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Multi-level temporal feature fusion with feature ex-
change strategy for multiple object tracking*
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With the deepening of neural network research, object detection has been developed rapidly in recent years, and video 

object detection methods have gradually attracted the attention of scholars, especially frameworks including multiple 

object tracking and detection. Most current works prefer to build the paradigm for multiple object tracking and detec-

tion by multi-task learning. Different with others, a multi-level temporal feature fusion structure is proposed in this 

paper to improve the performance of framework by utilizing the constraint of video temporal consistency. For training 

the temporal network end-to-end, a feature exchange training strategy is put forward for training the temporal feature 

fusion structure efficiently. The proposed method is tested on several acknowledged benchmarks, and encouraging re-

sults are obtained compared with the famous joint detection and tracking framework. The ablation experiment answers 

the problem of a good position for temporal feature fusion. 
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Video object detection and tracking is the basic problem 
in computer vision, and the cornerstone of visual analysis 
and understanding. The joint multiple object tracking and 
detection frameworks are proposed for efficient under-
standing the object movement in the video. In the practi-
cal application, the network input is a series of video 
frames, and the detection and tracking results of each 
object in frames are output. According to the tracking 
approach, these frameworks can be divided into two 
categories as follows. 

Feature matching based tracking: The frameworks de-
tect and extract object feature simultaneously, then asso-
ciate targets in adjacent frames by feature matching. It 
finishes object detection and re-identification at the same 
time. In multiple object tracking, the frameworks based 
on feature matching can correctly pair off the targets in 
subsequent frames after the tracking loss in the current 
frame. So that the target motion trajectory can ultimately 
be traced, and the identification (ID) switch and the 
tracking loss problem caused by occlusion are released. 

Position shift based tracking: Position shift based 
frameworks output the relative position shift of objects 
between the previous and current frames, and match the 

objects in different frames according to position match-
ing. These frameworks integrate the information of cor-
relative frames, and only utilize position matching in 
tracking, which is efficient and straightforward. 

In the joint tracking and detection frameworks, how to 
effectively fuse the temporal feature between adjacent 
frames is an interesting issue. How can we improve the 
performance of detection and tracking by making good 
use of temporal consistency constraints between adjacent 
frames? Is it possible to fuse temporal feature by em-
ploying a simple fusion structure while maintaining the 
end-to-end network training? These are the main prob-
lems of this paper. To address this issue, a multi-level 
temporal feature fusion structure is advised, and a net-
work training approach based on feature exchange is 
proposed for the end-to-end training of the temporal 
network, which improved the performance of multiple 
object tracking simply. The contributions of this paper 
are as follows. 

The temporal feature are effectively utilized through the 
multi-level feature fusion structure, and the proposed 
method can boost the joint tracking and detection frame-
work to reach better performance on public datasets.
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The temporal network training approach based on 
feature exchange between adjacent frames is proposed, 
which makes the temporal feature fusion structure im-
plement the end-to-end network training. 

The multi-level feature fusion structure is studied, and 
the experiments search for the most suitable levels of 
feature fusion, which answer the problem of using the 
temporal feature appropriately to improve detection and 
tracking performance. 

The temporal feature fusion in joint multiple object 
tracking and detection frameworks is discussed in this 
paper. Therefore, the joint multiple object tracking and 
detection frameworks and temporal feature fusion meth-
ods are introduced in the related works, respectively. 

Joint multiple object tracking and detection frame-
works have been paid more and more attention in recent 
years, due to the requirements of practical application in 
deep learning technology. FEICHTENHOFER et al[1] set 
up an architecture named ConvNet for simultaneous de-
tection and tracking, using a multi-task structure for 
frame-based object detection and across-frame track re-
gression. ZHANG et al[2] further researched the joint 
detection and tracking framework and put forward fair-
ness of detection and re-identification in multiple object 
tracking (FairMOT). It was an anchor-free structure that 
made the object location more accurate in 
re-identification and helped to achieve state-of-the-art 
tracking performance. In the joint tracking and detection 
frameworks based on feature matching, another famous 
approach Chained-Tracker was proposed by PENG et 
al[3]. The siamese network structure was applied to ex-
tract the feature of adjacent frames, then multi-task 
learning was utilized with paired attentive regression. 
CenterTrack proposed by ZHOU et al[4] was a represen-
tative method in the frameworks based on position shift, 
which differed from the above methods. Some objects 
with low confidence might be discarded when occluded, 
leading to the loss of some tracks. To address this issue, 
ZHANG et al[5] proposed ByteTrack, an algorithm that 
sets detection boxes as tracking targets, and associates all 
detection boxes, not just high-scoring ones. With the 
development of transformer, the SeqTrack[6] utilized the 
sequence model in multi-object tracking and showed the 
great potential of this paradigm.   

