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Abstract  Underwater imaging posts a challenge due to the degradation by the absorption and scattering occurred during light 
propagation as well as poor lighting conditions in water medium. Although image filtering techniques are utilized to improve image 
quality effectively, problems of the distortion of image details and the bias of color correction still exist in output images due to the 
complexity of image texture distribution. This paper proposes a new underwater image enhancement method based on image struc-
tural decomposition. By introducing a curvature factor into the Mumford_Shah_G decomposition algorithm, image details and struc-
ture components are better preserved without the gradient effect. Thus, histogram equalization and Retinex algorithms are applied in 
the decomposed structure component for global image enhancement and non-uniform brightness correction for gray level and the 
color images, then the optical absorption spectrum in water medium is incorporate to improve the color correction. Finally, the en-
hanced structure and preserved detail component are recomposed to generate the output. Experiments with real underwater images 
verify the image improvement by the proposed method in image contrast, brightness and color fidelity. 

Key words  underwater image; image structural decomposition; image enhancement; retinex 

 

1 Introduction 
Underwater imaging is a difficult task because of natu-

ral limitation of light transmission in water medium. Ab-
sorption and scattering effects degrade the quality of im-
ages inevitably during imaging process as the forward 
scattering causes images blurred and the backscattered 
light introduces the noisy background to images. More-     
over, the degradation often comes from poor lighting 
conditions, i.e., the non-uniform brightness of a target 
within a small field of view illumination. Underwater 
image recovery has been widely investigated using vari-
ous approaches that can be classified into two main cate-
gories: image restoration and image enhancement (Rai-
mondo and Silvia, 2010). Image restoration methods try 
to recover the true image as a solution of optimal estima-
tion via the prior knowledge of the image formation. But 
the common aporia in such solutions is just the lack of 
knowledge of imaging environment, particularly, the in-
trinsic optical properties (IOP) (Dubreuil et al., 2013) in 
real underwater image processing. In many applications, 
however, improvement of observations is commonly de-
sired and can be facilitated with image enhancement 
techniques, without the prior knowledge of the IOP. Im-
age enhancement employs various filtering techniques to  
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improve image quality. But due to the complexity of im-
age texture distribution, problems, such as distortion of 
output image details and bias of color correction, are fre-
quently encountered in applications. One of the expected 
solutions is to apply the image structural decomposition 
to image enhancement, where the global filter and correc-
tion are specifically applied to the corresponding structure 
component of the decomposed image while image infor-
mation is preserved as much detailed as possible.  

Generally, an image, f(x, y), can be decomposed into 
the structure component, u(x, y), and the detailed compo-
nent, g(x, y), as follows:  

( , ) ( , ) ( , )f x y u x y g x y  .           (1) 

In underwater imaging processes, a small field of view 
illumination and light attenuation yields to the non- uni-
form brightness of the image and the bias of color distri-
bution, which are merely globally represented in the 
structure component of the sensed image. Based on the 
MSG method a curvature-based decomposition model is 
proposed in this study. The model is referred to as the 
P_MSG method, in which the gradient effect in image 
decomposition is eliminated. Also the Retinex algorithm 
(Morel et al., 2010) is applied to structure components for 
global color and non-uniform brightness correction, and 
the optical absorption spectrum in water medium is in-
corporated to improve the color correction. The final en-
hanced image is generated by recomposing the corrected 
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structure and preserved detailed components. 

2 P_MSG Decomposition Model 
Since the Mumford-Shah functional decomposition 

model (MS model) was first proposed in 1985 (Mumford 
and Shah, 1988), it has been widely investigated as one of 
the PDE methods in the image analysis. To facilitate the 
representation of the image texture, Meyer (2001) defined  

a Banach space G based on total variation. It has been 
proved that the G space possesses high oscillation char-
acteristics and is capable of describing image details. 
Consequently, the so-called MSG (Mumford_Shah_G, 
2008) model was proposed by the combination of the MS 
model (Strekalovskiy et al., 2012) and the G space, which 
theoretically ensures adequate detailed components in 
image decomposition. The MSG model is formulated as 
the minimization of energy (Wang et al., 2008):

2 2 2
1 2 1 2( , , , ) (1 ) | | d d | | d dG u w g g w u x y f u g g x y 

 
          

2
2 2 2

1 2[ ( )d d ] [ | | ]d d
2 2
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g g x y w x y
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where u is the structure component; g1 and g2 are the 
horizontal and vertical detailed components respectively; 
,  and  are the positive weights; w is the indicator of 
image edgels (w  0 at a non-edgel point and w  1 at an 
edgel point). The coefficient  is positive. The first term 
on the right hand side of Eq. (2) is the smoothness con-
straint of the structure component. The second term is the 
minimization of the decomposition error and is data- de-
pendent. The third term is the oscillation constraint of the 
texture component and is the minimization of the G space 
norm of the texture component. The last term is the sim-
plification of edges as w is close to either 0 or 1. 

