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Abstract  A diatom was purified with colony selection and continuous dilution methods. It was identified to Cylindrotheca closte-
rium according to its morphological characteristics and rbcL and 18s rRNA gene sequences. The alga was not sensitive to ampicillin 
and neomycin, but sensitive to chloramphenicol which inhibited its growth at concentrations ranging from 50 to 150 g mL−1. The 
purified alga was easy to culture and its specific growth rate was 0.207 ± 0.002 (d−1). It was resistant to pollution and could be har-
vested in an easy way. It was relatively high in lipid content (20.08% ± 0.67% of dry weight) and the combined amount of its 16:0 
and 16:1 (n-7), the most suitable resource of biodiesel, was as high as 64% of the total fatty acids, while the amount of polyunsatu-
rated fatty acids reached 19.96%–20% of the total fatty acids. Thus the purified C. closterium can be cultured as a biodiesel producer 
or a nutrition supplement producer. 
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1 Introduction 
Diatoms are a main group of microalgae, and are 

highly diverse. More than 200 genera and 100000 species 
have been recorded in this group (Mann, 1989). Diatoms 
are widely distributed in seawater, fresh water, soil and 
moist surface. Although diatoms often aggregate into 
communities, they are unicellular and diverse in shapes 
with sizes varying from a few to hundreds of micrometers. 
These algae are the main primary producers in seawater 
and play a crucial role in global carbon cycle (Tréguer  
et al., 1995; Field et al., 2003). The most prominent fea-
ture of diatoms is their silicic shells which enable them to 
sink to the bottom under some conditions. This perform-
ance makes their harvest easy, which are highly appreci-
ated by algal culturing community. Diatoms have been 
cultured for a long time as the feed of aquaculture ani-
mals (Lebeau and Robert, 2003; Xu et al., 2012), the 
tester of estuary sediment toxicity (Ignacio et al., 2007) 
and PUFA producers (Wang and Zeng, 2007). In recent 
years, diatoms have drawn more and more attentions as 
they may serve as biodiesel producers. Aquatic Species 
Program has chosen 50 diatom species from 3000 species 
as the candidates of biodiesel producers in 1998, consid-
ering the characteristics like fast growth, rich in lipid  
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content, tolerance to stress condition and well perform-
ance in large-scale cultivation. The wholegenome se-
quence of Thalassiosira pseudonana and Phaeodactylum 
tricornutum are available at present, and several more 
will be sequenced soon (Armbrust et al., 2004; Bowler  
et al., 2008; Courchesne et al., 2009). 

Eurythermal and euryhaline Cylindrotheca closterium 
(Cai et al., 2007) belongs to family Bacillariaceae, order 
Bacillariales, class Bacillariophyceae and phylum Bacil-
lariophyta. It mainly distributes in the intertidal flats, can 
be cultured and harvested easily and resists to pollution 
(Liang et al., 2000), and is rich in PUFA (Liang et al., 
1999; Lan et al., 2012). It is worthy to purify this diatom 
(Lin, 2000) and culture it axenically (Lin et al., 2000). In 
this study, we purified a strain of this alga and cultured it 
axenically, aiming to offer an applicable strain for future 
large scale culture. 

2 Methods 
2.1 Algal Purification and Identification 

A mixture of diatoms was obtained from The Microal-
gae Library of Ocean University of China. The mixture 
was cultured in f/2 seawater medium at (22 ± 1)℃, salinity 
30 and 70 μmol photons s−1

 m−2 with a rhythm of 12 h light 
and 12 h dark. The diatom was isolated with algal colony 
selection and continuous dilution methods as described 
early (Mcmanus and Katz, 2009). Morphological images 
were created under an optical microscope (Nikon E 50i)  
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and a scanning electron microscope (JEOL JSM-840). 
Universal primers, 18S rRNA (5’-AAC CCC TGG TTG 

ATC CTG CCA GT-3’ and 5’-GAT CCT TCC GCA GGT 

TCA CCT AC-3’, and rbcL gene, 5’-TCA GAA CGG 

ACT CGA ATA AA-3’ and 5’-CCA ATA GTA CCA CCA 

AAT-3’, were used to amplifying the genomic DNA of 
the diatom with expected products of about 1200 bp and 
1070 bp in length, respectively. PCR was carried out in a 
volume of 50 μL containing 2.0 U Taq DNA polymerase, 
10 nmol dNTP (each), 1nmol primer each, 1×buffer and 
2.5 ng template DNA. The nested PCR was performed by 
denaturing at 94℃ for 3 min, followed by 30 cycles of 
denaturing at 94℃ for 30 s, annealing at 55℃ for 30 s, 
and extending at 72℃ for 2 min. The PCR product was 
sequenced commercially with ABI3730 sequencer. The 
sequences were also deposited into NCBI databank with 
accession number KC899347 and KC899348. The se-
quences were aligned with those retrieved from GenBank 
with ClustalX 1.81 (http://www.ncbi.nlm.nih.gov/genbank/), 
and the phylogenetic trees were constructed with MEGA4 
(http://www.megasoftware.net/). 

