Characterization of the Complete Mitochondrial Genome of the Hybrid *Epinephelus moara*♀×*Epinephelus lanceolatus*♂, and Phylogenetic Analysis in Subfamily Epinephelinae

GAO Fengtao^{1), 2), #}, WEI Min^{2), 3), #}, ZHU Ying^{1), 2)}, GUO Hua²⁾, CHEN Songlin^{2), *}, and YANG Guanpin^{1), *}

1) College of Marine Life Science, Ocean University of China, Qingdao 266003, P. R. China

2) Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for

Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao 266071, P. R. China

3) Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, P. R. China

(Received May 12, 2016; revised May 30, 2016; accepted June 19, 2016) © Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2017

Abstract This study presents the complete mitochondrial genome of the hybrid *Epinephelus moara* $\bigcirc \times$ *Epinephelus lanceolatus*. The genome is 16886 bp in length, and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, a light-strand replication origin and a control region. Additionally, phylogenetic analysis based on the nucleotide sequences of 13 conserved protein-coding genes using the maximum likelihood method indicated that the mitochondrial genome is maternally inherited. This study presents genomic data for studying phylogenetic relationships and breeding of hybrid Epinephelinae.

Key words Epinephelus moara $\mathbb{Q} \times Epinephelus$ lanceolatus \mathcal{F} ; mitochondrial genome; phylogenetic analysis

1 Introduction

Hybridization is a technique commonly used in fish breeding, as it allows for a combination of advantageous traits from different species, which can improve the viability of the hybrid offspring and provide heterosis of hybrid progeny in the short term (Feliner and Aguilar, 1998; Urbanelli et al., 2014). An example of hybrid breeding is the economically important grouper and active hybrid breeding which has been performed for many years (Glamuzina et al., 2001; James et al., 1999; Liu et al., 2007; Sun et al., 2016a; Tseng and Poon, 1983). There are many advantages to grouper contributing to its economic success, including the large size of individuals, desired flavor, nutrient density and wide distribution throughout tropical and subtropical waters along the coast of continents (Craig et al., 2001; Ding et al., 2006; Heemstra and Randall, 1993). Grouper are a diverse group of fish, belonging to the subfamily Epinephelinae. There are 15 genera containing 159 species in Epinephelinae and it is this diversity that provides substantial genetic variability for hybridization (Heemstra and Randall, 1993). Epinephelus moara and Epinephelus lanceolatus are considered as gourmet grouper and each has unique advantageous characteristics. *E. moara* has strong tolerance to temperature and salt concentrations (Okada *et al.*, 1996) and fast growth, while *E. lanceol* is the largest species in the group and has a rapid growth rate and desirable taste (Li *et al.*, 2008). As expected, hybrid progeny of *E. moara* (\mathfrak{Q}) × *E. lanceol* (\mathfrak{Z}) have shown advantageous characteristics of each of the individual species, including rapid growth rate, disease resistance and other growth advantages.

Mitochondrial genomes (mitogenomes) are commonly used for studying phylogenetic relationships (Boore *et al.*, 2005). Compared to nuclear DNA, mitogenomes are small and relatively simple and have a higher mutation rate and evolve more rapidly (Hamers, 2016). These characteristics of mitogenomes have obvious advantages in the identification of interspecies hybridization and genetic infiltration. The study of mitogenome characteristics, such as the mode of inheritance in hybrids provides guiding principles for the development of hybrid breeding.

We present here the complete sequence of the hybrid, *E.* moara $\Im \times E$. lanceol (EMEL)mitogenome. The mitogenome was annotated and used for phylogenetic analysis. The data reported here indicate that the overall organization and composition of the EMEL mitogenome is similar to those of other vertebrates' although there are some anomalies. Importantly, the phylogenetic data indicates that the mitogenome is inherited from the mother, and,

[#] These authors contribute to this work equally.

^{*} Corresponding authors. Tel: 0086-532-85844606 E-mail: chensl@ysfri.ac.cn; yguanpin@ouc.edu.cn

from a broader perspective, this mitogenome could provide useful genomic data for studying phylogenetic relationships and hybrid breeding in Epinephelinae.

2 Materials and Methods

2.1 Sample and DNA Extraction

Hybrid *E. moara* $\square \times E$. *lanceolatus* \bigcirc (designated EMEL) specimens were sampled from Laizhou Mingbo Aquatic Co., Ltd., Shandong province, China. Total genomic DNA was extracted from EMEL fins using a tissue DNA extraction kit (OMEGA, Georgia, USA) according to the manufacturer's instructions. All experiments were performed in accordance with the National Institutes of

Health's Guide for the Care and Use of Laboratory Animals.

2.2 PCR Amplification and Sequencing

The published mitogenome of *E. moara* (GenBank: JQ518290) was used as a reference sequence to design 17 primer pairs that were used to amplify the complete mitogenome of EMEL (Table 1). PCR reactions were conducted using a total volume of 20 µL consisting of 14.8 µL deionized H₂O, 0.1 µL ExTaq DNA polymerase ($5U\mu L^{-1}$, Takara), 1.6 µL dNTPs (2.5 mmol L⁻¹ each), 2 µL 10 × PCR Buffer ($15 \text{ mmol L}^{-1} \text{ Mg}^{2+}$), 0.5 µL each primer (10 µmol L⁻¹) and 0.5 µL DNA template ($40 \text{ ng }\mu L^{-1}$). Thermocycling conditions were: initial denaturation 94°C for

