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To address traffic congestion, this study improves MobileNetv2-you only look once version 4 (YOLOv4) target detec-

tion algorithm (MobileNetv2-YOLOv4-K++F) and introduces an embedded traffic information processing solution 

based on edge computing. We transition models initially designed for large-scale graphics processing units (GPUs) to 

edge computing devices, maximizing the strengths of both deep learning and edge computing technologies. This ap-

proach integrates embedded devices with the current traffic system, eliminating the need for extensive equipment up-

dates. The solution enables real-time traffic flow monitoring and license plate recognition at the edge, synchronizing 

instantaneously with the cloud, allowing for intelligent adjustments of traffic signals and accident forewarnings, en-

hancing road utilization, and facilitating traffic flow optimization. Through on-site testing using the RK3399PRO de-

velopment board and the MobileNetv2-YOLOv4-K++F object detection algorithm, the upgrade costs of this approach 

are less than one-tenth of conventional methods. Under favorable weather conditions, the traffic flow detection accu-

racy reaches as high as 98%, with license plate recognition exceeding 80%.  
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Globally, traffic congestion, accidents, and pollution 
pose critical challenges[1]. To address traffic safety, many 
countries have installed high-definition cameras and 
electronic toll devices on major roads, creating compre-
hensive traffic management platforms[2,3]. However, the 
rise of the Internet of Things (IoT), smart transportation, 
and autonomous driving technologies necessitate deeper 
analysis of extensive traffic videos and data streams[4,5]. 

Currently, real-time traffic data is captured using sen-
sors and smart cameras, processed and visualized via 
deep learning algorithms in the cloud[6-20]. Yet, cloud 
computing’s reliance consumes significant network 
bandwidth, poses data security risks, and involves high 
deployment costs. For example, costs at a typical inter-
section can reach millions of yuan for equipment and 
network upgrades, impeding the widespread adoption of 
intelligent transportation systems.  

With the rapid development of edge computing and 
IoT, more cost-effective and innovative solutions for 
smart city and intelligent transportation are emerging[18]. 
This study improved MobileNetv2-you only look once 
version 4 (YOLOv4) target detection algorithm (Mobi-
leNetv2-YOLOv4-K++F) and presents an embedded 
traffic information processing approach based on edge 

computing. It introduces a novel method for handling 
traffic data streams without upgrading existing infra-
structure. Using an edge computing device, like the 
Rockchip RK3399Pro (the experimental data for all em-
bedded platform experiments presented in this paper 
were obtained through testing on the RK3399Pro plat-
form) development board, information from cameras and 
sensors is processed through pre-deployed deep learning 
models. This setup enables traffic flow counting, license 
plate recognition, and vehicle tracking. Processed data is 
then uploaded to cloud platforms like traffic signal and 
management systems. The cloud performs functions like 
intelligent traffic light decision-making and accident 
alerts based on data from multiple intersections. 

In comparison with the conventional approach of ex-
tensively replacing expensive intelligent traffic cameras 
and employing cloud-based computation for uploaded 
data streams, this approach, integrating edge computing 
and deep learning, is cost-effective, requiring less than 
one-tenth of the expenses and minimal network band-
width. It offers faster processing and enhanced data se-
curity, functioning even during network disruptions. Its 
installation and upgrade costs are low, and it boasts sig-
nificant scalability. The system can connect to wireless 
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modules and V2I devices, supporting autonomous driv-
ing while ensuring data privacy. This innovative ap-
proach facilitates optimized urban traffic flow, assisting 
in traffic management and enhancing road efficiency. 

To enhance the performance on embedded devices, we 
employed MobileNetv2 to replace the backbone and 
feature extraction network of YOLOv4. The clustering 
algorithm for anchor box determination was upgraded 
from the conventional K-means to the K-means++ ap-
proach, thereby refining the detection algorithm’s accu-
racy. Furthermore, the incorporation of the focal loss 
function served to balance the proportion of positive and 
negative samples, augmenting the precision of the sin-
gle-stage target detection algorithm. The resultant im-
proved model, referred to as Mobile-
Netv2-YOLOv4-K++F, was trained using consistent 
parameters and datasets. Performance evaluations were 
conducted on a personal computer (PC) equipped with a 
GTX 1650 graphics card, with the detailed outcomes 
presented in Tab.1, where accurate is obtained at an in-
tersection over union (IoU) threshold of 0.5. 

