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Abstract  This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a sub-
merged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the 
structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting 
boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions 
are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently 
developed multi-domain boundary element method (BEM) solution and experimental data. The wave run-up and wave force on the 
partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The 
horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the 
porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflec-
tion coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary en-
gineering design stage.  
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1 Introduction 
Vertical breakwaters, seawalls and sea dikes have been 

widely used for protecting coastlines and wharfs. Vertical 
structures may be subjected to severe sea waves. A sub-
merged porous bar can be used to provide a sheltering 
effect for a vertical structure. Moreover, the submerged 
porous bar (breakwater) can be easily constructed without 
affecting coastal aesthetic. The wave transformations be-
tween submerged porous bars and vertical walls are rather 
complicated. For practical engineering design, it is signifi- 
cant to well understand the mechanism of wave transfor-
mations between vertical walls and submerged porous bars. 

Sollitt and Cross (1972) developed a classical porous 
medium model to examine wave reflection and transmis-
sion by a submerged porous rectangular breakwater. Us-
ing the porous medium model of Sollitt and Cross (1972), 
Yu and Chwang (1994) examined wave motion through a 
two-layer porous breakwater, and Losada et al. (1996) 
developed an analytical solution for oblique wave inter-
action with a submerged rectangular porous breakwater. 
Li and Huang (2006) experimentally studied the reflec-
tion and transmission coefficients of submerged porous 
structures with different shapes. Cheng et al. (2009) and 
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Jiang et al. (2012) numerically examined wave dissipa-
tions inside submerged porous structures. Wu et al. (2014) 
simulated the interaction of solitary waves with submerged 
rectangular porous breakwaters. The preceding studies 
have shown that a single submerged porous bar (break-
water) can effectively dissipate incident wave energy.  

Besides studying submerged porous bars alone, some 
researchers have examined submerged bars in front of 
vertical or slope walls. Reddy and Neelamani (2005) nu-
merically and experimentally examined wave forces act-
ing on a vertical seawall protected by a submerged porous 
bar. Jeng et al. (2005) measured wave transformation 
between a submerged breakwater and a vertical seawall 
located on a porous seabed. Chen et al. (2007) experi-
mentally studied the wave transformation between a 
submerged porous breakwater and a slope seawall. Zheng 
et al. (2007) developed analytical solutions for wave dif-
fraction and radiation by a submerged solid bar in front of 
a vertical wall. Recently, Koley et al. (2014) used matched 
eigenfunction expansions to develop analytical solutions 
for wave trapping by submerged and surface- piercing 
porous structures in front of vertical walls. Das and Bora 
(2014) developed an analytical solution for wave reflec-
tion by a porous structure with a vertical solid rear wall. 
In aforementioned studies, water waves were all fully 
reflected by rear walls.  

However, vertical breakwaters or seawalls are often 
partially reflecting structures in practice. Goda (2010) 



ZHAO et al. / J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2016 15: 619-626 

 

620 

gave the approximate reflection coefficients of different 
coastal structures, as listed in Table 1. It can be seen from 
Table 1 that the reflection coefficient of a wave-energy- 

dissipation vertical structure, such as perforated caissons 
(Huang et al., 2011; Lee and Shin, 2014), may be as low 
as 0.3. To describe a partially reflecting wall in mathe-
matics, Isaacson and Qu (1990) developed a partially 
reflecting boundary condition using potential theory. 
Based on the boundary condition of Isaacson and Qu 
(1990), Elchahal et al. (2008) examined the effects of 
harbor sidewall reflection on floating breakwaters. They 
found that the hydrodynamic performance of floating 
breakwaters was significantly changed by the lee side 
partially reflecting wall.  

The objective of this study is to develop an analytical 
solution for wave interaction with a partially reflecting 
wall protected by an idealized rectangular porous bar. The 
engineering background of the present study is to con-
struct an offshore submerged rubble mound breakwater 
for protecting wave-energy-dissipation vertical seawalls 
or sea dikes (such as perforated caissons). In the follow-
ing section, the mathematical model of the present prob-
lem is formulated and solved using matched eigenfunc-
tion expansions. In Section 3, the analytical solution is 
verified by experimental data and an independently de-
veloped multi-domain boundary element method (BEM) 
solution. In Section 4, selected numerical examples are 
presented to examine the wave run-up and wave force on 
the vertical wall and the results are presented as reference 
for practical engineering. Finally, the main conclusions of 
this study are drawn.  