Table 1 Primer pairs used for mitogenome amplification

Primer label	Forwardprimer sequence $(5' \rightarrow 3')$	Primer label	Reverse primer sequence $(5' \rightarrow 3')$	Melting temperature
ML1F	AACAAGGAGCAGGTATCAGG	ML1R	TCTATCGCTCCGTTAGTTCC	56
ML2F	CCAAAGCATAGTTCAAAGCAG	ML2R	GTTATGCCATTCATACAGGTC	58
ML3F	ACGTGTATATCGGAAACGGAC	ML3R	AAGCGTTGAGATCATAGTTGG	60
ML4F	CAACGATTAAAGTCCTACGTG	ML4R	AGGAAGTGGTGTAATGGAAGC	58
ML5F	CCTATTACTTAGCCTTGGAC	ML5R	AGAGTTTGTAGGATCGAAGC	60
ML6F	AAGCCTGTACTTCTACTTACG	ML6R	AAGGTGTTTGATATTGAGAGG	60
ML7F	CCTCTAGCAGGAAACCTAGC	ML7R	GGTCATGGTTAGTTCTACTGC	58
ML8F	ATACTCAGACTACCCAGACGC	ML8R	ATGTTGTGCTTATAAACTGGTC	60
ML9F	GCTAGAAATTGGTGACTACCG	ML9R	TGAATGGCTTGTTTTCGTTCC	56
ML10F	TTAGGTACAATTCTACTCCTC	ML10R	AGCACTGTAGTAGGTTAAGG	58
ML11F	AATTTGATTCCACTTCCACTCC	ML11R	GTCAGGCAGTTGGGATAAGC	56
ML12F	ATTCCATAACCACCTAATGACC	ML12R	CAAGATCAATTAAATAAGGAGGC	58
ML13F	CGAGAACATCTACTTATAACCC	ML13R	TGTCTTGTTCGTCATTGAGGC	60
ML14F	TCAACATCAAGTCAACTAGGC	ML14R	TAATTTGTTGAATCGTTGGAGC	60
ML15F	AAATACGACCAATATACCACC	ML15R	AAGAGCGAGAAGTATAGGACG	60
ML16F	GTTCCATTACTTCACACCTCC	ML16R	ACGGATAAAAACCACCAGACC	58
ML17F	AATAGTTCAGAGACTAGAACGC	ML17R	CTTAATGTCTGTCACTGCTGG	60

4 min, followed by 30 cycles of 94°C for 40 s, 55–60°C for 35 s, 72°C for 90 s, followed by final extension 72°C for 10 min and 4°C until use. The PCR products (5 μ L) were separated by gel electrophoresis (0.8% agarose) and visualized under UV light by a gel imaging and analysis system (BIO- RAD, Segrate, Italy). Sequencing was performed by Genewiz Biotechnology (Beijing, China). Finally, the circular mitogenome of EMEL was obtained by assembling the overlapping contiguous fragments.

2.3 Sequence Analysis

The complete mitogenome of EMEL was assembled using SeqMan (DNASTAR software package). Protein-coding genes were predicted using both ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and NCBI-(http://blast.ncbi.nlm.nih.gov/Blast.cgi). BLAST The tRNA scan-SE 1.21 program (Lowe and Eddy, 1997) was used to screen for tRNA genes, except the tRNA^{Ser(AGY)} gene which was predicted using comparative genomics. Complete mitogenomes of 36 Epinephelinae species and 3 hybrid offspring (E. fuscoguttatus \bigcirc × E. lanceolatus \bigcirc , *E.* coioides $\overset{\bigcirc}{_+} \times E$. lanceolatus $\overset{\bigcirc}{_+}$, *E.* moara $\overset{\bigcirc}{_+} \times E$. lanceo*latus* $\stackrel{\frown}{\cap}$ (Table 2) were used for the comparative genomic analysis. The EMEL mitogenome map was drawn with OGDRAW (http://ogdraw.mpimp-golm.mpg.de/). The structure of O_L (the stem and loop structure) was predicted using the mfold web server (Zuker, 2003). Additionally, base composition and codon usage were predicted using MEGA v6.0 (Tamura *et al.*, 2013).

2.4 Phylogenetic Analysis

Phylogenetic analysis was performed using the complete mitogenomes of 36 Epinephelinae species and three hybrids (Table 2). *Hypoplectrus gemma* (GenBank: FJ848375) was used as an outgroup for phylogenetic analysis. Nucleotide sequences of the 13 conserved protein-coding genes (PCGs) were aligned using MEGA v6.0, and then concatenated after deleting ambiguous positions. The best partitioning scheme and nucleotide substitution models were selected using PartitionFinder v1.1.1 (Lanfear *et al.*, 2014) (shown in Table 3). The phylogenetic tree was constructed using maximum likelihood (ML) analysis with the rapid bootstrap feature (random seed value 12345) of RAxML v7.2.6 (Stamatakis, 2006). Node support was calculated with 1000 bootstrap replicates.

3 Results and Discussion

3.1 Genome Structure and Organization

Total mitogenome length in Epinephelinae species ranges from 16389 bp in *Epinephelus latifasciatus* to 17277 bp in *Epinephelus bleekeri*. Variability in the length