Tab.1 Comparative analysis of algorithm performance 
with different backbone networks on PC platform 

Network model YOLOv4 

Mobile- 

Netv2- 

YOLOv4 

Mobile- 

Netv2- 

YOLOv4-K++F

Accurate (%) 86.40 83.26 87.06 

Computational 

volume (B) 
35.48 4.56 4.56 

Quantity of 

participants (M) 
63.94 10.38 10.38 

Time-consuming 

reasoning (ms) 
194.93 20.72 20.72 

Model size (M) 244.00 46.40 46.40 

Based on the data presented in Tab.1, it is evident that 
the enhanced MobileNetv2-YOLOv4-K++F, compared 
to the original YOLOv4 and MobileNetv2-YOLOv4, 
achieves the highest detection accuracy under the same 
model parameters and computational constraints, even 
surpassing the pre-lightweight YOLOv4 algorithm. The 
comparative analysis of vehicle detection before and 
after the algorithmic improvements, as illustrated in 
Fig.1, clearly demonstrates the improved algorithm’s 
capability to detect a greater number of vehicle targets. 

To validate the detection performance of the improved 
MobileNetv2-YOLOv4 on the RK3399Pro edge com-
puting device, the pre-trained model was first quantized 
into the reverse K nearest neighbor (RKNN) format us-
ing the RKNN Toolkit. Subsequently, it was deployed to 
the edge device, and the neural processor unit (NPU) was 
utilized to test the performance of each model. The spe-
cific outcomes are presented in Tab.2, where the speed 
(FPS) represents the results obtained after parallel infer-
ence. 

 
(a) Before                        (b) After 

Fig.1 Comparison before and after algorithm im-
provement 

Tab.2 Comparative performance of different backbone 
networks at the edge 

Network model YOLOv4 

Mobile- 

Netv2- 

YOLOv4 

Mobile- 

Netv2- 

YOLOv4-K++F

Time-consuming 

reasoning (ms) 
2 711.02 656.63 73.59 

Speed (FPS) 1 5 22 

Memory require-

ments (M) 
1 000.00 527.62 274.63 

Loading time (s) 93.91 43.37 23.68 

Model size (M) 122.16 61.26 10.60 

The data from Tab.2 indicate that the enhanced Mobi-
leNetv2-YOLOv4-K++F model, in comparison to the 
quantized YOLOv4, is significantly more compact at 
only 10.60M in size. It also requires substantially less 
memory and loading time. The inference speed has in-
creased nearly ninefold, achieving a detection rate of 
22 FPS in video processing, which essentially meets the 
performance requirements for real-time vehicle detection. 
The experiments confirm that the improved Mobile-
Netv2-YOLOv4-K++F is better suited for deployment on 
edge computing devices. 

The video acquisition module is composed of existing 
network cameras and toll cameras at the intersection. 
Through the hardware interface of the data processing 
module, the data stream is transmitted to the embedded 
processing platform (Fig.2). The data processing module 
consists of three components: image preprocessing, ve-
hicle detection and tracking algorithms, and a neural 
network processing unit. In the image preprocessing 
stage, video streams are read using OpenCV and 
Gstreamer to obtain images requiring processing. Sub-
sequent operations include adjusting image dimensions, 
converting RGB channels to BGR, and grayscale con-
version. For object detection, the YOLO detection algo-
rithm is applied to the processed images, identifying the 
license plate regions. These identified regions are saved 
and input into the license plate recognition via deep neu-
ral networks (LPRNet) character recognition algorithm 
for precise license plate identification. To ensure con-
tinuous and accurate monitoring of each vehicle, the 
byteTrack tracking algorithm is employed for real-time 
tracking of every detected license plate. The neural net-
work processing unit can be divided into two phases: 
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model loading and inferential computing. Initially, the 
model is deployed on the edge computing device. Sub-
sequently, by invoking the NPU interface, the model is 
loaded and the runtime environment initialized. This 
facilitates the execution of deep learning algorithms at 
the edge, enabling rapid processing of video image data. 

Detection and recognition results from the data stream 
are stored locally in the format license plate number, 
identification (ID). The saved images of the license plate 
regions are named in the same manner. 

Concurrently, there’s real-time communication be-
tween local storage and the cloud database. Local data is 
packaged and uploaded to the cloud in real-time to enrich 
cloud database resources and facilitate long-term archiv-
ing. In contrast, local data undergoes periodic clearance 
to free up storage space. Once a vehicle is successfully 
identified, this data is sent to the information integration  

module, where speed and weight measurements are 
bound to the vehicle information, recorded in the format 
license plate number, ID, speed, weight. This integrated 
information is uploaded in real-time to the traffic infor-
mation management platform. The platform queries the 
cloud database for relevant records based on the license 
plate number to verify the vehicle, simultaneously com-
paring its speed and weight to determine if there’s any 
speeding or overloading. If any illegal or rule-breaking 
behavior is detected, the information is uploaded to the 
violations database, and the responsible party is notified 
by the database. Moreover, the traffic information man-
agement platform aggregates and analyzes data uploaded 
from the embedded processing platforms at various in-
tersections. It then formulates current traffic light control 
strategies and releases related warning messages based 
on this data.