2.2 Determination of Antibiotics Sensitivity 

Ampicillin, neomycin and chloramphenicol were pur-
chased from Beijing Solarbio Co., Ltd. with their stock 
solutions prepared following standard protocol (Sam-
brook et al., 1987). Fifty milliliters of f/2 medium con-
taining different concentrations of ampicillin (0, 300, 500, 
800, 1000 μg mL−1 each) or neomycin (0, 50, 100, 300, 
500 μg mL−1 each) or chloramphenicol (0, 10, 50, 100, 
150 μg mL−1 each) were used to culture the diatom (initial 
cell density 106 cells mL−1) to either plateau growth phase 
(ampicillin and neomycin ) or exponential growth phase 
(chloramphenicol) with OD680 value read every 2 days 
(starting from day 1). 

2.3 Determination of Growth, Total Lipid Content 
and Fatty Acid Composition 

The algal cells at the end of exponential growth phase  
 

were collected with centrifugation at 6000 g and 20℃, 
dried with a vacuum freeze drier at 0.03 atm and −50℃ 
for 12 h, and then were accurately weighed to determine 
the biomass. The specific growth rate was calculated to 
measure the growth of algal cells at exponential growth 
phase (Jiao et al., 2011). About 50 mg of algal biomass 
was used to determine the total lipid content with 
gravimetric method (Bligh and Dyer, 1959). Then lipid 
productivity was calculated from the biomass and total 
lipid content (Su and Yu, 2013). About 30 mg of dry algae 
were used to extract fatty acids with the method described 
early (Volkman et al., 1989) and the fatty acids content 
was analyzed with gas chromatography (HP5890E). 

3 Results 
3.1 Algal Purification and Identification 

Algal colonies appeared on solid f/2 medium in about 
25 days. A colony was inoculated into a well of a 96-well 
plate with cells in this well diluted step by step by re-
moving 1 μL medium from one well to the other. In about 
two weeks, pure diatom cultures were obtained from the 
last dilution with growing alga. Among colonies purified, 
one was further morphologically characterized and phy-
logenetically analyzed. 

The purified alga was about 50 μm in length, needle- 
like and thin in shape. Two ends of the cell extended far 
from the center of the cell (Fig.1A). The chromatophore 
of the purified alga was in the middle of the cell. Under 
scanning electric microscope, the cell was found to be 
wrapped by the raphe canal of valves (Figs.1B and C), 
which is a typical characteristic of Cylindrotheca closte-
rium. The algal cell moved around when water streamed 
through the raphe canal, and divided longitudinally along 
the raphe canal (Figs.1D, E). Thus, the purified alga may 
be identified to Cylindrotheca sp. morphologically. 

The phylogenetic tree of 18S rRNA and rbcL gene am-
plified from the purified alga showed that it was closer to 
C. closterium than to other species; it was 99% and 100%  

 

Fig.1 Morphological characteristics of the diatom purified in this study. A, under optical microscope; B and C, under 
scanning electric microscope, white arrow points to raphe canal running through the whole cell; D and E, under scanning 
electric microscope, white arrow points to the dividing position. 
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similar to C. closterium in 18S rRNA and rbcL gene 
sequence (Figs.2A and B), respectively. Therefore, the 
strain was identified to C. closterium. 

 

Fig.2 Phylogenetic tree of 18S rRNA (A) and rbcL (B) 
gene of diatom constructed with neighbor-joining method.  

3.2 Antibiotics Sensitivity of C. closterium 

As showed in Fig.3, ampicillin at a concentration range 
from 300 to 800 μg mL−1 enhanced the growth of C. clos-
terium. Ampicillin at 1000 μg mL−1 significantly affected 
the growth of C. closterium. Little effect of neomycin on 
the growth of C. closterium was observed. Chloram- 

 

Fig.3 Effect of ampicillin (A), neomycin (B) and chloram- 
phenicol (C) on the growth of C. closterium.  

phenicol at concentrations higher than 10 μg mL−1 sig-
nificantly inhibited the growth of C. closterium. When the 
concentration of chloramphenicol was higher than 50 μg 

mL−1, the growth of C. closterium was completely inhib-
ited. So the purified alga was resistant to ampicillin and 
neomycin but sensitive to chloramphenicol. 