	Table 2 List of species from the subfamily Epinephelinae used in this study							
No	Species name	Genus	Accession ID	Reference				
1	Aethaloperca rogaa	Aethaloperca	KC593376	Zhuang et al., 2013				
2	Anyperodon leucogrammicus	Anyperodon	GQ131336	Unpublished				
3	Cephalopholis argus	Cephalopholis	KC593377	Zhuang et al., 2013				
4	Cephalopholis boenak	Cephalopholis	KC537759	Li et al., 2014				
5	Cephalopholis sexmaculata	Cephalopholis	KJ469385	Hsiao et al., 2016				
6	Cephalopholis sonnerati	Cephalopholis	KC593378	Zhuang et al., 2013				
7	Cromileptes altivelis	Cromileptes	KC845547	Qin et al., 2014				
8	Epinephelus moara × Epinephelus lanceolatus		KU881800	In this study				
9	Epinephelus akaara	Epinephelus	EU043377	Zhuang et al., 2009				
10	Epinephelus areolatus	Epinephelus	KC466080	He et al., 2013				
11	Epinephelus awoara	Epinephelus	JX109835	Qu et al., 2012				
12	Epinephelus bleekeri	Epinephelus	KF556648	Unpublished				
13	Epinephelus bontoides	Epinephelus	KT619054	Hsiao et al., 2015				
14	Epinephelus coioides	Epinephelus	EU043376	Zhuang et al., 2009				
15	Epinephelus coioides × Epinephelus lanceolatus		KP257572	Wang et al., 2015a				
16	Epinephelus corallicola	Epinephelus	KP072053	Zheng et al., 2014				
17	Epinephelus epistictus	Epinephelus	KC816460	Peng et al., 2014a				
18	Epinephelus fasciatomaculosus	Epinephelus	KC480085	Li et al., 2013				
19	Epinephelus fuscoguttatus	Epinephelus	JX119192	Zhuang et al., 2013				
20	Epinephelus fuscoguttatus × Epinephelus lanceolatus		KM605254	Zhu and Yu, 2014a				
21	Epinephelus lanceolatus	Epinephelus	FJ472837	Wang et al., 2014				
22	Epinephelus latifasciatus	Epinephelus	KC480177	Lai et al, 2013				
23	Epinephelus malabaricus	Epinephelus	KM873711	Zhu and Yu, 2014b				
24	Epinephelus merra	Epinephelus	AP005991	Miya et al., 2013				
25	Epinephelus moara	Epinephelus	JQ518290	Liu et al., 2013				
26	Epinephelus quoyanus	Epinephelus	KC790539	Peng et al., 2014b				
27	Epinephelus sexfasciatus	Epinephelus	KC959953	Du et al., 2013				
28	Epinephelus stictus	Epinephelus	KC527593	Ye et al., 2014a				
29	Epinephelus trimaculatus	Epinephelus	KC847086	Ye et al., 2014b				
30	Epinephelus tukula	Epinephelus	KJ414470	Yang et al., 2014				
31	Hyporthodus octofasciatus	Hyporthodus	JX135579	Zhuang et al., 2013				
32	Hyporthodus septemfasciatus	Hyporthodus	FJ594966	Unpublished				

33

34

35

36

37

38

39

Plectropomus areolatus

Plectropomus leopardus

Variola albimarginata

Grammistes sexlineatus

Diploprion bifasciatum

Triso dermopterus

Variola louti

Plectropomus

Plectropomus

Triso

Variola

Variola

Grammistes

Diploprion

KC262636

DQ101270

KC593371

KC593370

KC593369

KJ489014

KP256530

Shen et al., 2013

Zhu et al., 2008

Zhuang et al., 2013

Zhuang et al., 2013

Zhuang et al., 2013

Wang et al., 2015b

Sun et al., 2016b

Fig.1 Gene map of the EMEL mitogenome. Genes encoded on the L-strand and H-strand are shown outside and inside the circular map, respectively. *ND1–6* represents genes of the NADH dehydrogenase subunits 1–6; *COI-III* represents cyto-chrome c oxidase subunits I–III; ATP6 and ATP8 represent ATPase subunits 6 and 8, respectively; Cytb represents cyto-chrome b. The inner ring indicates the GC content.

Best	Best partition scheme									
	ND1, ATP6, COX3, ND3, ND4L, ND4, ND5, CYTB									
ML	GTR+I+G			COX1, COX2						
ML	GTR+G						ND2			
	GTR+I+G					AT	P8, ND6			
Table 4 Nucleot	ide compos	sition (A+	T only) of k	ey compo	nents and f	ull-lengt	h mitogeno	omes of E	pinephelus	species
	Wh	nole	PCGs		rrnL		rrnS		CR	
	Length	AT	Length	AT	Length	AT	Length	AT	Length	AT
	(bp)	(%)	(bp)	(%)	(bp)	(%)	(bp)	(%)	(bp)	(%)
E. moara× E. lanceolatus	16866	55.27	11428	54.30	1701	53.73	953	51.10	1167	68.38
E. kaara	16795	55.97	11429	55.04	1708	54.57	953	52.26	1093	70.45
E. areolatus	16893	55.62	11429	54.62	1706	54.92	953	52.26	1191	69.35
E. awoara	16802	55.76	11429	54.82	1706	54.87	953	52.15	1102	69.42
E. bleekeri	17227	54.97	11429	54.36	1704	54.34	955	51.41	900	67.11
E. bontoides	16903	55.95	11429	55.19	1705	54.37	954	51.36	1200	69.17
E. coioides	16418	55.24	11425	54.90	1705	54.43	954	51.89	720	65.28
E. coioides \times	16418	55.29	11425	54.98	1706	54.22	953	52.05	720	65.69
E. lanceolatus	16647	55.06	11.400	54.00	1704	53 00	0.50	<i>51</i> (0	050	(0.01
E. corallicola	1664/	55.26	11428	54.80	1704	52.88	952	51.68	950	68.21
E. epistictus	16920	55.38	11429	54.17	1709	54.59	953	51.63	1217	69.93
E.fasciatomaculosus	16682	55.85 56.10	11431	54.84	1/0/	55.30	953	52.89	980	/1.02
E. Juscoguitatus	10048	30.10	11428	33.33	1703	33.78	932	32.31	948	69.20
E. Juscogunatus × E. lanceolatus	16644	56.06	11428	55.55	1705	53.67	953	52.05	947	69.27
E. lanceolatus	16574	55.92	11428	55.36	1705	54.49	953	52.05	947	69.27
E. latifasciatus	16389	54.96	11427	54.57	1707	53.25	953	51.21	684	69.01
E. malabaricus	16423	55.25	11430	54.89	1706	54.57	954	51.89	720	65.28
E. merra	17017	54.86	11428	54.05	1707	54.48	955	51.52	988	68.32
E. moara	17017	54.86	11428	54.05	1707	54.48	955	51.52	988	68.32
E. quoyanus	16797	56.51	11429	56.02	1708	54.63	954	51.99	1093	68.98
E. septemfasciatus	16558	55.39	11429	54.83	1709	55.00	956	51.57	850	67.88
E. sexfasciatus	16786	66.61	11429	54.62	1708	54.45	950	52.84	1090	70.83
E. stictus	16524	55.50	11429	54.75	1705	53.37	952	52.42	824	70.27
E. trimaculatus	16/61	56.09	11429	55.55	1706	54.10	953	51.31	1056	69.32
E. tukula	16503	54.74	11428	53.94	1705	54.08	952	50.00	805	70.06
A. rogaa	16538	55.71	11431	54.00	1/11	54.57	953	52.26	830	68.55
A. leucogrammicus	16767	56.05	11428	54.90	1700	55 29	933	54.19	910	69.70
C. argus C. hocmak	16771	56.04	11430	56.59	1711	55.28	930	52.67	813 1064	02.24
C. Doenak C. sormaaulata	16580	55 27	11429	54.83	1711	54.15	955	52.07	877	/0.11 65 56
C. sonnarati	16587	55.83	11429	55.46	1713	54.13	957	52.55	878	65.49
C. sonnerun	16407	55.31	11429	54.82	1706	53.03	957	50.63	700	67.83
C. univens H octofasciatus	16545	55.91	11428	55 51	1700	54 57	952	51.73	840	70.00
P areolatus	16770	56.43	11429	55.95	1708	56.00	955	53 57	1080	65 37
P leonardus	16714	56 75	11410	56 34	1691	56.59	951	53 42	1065	66 48
T. dermonterus	16605	53 94	11479	52 41	1708	55 56	954	51.72	901	69 70
V. alhimarginata	16758	56.06	11428	56 37	1659	54 04	959	51.20	979	61.08
V. louti	16770	56 20	11428	56 24	1696	53.60	961	52.65	975	62.87
G. sexlineatus	16502	52.53	11428	51.44	1711	52,54	950	52,84	818	64.91
D. bifasciatum	16805	53.96	11439	53.22	1705	55.37	954	51.68	843	63.23
Average	16693	55.84	11428	54.96	1705	54.43	954	52.00	945	67.77