Table 1 Approximate reflection coefficients for various 
coastal structures (Goda, 2010)  

Coastal structure 
Reflection 
coefficient 

Vertical wall with crown above water 0.7 – 1.0 
Vertical wall with submerged crown 0.5 – 0.7 
Slope of rubble stones(slope of 1 on 2 to 3) 0.3 – 0.6 
Slope of energy dissipating concrete blocks 0.3 – 0.5 
Vertical structure of energy dissipating type 0.3 – 0.8 
Natural beach 0.05 – 0.2 

2 Mathematical Model 
The wave interaction with a partially reflecting vertical 

wall protected by a submerged porous bar is sketched in 
Fig.1. A Cartesian coordinate system, with the origin lo-
cated on the still water level and the z-axis directing up-
wards along the vertical midline of the porous bar, is used 
for mathematical descriptions. The porous bar with a 
width of B (B = 2b) and a thickness of a is submerged in 
sea water with a finite depth of h. The submerged depth 
of the porous bar is d and thus h = d + a. The horizontal 
space between the bar rear face and the partially reflect-
ing vertical wall is D. The reflection coefficient of the 
vertical wall is Kr. The whole fluid domain is divided into 
four regions: region 1, the fluid domain in front of the 
porous bar; region 2, the fluid domain above the porous 

bar; region 3, the fluid domain occupied by the porous bar; 
and region 4, the fluid domain between the porous bar 
and the vertical wall. 

 

Fig.1 Sketch of wave interaction with a partially re-
flecting wall protected by a submerged porous bar.  

The mathematical model is based on the linear poten-
tial theory. Following the classical porous medium model 
of Sollitt and Cross (1972), the porous bar is regarded as 
a rigid and homogenous porous medium. Then, the effects 
of porous medium on fluid motion are represented by 
three parameters: the linearized resistance coefficient f, 
the inertial coefficient s, and the porosity ε. The fluid mo-
tions inside and outside the porous bar can both be de-
scribed by a velocity potential Φ(x, z, t). For harmonic 
incident waves with angular frequency ω, the time factor 
exp(−iωt) can be separated from the velocity potential: 

    i, , Re , e tx z t x z       ,         (1) 

where Re means the real part of variables in the square 
brackets,  is the complex spatial velocity potential, and 
i 1  . 

The spatial velocity potential satisfies the Laplace 
equation in each region: 

2 2

2 2
0j j

x z

  
 

 
, 1, 2,3,4j .         (2) 

where the subscript j denotes the variables in region j. On 
the free surface, the water bottom, the upper horizontal 
face of the bar, and the far field, the velocity potentials 
satisfy the following boundary conditions: 

2

,  0,  1,2,4j
j z j

z g

  


  


,           (3) 

0,  ,  1,3, 4j z h j
z


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
,           (4) 

32 ,  ,  b x b z d
z z

  
    

 
,        (5a) 

2 3( i ) ,  ,  s f b x b z d       ,       (5b) 
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x
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 


     
,          (6) 
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where g is the gravitational acceleration, k0 is the incident 
wave number, and 0 is the velocity potential of incident 
waves given by 

 
00 i

0
0

coshi
e

2 cosh
k xk z hgH

k h





 ,           (7) 

where H is the incident wave height. 
The velocity potentials, which satisfy the Laplace equa-

tion (Eq. (2)) and the relevant boundary conditions in Eqs. 
(3) – (6), can be written as 

   0i
1 0

i
e

2
k x bgH

Z z


  , 

       0i
0 0

1

e e mk x b k x b
m m

m

R Z z R Z z

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


 


 ,    (8) 

       2
0
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cos sin
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




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(9) 
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0
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where Rm, Am, Bm, Cm and Dm are the unknown expansion 
coefficients; and Zm(z), Um(z) and Vm(z) are the vertical 
eigenfunctions defined as 
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The eigenvalues km are positive real roots in the fol-
lowing wave dispersion relations: 

2
0 0tanh tan ,  1,2,m mgk k h gk k h m     ,   (16) 

The eigenvalues λm satisfy the following complex dis-
persion relations: 

2 2tanh tanm m m m mg h P h g          .    (17) 

All the complex roots of Eq. (17) are found using the 
Newton-Raphson method, and the initial guesses of the 
roots are determined by the perturbation method of 
Mendez and Losada (2004).  