The detection based frameworks were efficient in 
practical application, but the temporal feature in network 
propagation are ignored. The transformer based methods 
linked the temporal relation by multi-head attention, but 
the calculation of transformer is not suitable for real-time 
application. Making good use of temporal feature is the 
key point in multi-object tracking. Therefore, we focus 
on the temporal feature fusion of joint multiple object 
tracking and detection frameworks, and attempt to fuse 
the temporal feature with an efficient structure. 

In video processing methods, making use of the tem-
poral feature can effectively improve video processing 
results due to temporal consistency constraints. There-

fore, various temporal feature extraction and fusion 
methods were proposed in video processing and video 
object detection. LIU et al[7] combined the long 
short-term memory (LSTM) with single shot MultiBox 
detector (SSD) for video object detection, and 
ConvLSTM correlates the feature in each frame to im-
prove the detection performance of the current frame. 
BERTASIUS et al[8] fused continuous video feature by 
deformable convolution to achieve state-of-the-art results 
on VID datasets. GUO et al[9] put forward a video object 
detection method that established the spatial correspon-
dence between feature across frames by progressive 
sparse local attention (PSLA). TANG et al[10] paid atten-
tion to obtaining high quality object linking results for 
better classification, and extended prior methods by the 
cuboid proposal network with short tubelet detection and 
the short tubelet linking algorithm. Direct applying 
transformer in multi-object tracking can lead to high 
computational cost. XU et al[11] proposed a trans-
former-based tracking framework that incorporates dense 
representations in TransCenter, and aims to balance 
cross-frame context modeling and real-time inference. 

These methods equipped the spatiotemporal feature 
fusion, extracting and utilizing the changing feature be-
tween frames effectively. However, the heavy computa-
tion of the feature fusion module and tedious training of 
the multi-step networks are unavoidable. Consequently, 
is there any solution with lower computation, and easy 
for training? Aiming at the above problems, a multi-level 
temporal feature fusion structure is advanced, which im-
proves the multi-object tracking with end-to-end feature 
exchanging training strategy. 

With further research of the convolution neural net-
work, the multi-level feature improved the network de-
tection and classification, widely used in detection and 
tracking. However, in the joint tracking and detection 
frameworks, the multi-level temporal feature fusion that 
extends the feature fusion in time dimension was less 
noticed. In order to further improve the tracking and de-
tection in the frameworks, the multi-level temporal fea-
ture fusion structure is proposed. For training the tempo-
ral structure efficiently, the feature exchange training 
algorithm is studied. Because both CenterTrack and 
FairMOT methods are equipped with the DLA34 back-
bone[12], this paper focuses on the multi-level temporal 
feature fusion in DLA34 to improve the accuracy of 
multiple object tracking. The multi-level temporal fea-
ture fusion structure and feature exchange training 
method are introduced in detail as follows. 

CenterTrack uses the image and heatmap of the pre-
vious frame as the input, then combines the feature from 
three sub networks, which completes the temporal fea-
ture fusion at the lower level. The FairMOT framework 
applies the heatmap for more accurate object location, 
and the embedded feature was extracted for feature 
matching, which fuses the temporal information at the 
higher level. So, where is the best position for temporal 
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feature fusion, and how could the temporal feature be 
used efficiently? 

The orange part in Fig.1 is the position using the tem-
poral information. Similar to the chain structure in 
Chained-Tracker, the feature of the (i−1)-th frame in 
multi-level temporal feature fusion (MTFF) is transferred 
to the i-th fusion structure, adds to the feature in the i-th 
frame, and the fused feature in the i-th frame is obtained; 
the feature of the i-th frame delivers the feature to the 

(i+1)-th fusion structure and is added to the feature of 
the (i+1)-th frame, then the (i+1)-th fusion feature is 
gotten. Therefore, the previous features are reused in the 
current network, which merges the temporal information 
for better tracking performance. The output of the net-
work feature in fusion structure F(i-1) i can be shown as  

� � 11 ,i ii iF f f �� � � �                         (1) 

where fi is the input feature in the i-th frame. 