3.3 Growth, Total Lipid Content and Fatty 
Acid Composition 

The specific growth rate of C. closterium was 0.207 ± 

0.002 (d−1), reaching a biomass density of 291.12 ± 14.6 

mg L−1. Its total lipid accounted for 20.08% ± 0.67% of 
dry weight (Table 1). Saturated fatty acids accounted for 
40.9%–42.3% of the total fatty acid. The amount of 16:0 
was the most abundant, reaching 29.90% ± 0.33% of the 
total fatty acids. Monounsaturated fatty acids accounted 
for 37.17%–38.37% of the total. The most abundant fatty 
acid was 16:1 (n-7), which accounted for 34.28% ± 0.48% 
of the total. Polyunsaturated fatty acids consisted of 
19.96%–20% of the total fatty acids and the most abun-
dant two were EPA and arachidonic acid. The combined 
amount of 16:0 and 16:1 (n-7) was as high as 64% of the 
total, indicating that the alga was suitable for biodiesel 
production (Table 2). EPA and arachidonic acid are ex-
cellent antioxidants and nutrition additives. The purified 
alga may serve as EPA and arachidonic acid producer as 
well. 

Table 1 Growth, lipid content and lipid productivity 
of C. closterium 

Specific growth
rate (d−1) 

Biomass 
(mg L−1) 

Total lipid 
content (%) 

Lipid productivity
(mg L−1

 d−1) 
0.207 ± 0.002 291.12 ± 14.6 20.08 ± 0.67 3.90 ± 0.33 

Notes: Total lipid content was expressed as the percentage of dry 
weight. 

 

Table 2 Fatty acid composition of C. closterium 

Lipid and fatty acid Content (%) 

 14:0 4.18 ± 0.06 

 15:0 0.99 ± 0.03 

Saturated fatty acid 16:0 29.90 ± 0.33 

 17:0 0.87 ± 0.08 

 18:0 5.32 ± 0.15 

Monounsaturated fatty acid 16:1 (n-7) 34.28 ± 0.48 

 17:1 (n-7) 3.49 ± 0.12 

 18:2 (n-6) 3.27 ± 0.17 

18:3 (n-6) 1.41 ± 0.14 
Polyunsaturated fatty acid 

20:4 (n-6) 8.08 ± 0.38 

 20:5 (n-3) 8.22 ± 0.33 

Note: Fatty acid content was expressed as the percentage of total 
lipid. 

4 Discussion 
The dominating fatty acids of diatoms are 14:0, 16:0, 

16:1 (n-7) and EPA, which all together account for 68.7% 
of the total fatty acid (Dunstan et al., 1993). In this study, 
we found that the combined amount of 16:0 and 16:1 (n-7) 
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of C. closterium was as high as 64% of the total. C. clos-
terium was obviously different from C. fusiformis in 
morphology; however, it was only a single base different 
from C. fusiformis in 18s rRNA gene. Under a similar 
condition, the specific growth rate of the alga was much 
higher than that of Phaeodactylum tricornutum (Liu et al., 
2008); however, its lipid content and lipid productivity 
were lower than most of the biodiesel producing candi-
dates (Kong et al., 2010; Yang et al., 2011). Fortunately, 
chemical and physical mutation (Nečas, 1975; Niwa et al., 
2009) and genetic modification may modify this alga to a 
highly efficient lipid producer. The C. closterium purified 
and characterized in this study was insensitive to ampicil-
lin and neomycin but sensitive to chloramphenicol; thus 
ampicillin and neomycin may be applied to its axenical 
culture while chloramphenicol may serve as the selection 
marker in its genetic modification. We found that C. 
closterium sinks to the bottom of flask in only a few min-
utes without aeration. All these characteristics make this 
alga a biodiesel-producing candidate. 

Growth rate, lipid content and fatty acid composition 
can be greatly influenced by culturing conditions. For 
example, nitrogen starvation has been widely applied in 
increasing lipid content and TAG production in a wide 
range of microalgal species (Widjaja et al., 2009). In ad-
dition, temperature and salinity may influence algal fatty 
acid composition. Eurythermal and euryhaline C. closte-
rium mainly inhabits intertidal zone and is often directly 
exposed to sunlight, implying its high tolerance to high 
irradiation, temperature and salinity. It has been found 
that C. closterium remains metabolic activity with no sta-
tistically significant change in sensitivity to copper when 
illumination and temperature drastically change (Araujo 
et al., 2008). Therefore, C. closterium may be genetically 
improved to become a desirable oil producer. 
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