It is noted that the wave number k0 is corresponding to 
propagation waves. However, the eigenvalues km (m = 1, 2, 
) are corresponding to a series of evanescent modes, 
which decay exponentially with the increasing distance 
from structures. 

On the common boundaries of different regions (x = ±b), 
the velocity potential and the horizontal mass fluxes must 
be continuous:  

1 2  , x b , 0d z   ,           (18a) 

 1 3is f   , x b , h z d   ,        (18b) 

1 2

x x

  


 
, x b , 0d z   ,          (19a) 
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x x

  


 
, x b , h z d   ,         (19b) 

4 2  , x b , 0d z   ,            (20a) 

 4 3is f   , x b , h z d   ,        (20b) 

4 2

x x

  


 
, x b , 0d z   ,          (21a) 

34

x x

  


 
, x b , h z d   .         (21b) 

On the vertical wall, the partially reflecting boundary 
condition is given by Isaacson and Qu (1990): 

4
0 4

1
i
1

r

r

K
k

x K

  


 
, x b D  ,          (22) 

where Kr is the reflection coefficient of the vertical wall 
(Fig.1). When Kr is unity, transmitted waves by the po-
rous bar are totally reflected by the vertical wall; when Kr 
is zero, transmitted propagation waves are totally dissi-
pated by the vertical wall. Eq. (22) was originally devel-
oped in the context of plane waves, and the effects of 
evanescent modes were not included. Thus, for Kr = 0 at a 
small value of D, the boundary condition in Eq. (22) does 
not become a far field radiation condition due to the exis-
tence of evanescent modes near the vertical wall. This 
may be reasonable in practice. It is also noted that the 
reflection coefficient of a coastal structure is defined as 
the ratio of the reflected wave height to the incident wave 
height. On the right hand side of Eq. (11), the first and 
second part denote waves propagating along the positive 
and negative x-direction, respectively. Thus,  

0

0
r

D
K

C
 ,                   (23) 

which can be used as a benchmark for this analytical so-
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lution. 
The unknown expansion coefficients in Eqs. (8) – (11) 

are determined using the boundary conditions in Eqs. (18) – 

(22). For example, substituting the velocity potentials in 
Eqs. (8) and (9) into Eq. (18), it yields:  

       0
0 0

cos sinm m m m m m m
m m

Z z R Z z A b B b U z 
 

 
    ,  

0d z   ,  (24a) 

   0
0

m m
m

Z z R Z z



   

    
0

cos sin im m m m m
m

A b B b s f V z 



  ,        

,  h z d   .   (24b) 

Multiplying both sides of Eq. (24) by Zn(z), integrating 
with respect to z from −h to 0, and then using the or-
thogonality of Zn(z) and truncating n and m after N terms, 
we have 

             1 1 1 1 1n n nm mN N N N N
e R a A         

       1 1 1nm mN N N
b B    ,       (25) 

where the matrix coefficients are listed in Table 2. Using 
the similar method to the above, we can transform Eqs. 
(19) – (22) into 

             1 1 1 1 1n n nm mN N N N N
e R c A          

       1 1 1nm mN N N
d B    ,     (26) 
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e { }nk D

n n nm mNN N N N
C D a A

      

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, 

       1 1 1nm mN N N
d B    ,     (28) 

         0 01 1
e 0nk D

n n n nN N
k k C k k D 

     ,  (29) 

where the matrix coefficients are also listed in Table 2. Eqs. 
(25) – (29) are simultaneously solved by Gauss elimina-
tion method. Then, all the unknown expansion coeffi-
cients are determined and various hydrodynamic quanti-
ties of engineering interests can be estimated.  