 
Fig.1 Multi-level temporal feature fusion structure 

 
In the network with multiple branches, the feature 

from multiple branches will be aggregated by bottleneck 
structure; the bottleneck structure is also used to connect 
different sub networks. Therefore, a large amount of in-
formation in the network is aggregated and transmitted 
through the bottleneck structure, and temporal feature 
fusion in the bottleneck part can directly impact the per-
formance. Hence, according to the 6-layer tree structure 
of DLA34, and considering the input and output of each 
tree structure, seven bottleneck positions should be con-
sidered. In the experiment, the temporal feature fusion 
positions were verified and discussed carefully, and we 
found that higher-level feature is more suitable for tem-
poral fusion. 

After the introduction of temporal feature fusion 
structure, how to train the above structure effectively 
should be solved, especially about how to realize the 
end-to-end network training with fast convergence. At 
present, most temporal feature fusion methods need to 
insert a special network layer for feature fusion, and train 
the fusion structure independently. Otherwise, like the 
Chained-Tracker, the temporal networks should be 
trained end-to-end by the siamese network structure. In 
the siamese network training, the backbone of network is 
trained twice in each propagation, while the feature fu-
sion structure is trained only once, which leads to the 
imbalance of training between network structures. Dif-
ferent with the above methods, the proposed feature ex-
change training algorithm directly delivers the feature 
from the adjacent frames to fusion structures, and ex-
changes the adjacent feature for temporal feature fusion. 

In the network training, batch samples were read at 
first, and the data was inputted into the network for for-
ward propagation; then, the back propagation was carried 
out to correct the network parameters. Generally, the 
samples will be selected randomly to achieve better 
training results. However, for sequential data, random 
sampling will lose the correlation between video frames, 

which affects the temporal feature fusion. Therefore, it is 
necessary to provide sequential samples for training the 
temporal networks. Different sample selection and train-
ing strategies are illuminated in Fig.2. 

For end-to-end training of the temporal network effi-
ciently, the feature exchange training algorithm is pro-
posed for temporal feature training. The algorithm di-
vides the data in a batch into several groups; each group 
contains two adjacent frames, and the groups are selected 
randomly, which makes the data within each group have 
a strong correlation, and there is a big difference between 
each group. In training, the feature flows in the same 
group can be the fusion feature of each other, which 
looks like the feature exchange in each group. For exam-
ple, in sequential training, the feature fi-1 is the temporal 
feature for fi, and fi should only be the temporal feature 
of fi+1; but in the feature exchange algorithm, fi can be the 
temporal feature for fi-1 as well, and the outputs of feature 
fusion are fi+fi-1 and fi-1+fi, presented as  
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Through feature exchange, the sample complexity in 
batch gets to the greatest extent, and the temporal feature 
fusion structure between adjacent frames can also be 
trained effectively. For example, when watching two 
adjacent frames, if there is no additional information or 
logical guidance, it is difficult to distinguish the order of 
these two frames. Therefore, after feature exchange 
training, the temporal feature in two different time direc-
tions can be trained simultaneously, improving the gen-
eralization ability of the network. 

As we know, the data of detection and re-identification 
is discontinuous, which cannot be directly used in the 
sequential network training. However, in the feature ex-
change training algorithm, the discontinuous data are 
also applied in training, but the data loading is different 
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from the sequential data. In training sequential datasets, 
the paired-off frames are the frames with close distance. 
However, the paired-off samples in discontinuous data-
sets use the same image with different augment parame-
ters, as depicted in Fig.3. In Fig.3, the images on the left 
line are the paired-off samples in sequential datasets. The 
right line images are the data from discontinuous data-
sets, of which the paired-off images are the same. This 
little trick expands the training datasets, which makes the 
better performance in tracking. 
 

 

Fig.2 Different sample selection and training strate-
gies 

The experiments are mainly divided into three parts. 
Part one is the ablation experiment about the position of 
feature fusion, part two is the improvement of Center-
Track, which is tested on the public datasets, and part 
three is the verification of modified FairMOT. All the 
super parameter settings of training and testing are the 
same as those in CenterTrack and FairMOT, respectively. 
The hardware of the experiment is a computer with Intel 
i9-10900x central processing unit (CPU) and two 
NVIDIA Titan RTX graph processing unit (GPU). The 
experiment involves several datasets of multiple object 
tracking, pedestrian detection and pedestrian 
re-identification, including MOT15[13],  MOT17[14], 
CrowdHuman[15], KITTI tracking[16], nuScenes[17], Cal-
tech Pedestrian[18], CityPersons[19], CUHKSYSU[20], 
PRW[21] and ETHZ[22]. 