Table 3 The best partition scheme and nucleotide substitution models for ML analyses

is thought to be due to variations in tandem repeat elements of the control region, the length of intergenic regions and gene overlaps (Moritz and Brown, 1987; McKnight and Shafer, 1997; Rand, 1993). The complete mitogenome length of EMEL, 16866 bp, is larger than the average length (16693 bp) of other Epinephelinae mitogenomes (Table 4).

The complete mitogenome sequence of EMEL was submitted to GenBank (accession No. KU881800). Its nucleotide base composition is 28.66% A, 26.61% T, 16.05% G and 28.68% C. Based on this data, the calculated A+T content is 55.27 %, which is slightly below the average value (55.84%) of Epinephelinae species (Table

4). The calculated A+T content of PCGs (54.3%), rrnL (53.73%) and rrnS (51.1%) are also slightly lower than the average values (54.96%, 54.43% and 52%, respectively) for Epinephelinae species (Table 4). However, the A+T content of the EMEL mitogenome D-loop (68.38%) is slightly higher than the average value (67.77%) for other Epinephelinae species.

Boore first described vertebrate mitogenome organization (Boore, 1999) and the data presented here suggest that this organization is conserved between EMEL and other vertebrates. Specifically, the mitogenome consists of 13 PCGs, 2 rRNA, 22 tRNA genes, 1 light-strand replication origin (O_L) and 1 control region (CR) (Fig.1). The majority of the genes (28), are encoded on the heavystrand (H-strand) while only 9 are encoded on the lightstrand (L-strand) (Table 5). Briefly, 8 tRNA genes $(tRNA^{Gln}, tRNA^{Ala}, tRNA^{Asn}, tRNA^{Cys}, tRNA^{Tyr}, tRNA^{Ser(UCN)}, tRNA^{Glu}$ and $tRNA^{Pro}$) and ND6 are encoded on the L-strand (Table 5).

3.2 Protein-Coding Genes

In the EMEL mitogenome, a total of 11428 bp are predicted to encode 13 PCGs. The location of these 13 PCGs is identical to that of other bony fish (Table 5). In EMEL only 1 PCG (*ND6*) is encoded on the L-strand, while the remaining 12 PCGs (*ND1*, *ND2*, *COXI*, *COXII*, *ATP8*, *ATP6*, *COXIII*, *ND3*, *DN4L*, *ND4*, *ND5* and *Cytb*) are encoded on the H-strand. In addition, this study also analyzed codon usage in the EMEL mitogenomeand and found that of the 13 PCGs, 10 are predicted to use the canonical ATG start codon, while *COXI* and *ND4* use GTG, and *ATP6* uses CTG. Wolstenholme identified TNN (TAA, TA, or T) as the most frequently used stop codons in animal mitogenomes (Wolstenholme, 1992). Consistent with these findings several of the EMEL mitogenome PCGs utilize these stop codonds, as 6 PCGs are terminated with the complete stop codon TAA, 1 PCG with the incomplete stop codon TA (*COXIII*) and 5 PCGs with the incomplete stop codon T (*ND2*, *COXII*, *ND3*, *ND4* and *Cytb*). However *ND5* is terminated with the universal stop codon, TAG. It is presumed that, in vertebrates, these in

