velocity in the return periods of 100 year, 50 year, 
20 year, and 10 year. Design values and joint probabilities 
of wave height, wind speed, and current velocity calcu-
lated by univariate and joint probability methods are 
listed in Table 9. 

Table 9 shows that the design wave heights, wind 
speeds, and current velocities calculated by the condi-
tional probability method are all smaller than those by the 
univariate probability method. Taking T (H, W, or C) = 
100 years as an example, H, W, and C by the univariate 
probability method are 4.84 m, 26.36 m s−1, and 1.36 m s−1, 
respectively. The combination of Hmax, W, and C by the 
conditional probability method is 4.84 m, 21.86 m s−1, and 
1.04 m s−1, respectively. The values of W and C decrease by 

Table 9 Design values of H, W, and C for the conditional probability method 

Univariate probability method Hmax with concominant W and C Wmax with concominant H and C Cmax with concominant H and W
T 

(year) H (m) 
W  

(m s−1) 
C  

(m s−1) 
P H (m) 

W  
(m s−1) 

C 
(m s−1)

P H (m)
W 

(m s−1)
C 

(m s−1)
P H (m) 

W  
(m s−1) 

C 
(m s−1)

P 

200 4.96 27.04 1.43 2.13×10−6 4.96 21.87 1.04 2.34×10−3 4.03 27.04 1.04 2.39×10−3 4.12 22.36 1.43 1.61×10−3

100 4.84 26.36 1.36 1.63×10−5 4.84 21.86 1.04 4.67×10−3 4.03 26.36 1.04 4.75×10−3 4.11 22.32 1.36 3.30×10−3

50 4.70 25.62 1.30 1.21×10−4 4.70 21.84 1.04 9.32×10−3 4.03 25.62 1.04 9.42×10−3 4.11 22.30 1.30 6.57×10−3

25 4.56 24.82 1.24 8.31×10−4 4.56 21.82 1.04 1.84×10−2 4.00 24.82 1.03 2.03×10−2 4.09 22.20 1.24 1.38×10−2

20 4.51 24.55 1.22 1.51×10−3 4.51 21.65 1.03 2.50×10−2 3.99 24.55 1.03 2.56×10−2 4.08 22.15 1.22 1.76×10−2

10 4.34 23.62 1.15 8.86×10−3 4.34 21.42 1.02 5.33×10−2 3.96 23.62 1.02 5.38×10−2 4.05 21.96 1.15 3.72×10−2

 

Fig.12 Conditional probability density contours of Hmax with concominant W and C. 
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Fig.13 Conditional probability density contours of Wmax with concominant H and C. 

 

Fig. 14 Conditional probability density contours of Cmax with concominant H and W. 

17.07% and 23.53%, respectively. For the case of Wmax, H, 
and C, the values of H and C are reduced by 16.74% and 
23.53%, respectively. For Cmax, H, and W, the values of H 
and W fall by 15.08% and 15.33%, respectively. Evidently, 
the joint probability of Hmax, Wmax, and Cmax is larger than 
the arithmetic product of the probability of the three in-
dependent variables. 

2) Joint probability method 

Clayton copula is applied to construct the joint prob-
ability model of H, W, and C. Fig.15 shows the joint re-
turn period isosurface and side views under T (H, W, and 
C) = 100 year. Moreover, different joint return period iso-
surfaces of (H, W, C) are shown as Fig.16. According to 
Figs.15 and 16, many pairs of (H, W, C) exist for one 
certain joint return period. The maximum joint probabil-
ity density (fmax) and maximum platform responses (e.g., 
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maximum base shear (Qmax), maximum overturning mo-
ment (Mmax), or maximum deck displacement (Dmax)) are 
considered constraints to calculate the return values of (H, 

W, and C). The design values of H, W, and C calculated 
by the trivariate joint probability method for different 
return periods are listed in Table 10. 

Table 10 Design values of H, W, and C under different return periods T 

fmax Qmax Mmax Dmax 

T (year) 
H (m) 

W 
(m s−1) 

C 
(m s−1) 

H (m) 
W 

(m s−1)
C 

(m s−1)
H (m)

W  
(m s−1)

C  
(m s−1)

H (m) 
W  

(m s−1)
C  

(m s−1)

200 4.43 24.27 1.14 4.27 25.92 0.93 4.27 25.92 0.93 3.30 27.03 0.93 
100 4.36 23.82 1.12 4.21 25.34 0.93 4.21 25.34 0.93 3.29 26.34 0.93 
50 4.28 23.35 1.10 4.15 24.69 0.93 4.15 24.69 0.93 3.28 25.61 0.93 
25 4.19 22.80 1.07 4.08 23.98 0.93 4.08 23.98 0.93 3.26 24.81 0.93 
20 4.16 22.60 1.06 4.06 23.72 0.93 4.06 23.72 0.93 3.26 24.54 0.93 
10 4.04 22.00 1.03 3.96 22.90 0.93 3.96 22.90 0.93 3.22 23.61 0.93 

 

Fig.15 Joint probability model of H, W, and C under 100 year return period. 