 

Fig.3 Paired-off samples on different training datasets 

We use the official metrics for multiple object track-
ing, and the multi-object tracking accuracy (MOTA) is 
the common metric in each benchmark, which combines 
three error sources as 

� �
1 ,t t tt

tt

FP FN IDSW
MOTA

GT
� �
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�

         (3) 

where FPt means the false positives, FNt denotes the 
false negatives, IDSWt represents the identity switch in 
frame t, and GTt is the number of ground truth bounding 
boxes in frame t. 

Multi-object tracking precision (MOTP) is the metric 
for evaluating the misalignment between the annotated 
and the predicted bounding boxes, which is an essential 
metric in joint multi-object tracking and detection 
frameworks. The higher MOTP means the tracker can 
locate the target better. 
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where dt,i is the distance of two bounding boxes in frame 
t, and ct is the correct matching number in frame t. 

ID F1 score (IDF1) is the ratio of correctly identified 
detections over the average ground-truth and computed 
detections. 

1
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              (5) 

IDTP is the identification of true positives, IDFP 
means the identification of false positives, and IDFN 
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represents the identification of false negatives. 
In nuScenes dataset, the AMOTA[17] is proposed, 

which is a weighted average of MOTA across different 
output thresholds. The three parts of the main experi-
ments are introduced as follows in detail. 

In this part, MOT17 is used to find the answer about the 
most suitable position for temporal feature fusion. Half of 
the data in training sequences are selected as the training 
data, and the rest of the data in MOT17 is for validation. 

The networks are trained 30 epochs, and the initial learn-
ing rate is 0.000 1 which will be dropped by 10 in 20 ep-
och. The batch size is 12, the same as the original setting 
in CenterTrack. Part of the networks are pretrained, and 
part of them are trained from scratch. The position of fea-
ture fusion is presented in Fig.4, and each bottleneck is 
labeled for easy understanding. For making the biggest 
effect on feature fusion, the each paired-off bottlenecks is 
selected and tested respectively, as presented in Tab.1. 

 

 
Fig.4 Position of feature fusion 

Tab.1 Effect of feature fusion structure 

Fusion position  Pre_image Pre_hm Pretrian MOTA 

0 √ √ × 39 

x1 and y1 √ √ × 39 

x2 and y2 √ √ × 40.7 

x3 and y3 √ √ × 41.6 

x4 and y4 √ √ × 60 

x5 and y5 √ √ × 60.2 

6 √ √ × 61.3 

Null √ √ × 60.7 

 
There is an interesting result in Tab.1. In the lower 

level, the result of fusion shows negative optimization, 
and with the deepening of the network, the feature fusion 
structure improves the accuracy more obviously. Like the 
human visual system, overlapping two images, like the 
lower-level fusion, may confuse us. Still, watching two 
frames respectively, the correlation of objects in two 
frames can be obtained easily, which seems like the fea-
ture fusion at the higher level. Directly fusing the tem-
poral feature at the lower level may affect the feature 
extraction in the rest of the network. 

For evaluating the influence of each fusion structure 
on the bottlenecks, the ablation experiment on each fu-
sion position is provided separately and the backbone is 
pretrained, as shown in Tab.2. 

As we can see, the merge position in bottleneck x1, x2 
and x3 will decrease the performance of network, and x4 
and x5 have little effect on tracking results. The fusion of 
these positions will affect further feature extraction, but 
the y1 to y5 and bottleneck 6 only aggregate the feature 
from multiple levels, showing excellent temporal feature 
fusion performance. Interestingly, the two additional sub 
networks proposed by CenterTrack can mostly improve 
the network performance. Then, based on the above ob-

servation, we find that CenterTrack combined with 
multi-level temporal feature can achieve the best per-
formance, and the experimental results are shown in 
Tab.3. The original CenterTrack is compared with the 
CenterTrack equipped with the MTFF that fuses the fea-
ture of y1 to y5 and bottleneck 6. Most metrics in Tab.3 
present that the CenterTrack with MTFF can get better 
performance. The above networks were pretrained on the 
dataset CrowdHuman, and were fine-tuned on half of the 
MOT17 dataset. The framework with MTFF is 1.6% 
higher than the original one on MOTA.  