In the above MSG model, the regularization term 
2

u  changes along the direction perpendicular to gra- 

dients and may yield to the discontinuity of gray level in 
the computations of the gradient effects. As investigated 
in Chen et al. (2011), however, the regularization term 

can be replaced by 
p

u  as an alternative, where the dif-  

fusion factor p(|u|) controls the gradient direction of 
image diffusion and the diffusion strength, because it is 
intrinsically associated with the gradient and curvature. If 
the gradient of gray level set is fixed, p(|u|) increases    
as the curvature increases, or, if the curvature is fixed,   
the magnitude of gradient decreases as p increases. Con-
sidering the possible gradient effect caused by the inap-
propriate selection of p(|u|) factor, the curvature variable 
is introduced for adaptive compensation in iteration in   
the MSG model. The curvature is evaluated based on   
the gray level difference between a point and its neigh-    
bors, and will decrease gradually as the iteration proceeds. 
Thus both the structure component and the detailed com-
ponent depend on the curvature variable in iterative 
computations. Therefore, the P_MSG model can be for-
mulated as 

2 2
1 2 1 2( , , , ) (1 ) | | d d | | d dp

pG u w g g w u x y f u g g x y 
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Therefore,  
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From Eq. (3) the Euler-Lagrange expression with re-
spect to u, g1, g2, and w is  

2
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      ,  (7) 

where 

( ) 1 ( )'( ) ( ) ln ( ) ( )
p u p u

q u p u u p u p u u
          . 

 (8) 

Let p(|) be constant, and the following equations are 
obtained 
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Assuming linear processing the solution of Eqs. (9)– 
(12) can be derived through iterative computation as
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After n iterations, the image details, 1
1,2 ( , )ng x y , and the 

image structure, 1( , )nu x y , are obtained. Therefore, 
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  ,         (18)

 

2 2
1 2( , ) ( ( , )) ( ( , ))k k kg x y g x y g x y  .       (19) 

A comparison between the MSG method and the 
P_MSG method is shown in Fig.1. It can be seen from the 
squared areas that the proposed P_MSG method effec-
tively improves the gradient effect while the fine details 
are still preserved.

 

Fig.1 (a) the input image, (b) the decomposed image details by MSG after 6 iterations, and (c) the decomposed im-
age details by P_MSG after 6 iterations. The squared area on the image is for the detailed comparison. 
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3 Image Enhancement with P_MSG 
Model  

3.1 Enhancement for Gray Level Image 
Histogram equalization (HE) is one of the most effec-

tive techniques for gray level image enhancement (Maini 
and Aggarwal, 2010), by which the global image contrast 
is virtually improved. But a deficiency associated with a 
few gray levels with some pixels might occur due to the 
quantization, and therefore some details might be lost 
during the enhancement. Since an underwater image is 
degraded by both the poor lighting condition and the 
scattering process, the dynamic range of the image gray 
levels is usually limited and the gray level values of pixel 
details are possibly spaced more closely. Thereby apply-
ing the histogram equalization to the original image could 
inevitably result in the loss of detailed image information.  

However, because the image structural decomposition 
fully preserves image details, the histogram equalization 
can be applied to the structure image component to cor-
rect the global image contrast. 

Fig.2 shows the experimental results of real underwater 
images. After applying the proposed P_MSG model for 
image decomposition, the histogram equalization is em-
ployed for the structure image and recomposed with im-
age details to complete the enhancement. The image size 
is 512512, the parameters are set to be =0.99;  =0.001; 
 =0.05;  =0.01. The initial values for iterations are u0=f, 

0
1 xg f




  , 0
2 yg f




  , w0=0, respectively. The num- 

ber of iterations is 8. By applying the traditional histo-
gram equalization directly to the original image and com-
paring the results with those by the P_MSG method, it 
can be seen that the latter greatly improves the image 
enhancement, particularly within dark regions as shown 
in Fig.2. 

 

Fig.2 Experimental results. The left column is the input images. The middle column is the results by traditional histo-
gram equalization. The right column is the results by the proposed method. 