The reflection coefficient of the system of porous bar 
and the vertical wall is calculated by 

0RC R .                  (30) 

The surface elevation on the vertical wall is estimated 
by 



4
0 0

i
( ,0) e

2
mk D

m m
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H
b D C D

g
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

 

 
    

 
  .  (31) 

The dimensionless wave run-up on the vertical wall is 
defined as 

2
HC

H


 .                 (32) 

The dynamic pressure on the vertical wall is calculated 
by the linear Bernoulli equation 

   , i ,p b D z b D z   , 

where ρ is the water density. Integrating the dynamic 
pressure along the vertical wall, we get the magnitude of 
horizontal wave force acting on the wall: 
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The dimensionless horizontal wave force on the verti-
cal wall is defined as 

F

F
C

gHh
 .                  (34) 

Table 2 The matrix coefficients in Eqs. (25) – (29) 

Coefficient Value 

ne  ,  0 ( 0)1 ( 0) nn   
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Z z z

  

3 Validation 
3.1 Convergence Examination 

For the present series solution, the truncated number N 
must be carefully determined for obtaining convergent 
results. Table 3 lists the calculated results for the dimen-
sionless wave run-up CH and the dimensionless wave 
force CF at different N values for a typical case with k0d = 

1.2, B/h = 1.2, D/h = 3.0, ε = 0.4, f = 2.0, s = 1.0 and Kr = 0.8. 
It can be seen that the truncated number N = 40 is suffi-
cient to ensure accurate results for engineering purposes 
and thus, is used in the present study. 
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Table 3 Convergence of CH and CF with increasing truncated number N 

a/h = 0.1 a/h = 0.2 a/h = 0.5 a/h = 0.95 
Truncated number N 

CH CF  CH CF  CH CF  CH CF  

2 1.8055 0.6272 1.7943 0.6233 1.5764 0.5476 0.2943 0.1022 
5 1.8024 0.6261 1.7822 0.6190 1.5792 0.5485 0.2647 0.0920 
10 1.8013 0.6257 1.7819 0.6190 1.5774 0.5479 0.2568 0.0892 
20 1.8012 0.6257 1.7819 0.6189 1.5774 0.5479 0.2541 0.0882 
40 1.8012 0.6257 1.7818 0.6189 1.5774 0.5479 0.2541 0.0883 
60 1.8012 0.6256 1.7818 0.6189 1.5774 0.5479 0.2541 0.0883 

 

3.2 The Special Case of a Single Submerged Porous 
Bar 

If the reflection coefficient Kr of the vertical wall is 
zero and the distance D between the porous bar and the 
vertical wall is large, the partially reflection boundary 
condition on the vertical wall will become a far field ra-
diation condition. Then, the present problem will reduce 
to that of wave motion over a single submerged porous 
bar. For this special case, the calculated results of Dm (m = 

0, 1, 2, ) in Eq. (11) are all zero, and the transmission 
coefficient of the porous bar can be calculated by 

0TC C .                   (35) 

Li and Huang (1996) measured the reflection and 
transmission coefficients of a submerged rectangular po-
rous bar by a series of model tests. Here the reflection and 
transmission coefficients predicted by the present ana-
lytical solution are compared with the experimental data 
of Li and Huang (1996). For such practical calculations, 
the values of three parameters ε, f and s must be known. 
The value of ε was 0.678 in the tests of Li and Huang 
(1996). According to Pérez-Romero et al. (2009), the 
inertial coefficient s is simply assumed as unity, and the 
resistance coefficient f is calculated by  

  0.57
00.46 sf D k

 ,            (36) 

where Ds is the nominal diameter of stones and Ds = 1.95 

cm in the tests of Li and Huang (1996). The water depth 
used in Li and Huang (1996) was 30 cm. 

The comparisons between the present predictions and 
the experimental data of Li and Huang (1996) at different 
values of a/h and B/h are given in Figs.2–4. It can be seen 
from these figures that the agreement between the ana-
lytical solution and the experimental data is reasonable. 
This means that the present solution may be acceptable 
for practical problems.  