Table 5 Organization of the EMEL mitochondrial genome

Nama of gana	Position		Size Nu-	Amino soid	Codons		Space (+)	Strand
Name of gene	From	То	cleotide (bp)		Initiation	Termination	overlap (-)	Suanu
$tRNA^{Phe}(F)$	1	69	69				0	Н
12S rRNA	70	1022	953				0	Н
$tRNA^{Val}(V)$	1023	1092	70				0	Н
16S rRNA	1093	2799	1707				0	Н
$tRNA^{Leu(UUR)}(L1)$	2800	2875	76				0	Н
ND1	2876	3850	975	324	ATG	TAA	4	Н
tRNA ^{Ile} (I)	3855	3924	70				-1	Н
$tRNA^{Gln}(Q)$	3924	3994	71				0	L
$tRNA^{Met}(M)$	3995	4064	70				0	Н
ND2	4065	5109	1045	348	ATG	Т	0	Н
$tRNA^{Trp}(W)$	5110	5180	71				1	Н
$tRNA^{Ala}(A)$	5182	5250	69				0	L
$tRNA^{Asn}(N)$	5251	5323	73				0	L
O_L	5324	5359	36				0	
$tRNA^{Cys}(C)$	5360	5426	67				0	L
$tRNA^{Tyr}(Y)$	5427	5497	71				1	L
COXI	5499	7049	1551	516	GTG	TAA	1	Н
$tRNA^{Ser(UCN)}$ (S1)	7051	7121	71				3	L
$tRNA^{Asp}$ (D)	7125	7197	73				8	Н
COX II	7206	7896	691	230	ATG	Т	0	Н
$tRNA^{Lys}(K)$	7897	7970	74				1	Н
ATP8	7972	8139	168	55	ATG	TAA	-10	Н
ATP6	8130	8813	684	227	CTG	TAA	-1	Н
COX III	8813	9597	785	261	ATG	TA-	0	Н
$tRNA^{Gly}(G)$	9598	9669	72				0	Н
ND3	9670	10018	349	116	ATA	T	0	Н
$tRNA^{Arg}(R)$	10019	10087	69				0	Н
ND4L	10088	10384	297	98	ATG	TAA	-7	Н
ND4	10378	11758	1381	460	GTG	Т	0	Н
$tRNA^{His}$ (H)	11759	11828	70				1	Н
$tRNA^{Ser(AGY)}(S2)$	11830	11899	70				8	Н
$tRNA^{Leu(CUN)}$ (L2)	11908	11980	73				0	Н
ND5	11981	13819	1839	612	ATG	TAG	-4	Н
ND6	13816	14337	522	173	ATG	TAA	0	L
$tRNA^{Glu}(E)$	14338	14407	70				7	L
Cytb	14415	15555	1141	380	ATG	T	0	Н
$tRNA^{Thr}(T)$	15556	15629	74				0	Н
$tRNA^{Pro}\left(P\right)$	15630	15699	70				0	L
CR	15700	16866	1167					-

complete stop codons are altered to a complete TAA stop codon through post-transcriptional polyadenylation (Ojala *et al.*, 1981).

3.3 tRNA Genes and rRNA Genes

The methods used here predicted 22 tRNA genes in the EMEL mitogenome ranging from 67 to 74 bp (Table 5). Among the 22 tRNA genes, 21 were detected using the

tRNAscan-SE Search Server v.1.21 (Lowe and Eddy, 1997). The remaining tRNA gene ($tRNA^{Ser}$ (AGY)) were then predicted using comparative genomics as described in the section of materials and methods. In addition, the 2 rRNA genes (16S rRNA and 12S rRNA) were then detected at the conserved position (between $tRNA^{Phe}$ and $tRNA^{Leu(UUR)}$, separated by $tRNA^{Val}$) with a total length of 2660 bp.

3.4 Non-Coding Regions

Two non-coding regions (O_L and CR) were both detected in the EMEL mitogenome. The data presented here indicate that O_L is located in a typical cluster of 5 tRNA genes known as the WANCY region, which is similar to that in other vertebrate mitogenomes. Based on folding models, this region is predicted to fold into a stable stem loop structure consisting of a 26 bp GC stem and an 8 bp loop (Fig.2).

The CR is predicted to have a total length of 1167 bp, located between $tRNA^{Pro}$ and $tRNA^{Phe}$, which is consistent with its organization in other vertebrates (Sbisà *et al.*, 1997). As stated previously, the A+T content is 68.38%, which is slightly higher than the average value (67.77%) of other Epinephelinae species. The observation of a repeat array at the 5' end, a signature feature of fish mitogenome CRs, supports this as the putative CR in the EMEL mitogenome (Fig.3). The repeat array consists of 31 copies of a 12 bp repeat unit (5'-ATATTACATATATG CTG-3'). The variable lengths of CRs among different Epinephelinae species (Table 4) are mainly due to the different number of basic unit repeats, suggesting that the CR may be the most variable region in the mitogenome

Fig.2 Stem and loop structure of the O_L in the EMEL mitogenome.