3.2 Color Image Enhancement  
The Retinex algorithm has widely been used in color 

image enhancement. The principle of the algorithm is the 
so-called color constancy (Land, 1983), which has been 
assumed to agree with the perceptual channels of the hu-
man vision system. Since the principle was first proposed 
in 1971 (Land and McCann, 1971), the Retinex algorithm 
has been widely investigated and various approaches have 
been proposed to formulate the principle mathematically 
(Rahman et al., 2004), the essence of which is to recover 
the intrinsic reflectivity of an object in color channels. 

The most favorited method is by far the multiscale Reti-
nex (MSR) proposed by Rahman et al., (1996), in which 
the reflectivity of an object is corrected through estimat-
ing the local illumination component. Assuming that an 
image is formulated in the following form:   

( , ) ( , ) ( , )F x y R x y L x y  .         (20) 

Through the logarithmic operation it can be simplified 
as: 

( , ) ( , ) ( , )f x y r x y l x y  ,          (21) 
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where r(x, y)=log(R(x, y)) and l(x, y)=log(L(x, y)) are the 
reflectivity function and the illumination function, re-
spectively. Because the illumination distribution is un-
known (Orsini et al., 2003; Zhang et al., 2011), the re-
flectivity component can be estimated by the model (Choi 
et al., 2007) 

( , )
log[ ( , )] log

( , )

f x y
r x y

l x y


 

log[ ( , )] log[ ( , ) ( , )]f x y f x y G x y   ,  (22) 

where G(x, y) is the Gaussian operator. It should be noted 
that the estimate of r(x, y) from Eq. (22) is in fact a lo-
cally averaged output related to the smoothing scale em-
bedded in the Gaussian convolution. Therefore, for high 
frequency detailed components, in f(x, y), there could be 
the local ripple effect in the estimate of r(x, y). However, 
the solution could improve the output with the image 
structural decomposition. 

Without loss of component details, the Retinex method 
is applied to the structure image component after the de-
composition with the P_MSG model. Assuming that u(x, 
y) is the decomposed structure image, the follow equation 
is obtained 

3
1

1

log[ ( , )] [ ( , )]n
m m m

m

r x y W u x y


 

 
1log[ ( , ) ( , )],  1, 2,3,n

m mu x y G x y m     (23) 

where m=1, 2, 3, associated with the three chromatic 

channels, R, G, and B, respectively. The weight Wm (m=1, 
2, 3) is case-specific, and selected empirically. Here, 
however, Wm (m=1, 2, 3) can be reasonably determined 
by considering the optical absorption spectrum in water 
for different channels to further improve the color correc-
tion. The final output image can be expressed as  

1
*

1

( , ) ( , ) ( , )
n

k
m

k

f x y r x y g x y



  .        (24) 

Fig.3 shows the experimental results of the color ver-
sion of the black/white images in Fig.2. The image size is 
512512, the parameters are set as =0.99;  =0.001;  = 
0.05;  =0.01, and the initial values for iterations are u0 =f, 

0
1 xg f




  , 
0
2 yg f




  , w0=0. The number of iterations 

is 10. For comparison, the Retinex method was applied 
directly to the original images and the proposed method 
clearly shows the improvements on the preservation of 
details and the color correction. 

The proposed method was also applied for fog images, 
which was performed considering the same blurring 
mechanism as for underwater images. The results in Fig.4 
show the improvement on the color correction. 

4 Conclusions 
  To improve underwater images that is degraded by the 
scattering and non-uniform illumination in water, an im-
age enhancement approach, the P_MSG model, is pro- 

 

Fig.3 Experimental results of underwater images. The left column is the input images. The middle column is the re-
sults by traditional MSR method. The right column is the results by the proposed method. 
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Fig.4 Experimental results of fog image. The left column is the input image. The middle column is the result by tradi-
tional MSR method. The right column is the result by the proposed method. 

posed in this study based on the image structural decom-
position. By introducing a curvature factor in the MSG 
decomposition algorithm, the decomposed component 
details and the structure component can be preserved 
without the gradient effect. Because image enhancement 
techniques are usually related to either global filter or 
local averaging operations, the distortion of the details 
after enhancement becomes inevitable due to the com-
plexity of the image distribution. Since the color distor-
tion and non-uniform illumination are represented by 
low-frequency components of images, image enhance-
ment techniques, typically the histogram equalization and 
the Retinex algorithm, are merely applied for decom-
posed structure components in global image enhancement. 
The optical absorption spectrum in water medium is in-
corporated to improve the color correction as well. Finally, 
the enhanced structure and preserved component details 
are recomposed to generate the output. Thus, the pro-
posed method can be effectively applied to improve the 
acquisitions of underwater images without the prior 
knowledge of image deconvolution. 
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