Tab.2 Influence of each bottleneck structure 

Fusion position  Pre_image Pre_hm Pretrian MOTA 

0 × × √ 39 

x1 × × √ 39 

x2 × × √ 40.7 

x3 × × √ 41.6 

x4 × × √ 60 

x5 × × √ 60.2 

y1 × × √ 64 

y2 × × √ 63.8 

y3 × × √ 63.7 

y4 × × √ 64.4 

y5 × × √ 63.8 

6 × × √ 63.6 

DLA × × √ 63.8 

Null × √ √ 66.3 

Null √ × √ 64.5 

Null × × √ 59.5 

 
Following the experiments of CenterTrack, the ex-

periment on benchmarks will be listed in this part. Same 
as the CenterTrack, the result of the MOT17 test bench-
mark will be submitted and presented in Tab.4. Most 
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metrics on the MOT17 test show that the CenterTrack 
with MTFF is better than the original one, which means 
the optimization of MTFF is effective, and the MOTA is 
1.3% higher. 

In addition, the CenterTrack with MTFF structure is 
compared with the original CenterTrack on the KITTI 
tracking dataset as well. In the training process of Cen-
terTrack, the nuScenes detection dataset is applied for 
pre training, then the pretrained network is fine-tuned on 
the training set of KITTI. The results are displayed in 
Tab.5. In this part, the pretrained network is provided by 
CenterTrack due to the large training consumption on 
nuScenes detection, and the MTFF is only trained on 
KITTI tracking. In Tab.5, the results of the two frame-
works are within the same range, the MTFF-based net-
work is 3.62% MOTA better on the pedestrian bench-
mark, but the original one is 1.88% MOTA higher on the 
car benchmark. Maybe the modified network can obtain 
better results after the pretraining on the nuScenes detec-
tion dataset. 

In the same way as the experiments of CenterTrack, 
the nuScenes dataset was also selected as the comparison 
dataset. The network is pretrained on nuScenes detection 
at first, and MTFF is also trained on nuScenes tracking. 
Due to the different training equipment, the training pa-
rameters are a little different within CenterTrack, of 
which the batch size reduced to 32, the initial learning 
rate is 0.000 125, the learning rate will be dropped by 10 
in 60 epochs, and the network is fine-tuned 70 epochs. 
As shown in Tab.4, the modified CenterTrack has im-
proved on AMOTA, and is 0.4 better.  

In addition to comparing the CenterTrack, the Fair-
MOT was modified to prove the effect of the multi-level 

temporal feature fusion structure because DLA34 is also 
equipped in FairMOT. Similar to the previous experi-
ments, the training parameter and data are the same as in 
FairMOT, only the multi-level temporal feature fusion of 
DLA34 and the training algorithm in FairMOT are 
modified. In network training, FairMOT inherits the 
training dataset of JDE and the mixed dataset named 
MIX which includes Caltech Pedestrian, CityPersons, 
CUHKSYSU, PRW, ETHZ, MOT16, and MOT17. 
Therefore, we also use the same experimental method to 
train the modified FairMOT on the MIX dataset. The 
network is pretrained on CrowdHuman with 60 epochs, 
then trained on MIX about 30 epochs to obtain the basic 
network. 

We also compared two networks on public bench-
marks MOT15, MOT16, and MOT17, the experimental 
results are encouraging. All the results are listed in Tab.7. 
Similar to the works on FairMOT, the MOT15 training 
dataset is used for training in MOT15 benchmarks, and 
the experiments on MOT16 and MOT17 do no more 
work. On MOT15, the modified FairMOT boosts a little 
on MOTA, MOTP, and IDF1, of which the MOTA is 0.4% 
higher, and the original FairMOT is better on ID switch. 
However, the FairMOT+MTFF got the better perform-
ance on MOTA and IDF1 in benchmark MOT15. On 
MOT16, the MOTA in FairMOT+MTFF is 5.2% better 
than the original one, and except for the ID switch, the 
other metrics on FairMOT+MTFF are still better than 
FairMOT. An interesting result on MOT17 shows that 
FairMOT is better on MOTA and MOTP, but the IDF1 
and ID switch of FairMOT+MTFF are better. And the 
IDF1 of FairMOT+MTFF got the better score in the 
MOT17 benchmark. 