	Repeat	unit				
1	ATATTACATA	TATGCTGATA	TTACATATAT	GCTGATATTA	CATATATGCT	GATATTACAT
61	ATATGCTGAT	ATTACATATA	TGCTGATATT	ACATATATGC	TGATATTACA	TATATGCTGA
121	TATTACATAT	ATGCTGATAT	TACATATATG	CTGATATTAC	ATATATGCTG	ATATTACATA
181	TATGCTGATA	TTACATATAT	GCTGATATTA	CATATATGCT	GATATTACAT	ATATGCTGAT
241	ATTACATATA	TGCTGATATT	ACATATATGC	TGATATTACA	TATATGCTGA	TATTACATAT
301	ATGCTGATAT	TACATATATG	CTGATATTAC	ATATATGCTG	ATATTACATA	TATGCTGATA
361	TTACATATAT	GCTGATATTA	CATATATGCT	GATATTACAT	ATATGCTGAT	ATTACATATA
421	TGCTGATATT	ACATATATGC	TGATATTACA	TATATGCTGA	TATTACATAT	ATGCTGATAT
481	TACATATATG	CTGATATTAC	ATATATGCTG	ATATTACATA	TATGCTGATA	TTACATATAT
541	GCGTCTTGAT	TCAACATTAT	ATTTGATAAC	AAATAAACTG	CACAGTAAGA	ACCTACCAAC
601	AAGAGTTAGG	TAATGCATAC	GGTTATTGAT	AATGAGGGAC	AATAACTGTG	AGGGTCTCAC
661	TCAGTGAATT	ATTCCTGGCA	TTTGGTTCCT	ACTTCAGGGC	CATGACTTGA	TTATATTCCT
721	CACACTTTCA	TTAACGCTGG	CATAAGTTAA	TAGTGTTAAC	CATTAGATTC	ATTACCCAGC
781	AAGCCGAGCC	TTCATTCCAG	GGGGTGGGGG	GTTCCCTTTT	ATTTTTTTCC	TTTCAACAGG
841	CATTTCAGAG	TGTAAGAAAA	GGCTGAAAGT	TTGAAGGTAG	TACATCACTT	TGCAGCTGAA
901	CACAAGGTTA	TGCAGGCTAA	AAAGACATTC	TTTTAGAAAT	AATTACATAA	CTGATTTCAA
961	GAACATAAAT	ATACTTATCC	TACTCAGAGC	ACCCCCCTAA	TATTAGGATG	CCCGGTCTGG
1021	TGGTTTTTAT	CCGTTTAAAC	CCCCCTACCC	CCCTAAACCC	CTGAGATTCC	TAACACCCCT
1081	GTAAACCCCC	CGGAAACAGG	GCTAAACCTC	AAGTAATAAG	TTTTTAACCT	AAAATGTGTT
1141	TATTACACTA	ATGTAATTTT	TAATTTG			

Fig.3 Nucleotide sequence of the CR in EMEL mitogenome. The underlined sequence represents the repeat array.

3.5 Maternal Inheritance

Comparison of the mitogenome sequences between the hybrid EMEL and the parents was performed. The hybrid EMEL mitogenome shares high similarity with *E. moara* (the female parent, 99.8% identity), but lower similarity

with *E. lanceolatus* (the male parent, 89.3% identity). The divergence between the hybrid EMEL and *E. moara* mitogenomes (0.2%) is mainly due to the loss copies of repeat elements in the CR during the heredity. This provides some evidence to show that the mitogenome is inherited from the female parent.

3.6 Phylogenetic Analysis

Phylogenetic analysis was performed using the ML method based on the nucleotide sequences of 13 conserved PCGs from 36 Epinephelinae species and three hybrids (Table 2). It is clear that EMEL forms a clade with *E. moara* with strong bootstrap support (bootstrap = 100). Additionally, the other 2 well-supported monophyletic clades were observed between the hybrid and female parent (*E. coioides* and *E. coioides* $\mathfrak{Q} \times E$. lanceo-latus \mathfrak{Z} , *E. fuscoguttatus* and *E. fuscoguttatus* $\mathfrak{Q} \times E$. lanceolatus \mathfrak{Z}) (Fig.4), which demonstrates that the mitogenome is inherited maternally. Furthermore, *Anyperodon leucogrammicus* and *Cromileptes altivelis* form a clade

with the species in the genus *Epinephelus*, which is slightly different from conventional morphology-based classification of Epinephelinae species. Additionally, another clade was formed with three *Cephalopholis* species and *Aethaloperca rogaa*, which is also different from conventional morphology-based classification of Epinephelinae species. The difference in the evolutionary relationships between the morphology-based and mitogenome-based phylogenetic trees may be due to the limited availability of mitogenomes from Epinephelinae species. Therefore, it is predicted that the phylogenetic relationships of species in Epinephelinae will become clearer when more Epinephelinae mitogenomes become available.

Fig.4 Phylogenetic tree of 36 Epinephelinae species and three hybrids. Phylogenetic analysis was based on nucleotide dataset of 13 PCGs using the ML method. Numbers at nodes are ML bootstrap values and only values above 50% are displayed.

4 Conclusions

The complete sequence of the EMEL mitogenome is 16866 bp in length, and contains 13 PCGs, 22 tRNA genes, 2 rRNA genes, an O_L , and a CR. Phylogenetic analysis based on nucleotide sequences of the 13 conserved PCGs was performed using the ML method, which demonstrated that the mitogenome is inherited maternally by the progenies. Furthermore, this relationship is slightly different from conventional morphology-based classification of Epinephelinae species. It is predicted that as more Epinephelinae mitogenomes become available, the phylogenetic relationship between species in this subfamily will become clearer.

Acknowledgements

We appreciate Peng Yu (College of Animal Science and Technology, Anhui Agricultural University, Heifei) for his kind support. This research was supported by grants from Dahuanong Aquatic Company, Guangdong, and Taishan Scholar Project, Shandong, China.

Conflict of Interest

All authors state that there is no conflict of interest. The authors alone are responsible for the content and writing of this paper.