 

 

Fig.2 Embedded processing platform 
 

 

 

Fig.3 Model compression and deployment 

When the embedded processing platform receives 
commands from the cloud, it controls the traffic lights 
accordingly and displays relevant notifications and 
warnings on the information board. Additionally, the 
embedded processing platform continuously transmits 
data on traffic flow and vehicle speed to moving vehicles 
through V2I devices, providing real-time deci-
sion-making references for their on-board systems. 

To deploy deep learning network models on embedded 
devices, a series of optimization procedures are currently 
required. These involve refining models for lightweight 
efficiency and compressing the network. Only after mul-
tiple layers of processing can models be implemented on 
embedded devices. Model pruning can be classified into 
structured and unstructured pruning methods. The uni-
versality of unstructured pruning is limited, and models 
produced via this method can only be deployed and ap-

plied on specific hardware platforms. To ensure the uni-
versality of subsequent experiments, this paper employs 
structured pruning for model compression. However, if 
the approach is to be integrated into specific project en-
gineering, a more targeted unstructured pruning should 
be adopted. The primary steps for model pruning and 
compression are as follows. 

(1) Conduct transfer learning on a specific dataset to 
obtain the required object detection model. 

(2) Sparse the model according to a strategy and 
post-training, achieving a sparsified network model. 

(3) Choose appropriate pruning criteria to prune the 
sparsified network model. 

(4) Fine-tune the pruned model to recuperate any ac-
curacy losses resulting from the pruning process. 

(5) Quantify the model to further reduce computa-
tional and parameter requirements, enhancing the 
model’s inference performance on edge computing de-
vices. 

(6) Deploy the lightweight model to the edge, enabling 
real-time target detection and various applications. 

We utilized the RKNN Toolkit released officially by 
Rockchip for model deployment. Not only does it support 
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model conversion, quantization, inference, and perform-
ance evaluation, but it also significantly accelerates the 
deployment and application of deep learning algorithms, 
simplifying the challenges of deploying deep learning 
models on edge computing devices. As illustrated in the 
RKNN development workflow, one first obtains 
pre-trained models through various deep learning model 
frameworks. Subsequently, with the assistance of the 
RKNN Toolkit, we can quantize and convert these 
pre-trained models, producing RKNN models compatible 
with the NPU. Ultimately, we can deploy the RKNN 
models onto edge computing devices and engage in ap-
plication development by invoking the relevant program 
interfaces. 

We conducted training for the Mobile-
Netv2-YOLOv4-K++F object detection algorithm and 
the LPRNet character recognition model separately and 
deployed them on the RK3399PRO development board. 
The system achieved an average detection speed of over 
25 FPS, fulfilling real-time processing requirements. To 
investigate the detection performance of the system in 
different environments, we conducted tests under sunny, 
overcast, and cloudy weather conditions, as shown in 
Tab.3. 

 
(a) Sunny                     (b) Cloudy 

 
                        (c) Overcast 

Fig.4 Test site images under different weather condi-
tions 

From the presented Tab.3, it can be observed that the 
accuracy of license plate detection is relatively high un-
der different weather conditions, especially when the 
weather is favorable and the environmental conditions 
are suitable, with the license plate detection accuracy 
approaching 98%. Even in relatively complex conditions, 
such as cloudy weather, the accuracy of license plate 
detection can reach 93%. Regarding the accuracy of li-
cense plate recognition, overcast weather exhibited the 
highest recognition rate. This can be attributed to two 
main reasons. Firstly, in the training of the LPRNet 

model, the proportion of training data with lighting con-
ditions similar to overcast days is relatively large, result-
ing in higher recognition accuracy of the model in such 
environments. Another reason is that in sunny and 
cloudy weather, the lighting conditions in the license 
plate area of vehicles are more complex, and the imaging 
equipment used in the experiment has suboptimal effects 
on the image processing of local areas, leading to situa-
tions such as overexposure or underexposure in the li-
cense plate area, thereby affecting the accuracy of license 
plate recognition. 

Tab.3 Test data under different weather conditions 

Weather 

condition

Actual 

vehicle 

count

License 

plate 

detection 

count 

License plate 

recognition 

count 

License plate 

detection  

accuracy rate 

License plate 

recognition 

accuracy rate

Sunny 264 264 209 97.67% 79.33% 

Overcast 187 182 162 97.33% 86.63% 

Cloudy 148 139 103 93.93% 69.63% 

To assess the robustness of the system, we repeated 
tests on a sunny video segment 20 times, and the ex-
perimental results are presented in Tab.4. 