3.3 Comparison with Multi-Domain BEM Solution 

To confirm the analytical solution, we have developed 
a multi-domain BEM solution for the present boundary 
value problem. The multi-domain BEM solution is slightly 
modified by the solution of Liu et al. (2012). The funda-
mental solution of Laplace equation, which does not sat-
isfy any boundary condition, is adopted. All the boundary 
curves are discretized using constant elements. However, 

 

Fig.2 Comparison between the present analytical solu-
tion (lines) and the experimental results of Li and Huang 
(1996) (dots) at a/h = 0.751 and B/h = 0.634. 

 

Fig.3 Comparison between the present analytical solu-
tion (lines) and the experimental results of Li and Huang 
(1996) (dots) at a/h = 0.751 and B/h = 1.268. 

 

Fig.4 Comparison between the present analytical solu-
tion (lines) and the experimental results of Li and Huang 
(1996) (dots) at a/h = 0.495 and B/h = 1.268. 
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the far field radiation condition at the lee side of the 
structure in Liu et al. (2012) is replaced by the present 
partially reflecting boundary condition in Eq. (22). Nu-
merically the multi-domain BEM solution is cumbersome, 
and all the boundaries of the fluid domain need to be dis-
cretized. However, the BEM solution can be suitable to 
submerged porous bars with complicated shapes.  

The reflection coefficient CR and the wave run-up CH 
calculated by the present analytical solution and the 
multi-domain BEM solution are compared for a typical 
case in Fig.5. With a/h = 0.5, B/h = 1.0, D/h = 1.0, ε = 0.45, f 

= 2.0, s = 1.0 and Kr = 0.5, it is evident that the agreement 
between the two different solutions is excellent. In addi-
tion, the calculated results of D0 and C0 by the analytical 
solution satisfy the relation in Eq. (23), which verifies the 
correctness of the solution procedure of the present ana-
lytical solution. 

 

Fig.5 Comparison between the present analytical solu-
tion (lines) and the multi-domain BEM solution (dots).  

4 Results and Discussion 
We first examine the effects of relative porous bar 

thickness a/h on the dimensionless wave run-up CH and 
the dimensionless wave force CF on the vertical wall. The 
results are presented in Figs.6 and 7 by setting B/h = 1.2, 
D/h = 3.0, ε = 0.4, f = 2.0, s = 1.0 and Kr = 0.5. In these fig-
ures, the case of a/h = 0 denotes that no obstacle exists in 
front of the partially reflecting vertical wall. When the 
thickness of the porous bar increases, both the wave run- 

up and the wave force on the vertical wall decrease. The 
decrease of wave run-up may reduce the potential wave 
overtopping on the vertical wall, and the decrease of hori-
zontal wave force enhances the stability of the vertical 
wall. Thus, the submerged porous bar can provide effec-
tive sheltering for the partially reflecting vertical wall. It 
is noted that directly increasing the vertical wall height 
can also reduce the wave overtopping. But only increas-
ing the vertical wall height may increase the wave forces 
acting on it while construction of a submerged porous bar 
is more beneficial for the stability of a vertical wall. 

With a/h = 0.5, B/h = 1.2, D/h = 3.0, ε = 0.4, f = 2.0 and s = 

1.0, Figs.8 and 9 show the effects of the vertical wall re-
flection coefficient Kr on the dimensionless wave run-up 
CH and the dimensionless wave force CF, respectively. 

When the reflection of vertical wall is unity (Kr = 1), 
waves can be totally reflected by the vertical wall and the 
wave resonance may occur between the porous bar and 
the vertical wall. As a result, the dimensionless standing 
wave height in front of the reflecting vertical wall CH can 
be larger than 2.0. Thus, not only the submerged porous 
bar cannot provide effective sheltering for the vertical 
wall, but can even increase wave run-up and wave force 
over the wall, which should be avoided in practical engi-
neering design. However, as the reflection coefficient of 
the vertical wall decreases, both wave run-up and wave 
force decrease significantly and wave resonance between 
the porous bar and the vertical wall disappears. 

 

Fig.6 Effect of the relative porous bar thickness a/h on 
the dimensionless wave run-up CH over the vertical wall. 

 

Fig.7 Effect of the relative porous bar thickness a/h on 
the dimensionless wave force CF on the vertical wall. 