 
Tab.3 CenterTrack-based results on half of MOT17 training dataset 

Method Benchmarks Training 1 Training 2 MOTA↑ MOTP↑ IDF1↑ FP↓ FN↓ 

CenterTrack MOT17-half CrowdHuman MOT17-half 66.1 82.1 64.2 2 453 15 287 

CenterTrack+MTFF MOT17-half CrowdHuman MOT17-half 67.7 82.4 65.1 2 317 14 543 

Tab.4 CenterTrack-based results on MOT17 test 

Method Benchmarks Training 1 Training 2 MOTA↑ MOTP↑ IDF1↑ IDSW↓ 

CenterTrack MOT17 CrowdHuman MOT17-half 67.8 78.4 64.7 3 039 
CenterTrack+MTFF MOT17 CrowdHuman MOT17-half 69.1 79.3 59.6 5 409 

Tab.5 CenterTrack-based results on KITTI tracking test 

Method Benchmarks Training 1 Training 2 MOTA↑ MOTP↑ IDSW↓ FRAG↓ F1↑ 

CenterTrack Pedestrian nuScenes detection KITTI tracking 55.34 74.02 95 751 74.98 

CenterTrack Car nuScenes detection KITTI tracking 89.44 85.05 116 334 95.41 
CenterTrack+MTFF Pedestrian nuScenes detection KITTI tracking 58.96 75.02 98 744 76.47 
CenterTrack+MTFF Car nuScenes detection KITTI tracking 87.56 85.30 203 480 94.54 

Tab.6 CenterTrack-based results on nuScenes 

Method Benchmarks Training 1 Training 2 AMOTA↑ AMOTP↑ Recall↑ IDSW↓ 

CenterTrack nuScenes tracking nuScenes detection nuScenes tracking 6.8 1.543 0.222 2 673 
CenterTrack+MTFF nuScenes tracking nuScenes detection nuScenes tracking 7.2 1.562 0.258 2 986 
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Tab.7 FairMOT-based results on MOT  

Method Benchmark Training 1 Training 2 Training 3 MOTA↑ MOTP↑ IDF1↑ IDSW↓ 

FairMOT MOT15 CrowdHuman MIX MOT15 60.6 76.5 64.7 591 
FairMOT MOT16 CrowdHuman MIX Null 69.3 80.2 72.3 815 
FairMOT MOT17 CrowdHuman MIX Null 73.7 81.3 72.3 3 303 

FairMOT+MTFF MOT15 CrowdHuman MIX MOT15 61.0 77.1 65.6 687 

FairMOT+MTFF MOT16 CrowdHuman MIX Null 74.5 81.1 72.5 957 

FairMOT+MTFF MOT17 CrowdHuman MIX Null 71.2 80.9 74.4 3 051 
 
In the above experiments, most of the MOTA and IDF1 

on MTFF-based framework get the better performance, 
which means the MTFF with feature exchange training 
algorithm can help the joint multiple object tracking and 
detection frameworks to be more powerful, both on fea-
ture matching based tracking and position shift based 
tracking. But the ID switch of most MTFF-based 
frameworks is increased, which denotes that the MTFF 
structure helps the network to have a better tracking lo-
cation. However, the link of tracking is blurred. 

Aiming at the problem of temporal feature fusion in 
joint multiple object detection and tracking framework, a 
simple and efficient temporal feature fusion structure is 
proposed in this paper, which needs not too many addi-
tional modifications, and realizes the temporal feature 
fusion by delivering the feature from the previous frame. 
For training the temporal networks effectively, the fea-
ture exchange training algorithm is designed, which is an 
end-to-end training strategy. The experiments show that 
the deeper network feature is much more suitable for 
temporal feature fusion, and CenterTrack with the 
multi-level temporal feature fusion structure, can per-
form better after training the whole framework from 
scratch. This means the proposed optimal method is ef-
fective. The experiment of modified FairMOT obtains 
good results on acknowledged benchmarks, proving the 
effective of the proposed method. 

The proposed structure in this paper is pretty simple, 
maybe it is efficient, but not good enough. Therefore, 
studying the better temporal feature fusion structure is 
our ongoing work. 
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