From the presented Tab.4, it is evident that the license 
plate detection accuracy is notably high. After 20 con-
secutive tests, the average accuracy rate reaches an im-
pressive 98% with a variance of only 0.000 27, indicat-
ing minimal fluctuations and underscoring the robustness 
of the model. However, when it comes to license plate 
recognition, the accuracy rate drops to 79%. Despite this 
reduction, the model still demonstrates excellent robust-
ness. Two primary reasons account for this decreased 
recognition accuracy. Firstly, the experiment utilized a 
standard network camera, which in terms of focal length 
and clarity significantly differs from cameras specifically 
designed for license plate capture at checkpoints. Sec-
ondly, the LPRNet character recognition model we em-
ployed is a public version, which hasn’t been deeply 
trained for specific scenarios, leading to suboptimal rec-
ognition performance. Prior to the formal implementa-
tion of our solution, we plan to refine the training for 
both target detection and character recognition models. 
And by leveraging high-definition camera systems at 
traffic intersections, we believe there will be a substantial 
increase in recognition accuracy. However, it’s worth 
noting that under challenging conditions such as rain, 
snow, or intense/dim lighting, the system’s recognition 
capability maybe compromised, potentially resulting in 
reduced accuracy. Yet, under stable lighting and envi-
ronmental conditions, the accuracy of license plate de-
tection and recognition can be significantly improved, 
achieving or even surpassing 90%. 

To tackle imminent traffic challenges, enhance the ef-
ficiency and utilization of traffic data streams, break 
down communication barriers among existing traffic 
information collection devices, and identify a solution 
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more cost-effective, efficient, and safe than current 
strategies, this paper presents an improved Mobile-
Netv2-YOLOv4 target detection algorithm (Mobile-
Netv2-YOLOv4-K++F) and an innovative embedded 
traffic information processing method based on edge 
computing. This approach involves pruning and com-
pressing large-scale deep learning models running on 
GPUs, ultimately deploying them on edge computing 
devices. This ensures that the detection performance of 
deep learning models is maximally preserved on compact 
edge computing devices. By utilizing these edge devices 
embedded with deep learning models, existing traffic 
systems can undergo a superior intelligent upgrade at 
minimal cost. This method seamlessly integrates with the 
current traffic systems, optimizing the intercommunica-
tion and application of traffic data streams. At the edge 
computing end, it facilitates traffic flow monitoring and 
license plate recognition, synchronizing with the cloud in 
real time. This allows for intelligent traffic signal ad-
justments and accident forewarning, significantly enhanc-
ing road efficiency and fluidity. Core advantages of this 
approach include low costs, high system compatibility, 
outstanding scalability, and simplified deployment. Im-
portantly, the method substantially conserves network 
bandwidth and ensures stable operation even during 
network disruptions. Field validations have shown that 

 
Tab.4 Results from 20 iterations of license plate de-
tection and recognition on the same test video 

Serial 

number 

License plate 

detection 

count 

License 

plate recog-

nition count 

Actual 

total li-

cense 

plates 

License plate 

detection 

accuracy rate 

License plate 

recognition 

accuracy rate

1 258 204 0.977  0.773  

2 251 208 0.951  0.788  

3 262 210 0.992  0.795  

4 258 215 0.977  0.814  

5 258 214 0.977  0.811  

6 263 213 0.996  0.807  

7 260 201 0.985  0.761  

8 252 211 0.955  0.799  

9 249 212 0.943  0.803  

10 262 216 0.992  0.818  

11 258 217 0.977  0.822  

12 262 212 0.992  0.803  

13 260 205 0.985  0.777  

14 260 206 0.985  0.780  

15 251 205 0.951  0.777  

16 255 207 0.966  0.784  

17 255 209 0.966  0.792  

18 263 210 0.996  0.795  

19 259 205 0.981  0.777  

20 253 209 

264 

0.958  0.792  

Variance - - - 0.000 27 0.000 27

Average 257.45 209.45 - 0.975  0.793  

by utilizing the RK3399PRO development board com-
bined with the MobileNetv2-YOLOv4-K++F object de-
tection algorithm, the upgrade costs are significantly less 
than traditional techniques. Under favorable weather 
conditions, the accuracy rates for traffic flow monitoring 
and license plate recognition reach 98% and over 80%, 
respectively. 

Although this approach demonstrates substantial po-
tential, it is currently still in the verification phase, ne-
cessitating extensive testing to ensure its feasibility in 
practical applications. Many functionalities within the 
design of the entire scheme await further validation. Ad-
ditionally, there is room for refinement and enhancement 
at various levels of this solution. Particularly concerning 
small object monitoring and system stability under com-
plex environments, there remains ample scope for im-
provement. 
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