 

Fig.8 Effect of the vertical wall refection coefficient Kr on 
the dimensionless wave run-up CH over the vertical wall.  
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Fig.9 Effect of the vertical wall refection coefficient Kr on 
the dimensionless wave force CF on the vertical wall.  

Figs.10 and 11 show the effects of the relative space 
between the submerged porous bar and the vertical wall, 
D/L, on wave run-up and wave force, respectively. Here, 
for three relative porous bar widths, B/h = 0.5, 1.0 and 1.5, 
k0h = 1.2, a/h = 0.5, ε = 0.4, f = 2.0, s = 1.0 and Kr = 0.8. It can 
be seen from these figures that both wave run-up and 
wave force vary periodically with the increasing values of 
D/L. Therefore, to obtain the minimum wave run-up CH 
and wave force CF, a value of D/L (D/L ≈ 0.3, 0.75 and 
1.35) ought to be carefully chosen. Also, it can be seen  

 

Fig.10 Effect of the relative space D/L between the po-
rous bar and the vertical wall on the dimensionless wave 
run-up CH over the vertical wall. 

 

Fig.11 Effect of the relative space D/L between the po-
rous bar and the vertical wall on the dimensionless wave 
force CF on the vertical wall. 

from Figs.10 and 11 that the minimum values of wave 
run-up and wave force are close for different porous bar 
widths. This means that to obtain lower CH and CF, only 
increasing the porous bar width will increase engineering 
cost and would be inadvisable. 

Figs.12 and 13 show the variations of the dimen-
sionless wave run-up CH and the dimensionless wave 
force CF with the relative porous bar width B/L at differ-
ent porosities, respectively. With k0h = 1.2, a/h = 0.5, D/h = 

3.0, f = 2.0, s = 1.0 and Kr = 0.8, the case of ε = 0 shows that 
a submerged solid bar cannot dissipate additional wave 
energy. As a result, both wave run-up and wave force vary 
periodically with the increase of B/L. As the porosity ε 
increases, the values of CF and CH both decrease due to 
the increasing wave energy dissipation by the porous bar. 
It should be mentioned that the practical values of poros-
ity ε for rubble mounds are about 0.35 – 0.5. The case of ε 

= 0.8 can only be obtained by using artificial concrete 
blocks. Also it can be seen from Figs.12 and 13 that for a 
submerged porous bar, the values of CF and CH both de-
crease with the increase of relative bar width B/L. This 
means that a wider porous bar can dissipate more wave 
energy, but lead to a higher engineering cost. Figs.10 – 13 
indicate that it is very important to carefully specify the 
values D and B for efficient engineering design. The pre-
sent analytical solution can be used for finding the opti-
mum values of D and B at a preliminary design stage. 

 

Fig.12 Effect of the relative bar width B/L on the di-
mensionless wave run-up CH over the vertical wall. 

 

Fig.13 Effect of the relative bar width B/L on the di-
mensionless wave force CF on the vertical wall. 
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5 Concluding Remarks 
An analytical solution is developed in the present paper 

for wave interaction with a partially reflecting vertical 
wall protected by a submerged porous bar. The matched 
eigenfunction expansions are used to obtain the solution, 
which is confirmed by an independently developed multi- 

domain BEM solution for the same problem and a series 
of experimental data for a single submerged porous bar. 
The truncated number of N = 40 in the present series solu-
tion is proved to be sufficient large for obtaining conver-
gent results. The wave run-up and the wave force over the 
partially reflecting vertical wall are examined by numeri-
cal examples.  

A submerged porous bar can effectively reduce the 
wave run-up and the wave force over a partially reflecting 
vertical wall. The wave resonance may occur between a 
fully reflecting vertical wall and a submerged porous bar. 
But the wave resonance disappears when the reflection 
coefficient of the vertical wall is small. The increase of 
porosity or relative width of a porous bar can increase the 
wave energy dissipation. The space between the vertical 
wall and the submerged porous bar is a key factor to af-
fect the wave run-up and the wave force on the vertical 
wall. The optimum space between the porous bar and the 
vertical wall may be determined using the present ana-
lytical solution. 
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