References

- Boore, J. L., 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27 (8): 1767-1780.
- Boore, J. L., Macey, J. R., and Medina, M., 2005. Sequencing and comparing whole mitochondrial genomes of animals. *Methods in Enzymology*, **395**: 311-348.
- Craig, M. T., Pondella, D. J., Franck, J. C., and Hafner, J. C., 2001. On the status of the serranid fish genus *Epinephelus*: Evidence for paraphyly based upon 16S rDNA sequence. *Molecular Phylogenetics and Evolution*, **19** (1): 121-130.
- Ding, S., Zhuang, X., Guo, F., Wang, J., Su, Y., Zhang, Q., and Li, Q., 2006. Molecular phylogenetic relationships of China Seas groupers based on cytochrome B gene fragment sequences. *Science in China Series C*, **49** (3): 235-242.
- Du, F. Y., Ye, L., and Wang, X. H., 2015. Complete mitochondrial genome of the sixbar grouper *Epinephelus sexfasciatus* (Perciformes: Epinephelidae). *Mitochondrial DNA*, **26** (3): 461-462.
- Feliner, G. N., and Aguilar, J. F., 1998. Hybrids and hybrid zones. *Trends in Ecology & Evolution*, **13** (7): 282.
- Glamuzina, B., Glavic, N., Skaramuca, B., Skaramuca, B., Kozul, V., and Tutman, P., 2001. Early development of the hybrid *Epinephelus costae* ^Q× *E. marginatus*[∂]. *Aquaculture*, **198** (1): 55-61.
- Hamers, L., 2016. Why do cells' power plants hang on to their own genomes? *Science*, 351 (6276): 903-903.
- He, B., Lai, T., Peng, Z., Wang, X., and Pan, L., 2013. Complete mitogenome of the Areolate grouper *Epinephelus areolatus* (Serranidae, Epinephelinae). *Mitochondrial DNA*, **24** (5): 498-500.
- Heemstra, P. C., and Randall, J. E., 1993. Groupers of the world (family Serranidae, subfamily Epinephelinae): An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper, and lyretail species known to date. *Food and Agriculture Organization of the United Nations*, **16** (125): 1-10.
- Hsiao, S. T., and Chen, K. S., 2015. Complete mitochondrial genome of the Palemargin grouper *Epinephelus bontoides* (Pisces: Perciformes). *Mitochondrial DNA*, DOI: 10.3109/ 19401736.2015.1115498.
- Hsiao, S. T., Chen, K. S., Tseng, C. T., and Wu, C. L., 2016. Complete mitochondrial genome of the six blotch hind *Cephalopholis sexmaculata* (Pisces: Perciformes). *Mitochondrial DNA*, 27 (2): 1018-1019.
- James, C. M., Al-Thobaiti, S. A., Rasem, B. M., and Carlos, M. H., 1999. Potential of grouper hybrid (*Epinephelus fuscoguttatus* ×*E. polyphekadion*) for Aquaculture. *Naga, the ICLARM Quarterly*, **22** (1): 19-23.
- Lai, T., He, B., Peng, Z., Wang, X., and Pan, L., 2013. Complete mitochondrial genome of the striped grouper *Epinephelus latifasciatus* (Serranidae, Epinephelinae). *Mitochondrial DNA*, 24 (5): 510-512.
- Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S., 2012. Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, **29** (6): 1695-1701.
- Li, J. L., Liu, M., and Wang, Y. Y., 2014. Complete mitochondrial genome of the chocolate hind *Cephalopholis boenak* (Pisces: Perciformes). *Mitochondrial DNA*, **25** (3): 167-168.
- Li, J. L., Liu, M., and Wang, Y. Y., 2013. Complete mitochondrial genome of the rock grouper *Epinephelus fasciatomaculosus* (Pisces: Perciformes). *Mitochondrial DNA*, 24 (6): 625-626.

- Li, Z. F., Fu, Q. Q., and Zhang, Y. S., 2008. An analysis of the nutritive composition and the contents of amino acids in muscle of *Epinephelus lanceol. South China Fish Science*, 4 (5): 61-64 (in Chinese with English abstract).
- Liu, M., Li, J. L., Ding, S. X., and Liu, Z. Q., 2013. *Epinephelus moara*: A valid species of the family Epinephelidae (Pisces: Perciformes). *Journal of Fish Biology*, **82** (5): 1684-1699.
- Lowe, T. M., and Eddy, S. R., 1997. TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Research*, 25: 955-964.
- McKnight, M. L., and Shafer, H. B., 1997. Large rapidly evolving intergenic spacers in the mitochondrial DNA of the salamander family Ambystomatidae (Amphibia: Caudata). *Journal of Molecular Biology and Evolution*, 14: 1167-1176.
- Miya, M., Friedman, M., Satoh, T. P., Takeshima, H., Sado, T., Iwasaki, W., Yamanoue, Y., Nakatani, M., Mabuchi, K., Inoue, J. G., Inoue, J. Y., Poulsen, T. F., Yukuto, S., and Mutsumi, N., 2013. Evolutionary origin of the Scombridae (tunas and mackerels): Members of a paleogene adaptive radiation with 14 other pelagic fish families. *PLoS One*, **8** (9): E73535.
- Moritz, C., and Brown, W. M., 1987. Tandem duplications in animal mitochondrial DNA: Variations in incidence and gene content among lizards. *The Proceedings of the National Academy of Sciences of the United States of America*, 84: 7183-7187.
- Ojala, D., Montoya, J., and Attardi, G., 1981. tRNA punctuation model of RNA processing in human mitochondria. *Nature*, 290: 470-474.
- Okada, T., Yoneshima, H., Mukai, Y., and Sawada, Y., 1996. Tolerance limits of young kelp grouper *Epinephelus moara* for environmental stresses. *Bulletin of the Fisheries Laboratory of Kinki University*, 5: 139-146.
- Peng, Z., Chen, J., Lai, T., Huang, Y., and Wu, L., 2014b. Complete mitochondrial genome of the longfin grouper *Epinephelus quoyanus* (Serranidae: Epinephelinae). *Mitochondrial DNA*, **25** (3): 175-176.
- Peng, Z., Huang, Y., Chen, J., Lai, T., and Wu, L., 2014a. Complete mitochondrial genome of dotted grouper *Epinephelus epistictus* (Serranidae: Epinephelinae). *Mitochondrial DNA*, 25 (3): 190-191.
- Qin, J., Hu, D., Yang, W., and Xiao, J., 2014. Complete mitochondrial genome of the humpback grouper *Cromileptes altivelis*. *Mitochondrial DNA*, 25 (3): 200-201.
- Qu, M., Zhang, X., and Ding, S. X., 2012. Complete mitochondrial genome of yellow grouper *Epinephelus awoara* (Perciformes, Epinephelidae). *Mitochondrial DNA*, 23 (6): 432-434.
- Rand, D. M., 1993. Endotherms, ectotherms, and mitochondrial genome size variation. *Journal of Molecular Evolution*, 37: 281-295.
- Sbisà, E., Tanzariello, F., Reyes, A., Pesole, G., and Saccone, C., 1997. Mammalian mitochon-drial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. *Gene*, **205** (1-2): 125-140.
- Shen, M., Shi, X., Qu, M., and Chen, J., 2013. Complete mitochondrial genome of squaretail coral grouper *Plectropomus aeolatus* (Perciformes, Epinephelidae). *Mitochondrial DNA*, 24 (4): 365-367.
- Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-

based phylogenetic analysis with thousands of taxa and mixed models. *Bioinformatics*, **22** (21): 2688-2690.