 

Fig.16 Joint return period isosurfaces of H, W, and C. 

4.4 Application of Joint Distribution in Fixed   
Platform 

The empirical functions of base shear, overturning 
moment, and deck displacement of H, W, and C for a fixed 
platform in the Bohai Sea are expressed as Eqs. 31–33, 
respectively (Xu et al., 2013). 

1.9414 -0.297020.3797 +31.9567 +Q H C  

0.7220 1.3861 279.7442 0.1153H C W ,          (31) 

1.3465 1.8859234.2491 286.0988M H C    
1.9339 1.144 238.5857 0.2908H C W ,          (32) 

2 20.0001 ( 1.0868) 0.0001 ( 0.4412)D H C        

-6 21.3879 10 ( 8.9107) 0.0087W    ,        (33) 
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where Q (kN) is base shear, M (kN·m) is overturning 
moment, and D (m) is deck displacement. 

According to Section 4.3.2, eight kinds of design values 
calculated by the univariate probability, conditional prob-
ability (Hmax, W, and C; Wmax, H, and C; Cmax, H, and W), 
and joint probability methods (fmax, Qmax, Mmax, and Dmax) 

are substituted in Eqs. (31)–(33), respectively. Subse-
quently, the platform responses are obtained (see Table 11). 
Table 11 shows that the structural response by the joint 
probability model is smaller than that by the univariate 
probability method. Namely, the joint distribution can 
result in low design values of ocean environmental factors. 

Table 11 Design values of response under given return periods 

Univariate method 
Conditional method -Hmax, 

W, and C 
Conditional method -Wmax, 

H, and C 
Conditional method -Cmax, 

H, and W T 
(year) 

Q M D Q M D Q M D Q M D 

200 985 4083 0.01209 812 3367 0.01155 651 2648 0.01140 768 3178 0.01107 
100 927 3834 0.01192 784 3254 0.01146 647 2638 0.01133 744 3078 0.01105 
50 868 3587 0.01174 756 3136 0.01136 643 2627 0.01126 723 2989 0.01104 
25 809 3340 0.01155 726 3011 0.01125 629 2579 0.01116 697 2884 0.01101 
20 790 3260 0.01148 711 2953 0.01120 626 2567 0.01113 689 2848 0.01100 
10 729 3009 0.01128 674 2799 0.01107 612 2519 0.01103 661 2736 0.01095 

Joint method -fmax Joint method -Qmax Joint method -Mmax Joint method -Dmax T 
(year) Q M D Q M D Q M D Q M D 

200 745 3073 0.01139 789 3286 0.01133 788 3289 0.01129 742 3059 0.01151 
100 722 2978 0.01130 759 3160 0.01124 758 3163 0.01120 714 2946 0.01140 
50 696 2872 0.01121 727 3029 0.01115 727 3031 0.01111 688 2840 0.01129 
25 667 2757 0.01110 694 2890 0.01104 693 2892 0.01100 658 2720 0.01117 
20 658 2719 0.01106 682 2843 0.01100 682 2844 0.01097 649 2683 0.01113 
10 623 2577 0.01093 644 2687 0.01088 644 2689 0.01084 615 2548 0.01099 

 

5 Conclusions 
Based on the 30-year hindcast data of wave height, wind 

speed, and current velocity, bivariate and trivariate joint 
probability distributions are constructed by Archimedean 
copulas. Univariate distribution and conditional and joint 
probability methods are applied to estimate design wave 
heights, wind speeds, and current velocities with different 
return periods in the Bohai Sea. The combinations of joint 
design ocean environmental factors, joint return periods, 
and design platform response are obtained. The following 
conclusions are drawn from this study. 

1) Compared with Gumbel, lognormal, and Weibull 
distributions, Pearson Type III distribution is the optimal 
statistical model to fit sampled data series of wave height, 
wind speed, and current velocity in this study. 

2) The bivariate or trivariate Clayton, Frank, Gumbel- 

Hougaard, and AMH copulas are evaluated for goodness 
of fit. Gumbel-Hougaard, Frank, and AMH copulas are 
optimal for constructing the bivariate distributions of wave 
height and wind speed, wind speed and current velocity, 
and wave height and current velocity, respectively. Tri-
variate Clayton copula is optimal to establish the joint 
distribution of wave height, wind speed, and current ve-
locity. 

3) Compared with univariate probability, conditional and 
joint probability provide a smaller combination of design 
environmental conditions. With the constraints of struc-
tural responses (maximum base shear, maximum over-
turning moment, and maximum deck displacement), the 
design parameters of environmental conditions by joint 
probability are also smaller than those by univariate 
probability. 

4) The multivariate joint probability model considers 
the dependence among variables; therefore, the design 
values calculated by the multivariate model are more 
suitable to actual circumstances and more reasonable than 
those by univariate probability. Joint distribution can re-
sult in low investment cost for fixed platform construc-
tion, thereby indicating its important role in marginal oil 
field exploitation. 
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