- Sun, Y., Guo, C. Y., Wang, D. D., Li, X. F., Xiao, L., Zhang, X., You, X., Shi, Q., Hu, G. J., Fang, C., Lin, H. R., and Zhang, Y., 2016a. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (*Epinephelus fuscogutatus* $\Im \times E$. lanceolatus \Im). *BMC Genetics*, **17** (1): 24.
- Sun, Y., Wei, T., Su, X., and Li, T., 2016b. The complete mitochondrial genome of *Grammistes sexlineatus* (Perciformes, Serranidae). *Mitochondrial DNA*, 27 (2): 821-823.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Journal of Molecular Biology and Evolution*, 30: 2725-2729.
- Tseng, W. Y., and Poon, C. T., 1983. Hybridization of *Epi*nephelus species. Aquaculture, **34** (1): 177-182.
- Urbanelli, S., Porretta, D., Mastrantonio, V., Bellini, R., Pieraccini, G., Romoli, R., Crasta, G., and Nascetti, G., 2014. Hybridization, natural selection, and evolution of reproductive isolation: A 25-years survey of an artificial sympatric area between two mosquito sibling species of the Aedes mariae complex. *Evolution*, 68 (10): 3030-3038.
- Wang, H., Guo, L., and Ding, S. X., 2015b. The complete mitochondrial genome of *Diploprion bifasciatum* (Perciformes, Serranidae). *Mitochondrial DNA*, DOI: 10.3109/19401736. 2015.1007301.
- Wang, Q., Chen, H., Xu, W., He, J., Xie, Z., Tang, L., Tang, Z., Li, Y., Li, S., Zhang, Y., and Lin, H., 2015a. The complete mitochondrial genome of the hybrid grouper *Epinephelus coioides*♀×*Epinephelus lanceolatus*♂. *Mitochondrial DNA*, DOI: 10.3109/19401736.2014.1003902.
- Wan, Q., Qiao, H. Y., Cheng, Q. Q., and Chen, Y., 2014. Complete mitochondrial genome of *Pelteobagrus fulvidraco* (Siluriformes: Bagridae): Genome description and related phylogenetic analyses. *Mitochondrial DNA*, 25 (1): 39-41.
- Wang, X., Wang, Q., Xie, Z., He, J., Wang, D., Chen, H., Li, S., Zhang, Y., and Lin, H., 2014. The complete mitochondrial genome of the *Epinephelus lanceolatus* (Perciformes: Serranidae). *Mitochondrial DNA*, DOI: 10.3109/19401736. 2014.961147.

Wolstenholme, D. R., 1992. Animal mitochondrial DNA: Struc-

ture and evolution. *International Review of Cytology*, **141**: 173-216.

- Yang, Y., Xie, Z., Peng, C., Wang, J., Li, S., Zhang, Y., Zhang, H., and Lin, H., 2014. The complete mitochondrial genome of the *Epinephelus tukula* (Perciformes, Serranidae). *Mitochondrial DNA*, DOI: 10.3109/19401736. 2014.905837.
- Ye, L., Du, F. Y., Wang, X. H., and Wang, Y., 2014a. Complete mitochondrial genome of the black-dotted grouper *Epinephelus stictus*. *Mitochondrial DNA*, **25** (2): 87-88.
- Ye, L., Wang, X. H., and Du, F. Y., 2014b. Complete mitochondrial genome of the three spot grouper *Epinephelus trimaculatus*. *Mitochondrial DNA*, 25 (4): 293-294.
- Zheng, L., Xie, J., Xie, Z., Xiao, L., Wang, Q., Huang, M., Chen, H., Li, S., Huang, Z., Zhang, Y., and Lin, H., 2014. The complete mitochondrial genome of the *Epinephelus corallicola* (Perciformes: Serranidae). *Mitochondrial DNA*, DOI: 10. 3109/19401736.2014.989509.
- Zhu, K., and Yu, D., 2014a. The complete mitochondrial genome of the hybrid of *Epinephelus fuscoguttatus* ♀× *Epinephelus lanceolatus* ♂. *Mitochondrial DNA*, DOI: 10.3109/ 19401736.2014.971310.
- Zhu, K., and Yu, D., 2014b. The complete nucleotide sequence of Malabar grouper (*Epinephelus malabaricus*) mitochondrial genome. *Mitochondrial DNA*, DOI: 10.3109/19401736.2014. 982569.
- Zhu, Z. Y., Lo, L. C., and Yue, G. H., 2008. The complete mitochondrial genome of red grouper *Plectropomus leopardus* and its applications in identification of grouper species. *Aquaculture*, 276 (1-4): 44-49.
- Zhuang, X., Ding, S., Wang, J., Wang, Y., and Su, Y., 2009. A set of 16 consensus primer pairs amplifying the complete mitochondrial genomes of orange-spotted grouper (*Epinephelus coioides*) and Hong Kong grouper (*Epinephelus akaara*). *Molecular Ecology Resources*, 9 (6): 1551-1553.
- Zhuang, X., Qu, M., Zhang, X., and Ding, S., 2013. A comprehensive description and evolutionary analysis of 22 grouper (Perciformes, Epinephelidae) mitochondrial genomes with emphasis on two novel genome organizations. *PLoS One*, 8 (8): e73561.
- Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research*, **31** (13): 3406-3415.

(Edited by Ji Dechun)