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EAE-Net: effective and efficient X-ray joint detec-
tion* 
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The detection and localization of bone joint regions in medical X-ray images are essential for contemporary medical 

diagnostics. Traditional methods rely on subjective interpretation by physicians, leading to variability and potential 

errors. Automated bone joint detection techniques have become feasible with advancements in general-purpose object 

detection. However, applying these algorithms to X-ray images faces challenges due to the domain gap. To overcome 

these challenges, a novel framework called effective and efficient network (EAE-Net) is proposed. It incorporates a 

context augment module (CAM) to leverage global structural information and a ghost bottleneck module (GBM) to 

reduce redundant features. The EAE-Net model achieves exceptional detection performance, striking a balance be-

tween accuracy and speed. This advancement improves efficiency, enabling clinicians to focus on critical aspects of 

diagnosis and treatment. 
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The detection and localization of bone joint regions in 
medical X-ray images have emerged as a pivotal task in 
contemporary medical diagnostics[1]. This critical under-
taking plays an indispensable role in the assessment and 
treatment of various bone and joint disorders[2], encom-
passing fractures, arthritis, and deformities. Accurate 
identification and localization of bone joint regions en-
able healthcare professionals to make informed decisions 
regarding patient care, treatment planning, and surgical 
interventions.  

Traditional approaches to bone joint detection heavily 
rely on physician expertise and domain knowledge, which 
are typically subjective, reliant on clinical experience, and 
vulnerable to human errors. These conventional methods 
often involve manual interpretation of medical images, 
where the accuracy and consistency of detection can vary 
among different practitioners. The subjective nature of 
these approaches introduces a level of uncertainty and 
inconsistency in the detection and localization of bone 
joint regions. Moreover, human errors, such as fatigue or 
cognitive biases, can further impact the reliability and 
accuracy of the results. Therefore, there is a growing rec-
ognition of the necessity to develop automated and objec-
tive methods that can overcome these limitations and 
provide robust and reliable bone joint detection. 

With the rapid advancements in general-purpose object 
detection in computer vision, automated bone joint detec-
tion techniques have become more feasible. The aim of 
general-purpose object detection is to identify and local-
ize objects of interest in an image, simultaneously deter-
mining their positions and categories. It can be catego-
rized into one-stage[3] and two-stage algorithms. 
Two-stage algorithms extract features using candidate 
boxes and utilize convolutional neural networks (CNN)[4] 
for classification and regression, offering the advantage of 
high precision but at the cost of slower detection speed, as 
exemplified by Faster-RCNN[5]. Conversely, one-stage 
algorithms employ CNN to directly classify and locate 
objects, providing the primary benefit of faster detection 
speed, albeit with the drawback of lower detection accu-
racy, as seen in the you only look once (YOLO) series[6]. 

However, the application of general-purpose object de-
tection algorithms for bone detection encounters signifi-
cant challenges due to the substantial domain gap between 
natural images and X-ray[7] images. Firstly, X-ray images 
often inherently contain inevitable noise resulting from the 
imaging process, which tends to cause local edge contours 
in X-ray images to appear more blurred compared to 
natural images. This situation can lead to inaccurate fea-
ture extraction from X-ray images and generate false 
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detections when applying traditional general-purpose 
object detection models. Additionally, X-ray images often 
have a significant amount of black background due to the 
requirement of filling the image’s surroundings with a 
solid black color to accommodate device specifications. 
However, when utilizing traditional feature extractors, 
often results in the generation of numerous redundant 
feature maps that resemble the background. The genera-
tion of these redundant feature maps can significantly 
slow down the entire process.  

To address the aforementioned challenges, we propose 
a novel framework called effective and efficient network 
(EAE-Net), specifically designed to enhance the effec-
tiveness and efficiency of object detection in X-ray im-
ages. To leverage the global structural information inher-
ent in X-ray images, we introduce a context augment 
module (CAM)[8]. This module employs global pixel at-
tention to capture crucial context information across the 
entire image. By incorporating global context, our model 
effectively reduces false detections and improves overall 
detection accuracy. Moreover, to mitigate the impact of 
redundant features, we integrate a novel convolution layer 
known as ghost bottleneck module (GBM)[9] into the 
backbone of our model. This layer enables the generation 
of optimized feature maps through a more efficient linear 
feature transformation, ensuring fast inference without 
compromising accuracy. By combining these two innova-
tive design elements, our EAE-Net model achieves ex-
ceptional detection performance, striking a balance be-
tween accuracy and speed. This advancement not only 

saves valuable time and effort for clinicians, but also 
empowers them to focus more on critical aspects of di-
agnosis and treatment. 

Next, we begin with analyzing the unique characteris-
tics of X-ray images. Subsequently, we present the 
framework of our proposed approach, named EAE-Net. 
Finally, we provide experimental results to validate our 
arguments. 

As shown in Fig.1, we used a general-purpose detec-
tion model (YOLOV4)[10] to detect X-ray images and 
visualize the feature maps and heatmaps of the final layer 
of the model. We found two distinct characteristics in the 
feature maps of X-ray images: local region blur and back-
ground feature redundancy. Firstly, X-ray images often 
inherently contain inevitable noise resulting from the im-
aging process, which tends to cause local edge contours 
in X-ray images to appear more blurred compared to 
natural images. For example, in the blue region, we can 
find that the visual representation of the right ankle ap-
pears blurred, which leads to inaccurate feature extraction 
from X-ray images and generates false detections when 
applying traditional general-purpose object detection 
models. However, despite the blurring of local edge con-
tours in X-ray images, the global structural information 
remains clear. This global structural information, which 
includes the human body skeleton prior, serves as valu-
able cues for effectively recognizing bone regions. 
Therefore, in this paper, we propose a novel global atten-
tion mechanism with CAM that leverages this informa-
tion to extract better visual features. 

 

 
Fig.1 Distinct characteristics of X-ray image 

 
Secondly, X-ray images often have a significant 

amount of black background due to the requirement of 
filling the image’s surroundings with a solid black color 
to accommodate device specifications (1 024×1 024). For 
instance, in the yellow region, there is a high response 
from a significant number of non-body parts (back-
ground). To address this issue, we propose an efficient 
feature extraction approach GBM that employs a linear 
operation to accelerate the overall processing by altering 
the generation method of redundant features. 

Based on the above two motivations, we design our  

proposed EAE-Net. As depicted in Fig.2, EAE-Net con-
sists of three main components: efficient feature extrac-
tion module, effective feature augment module, and de-
tection head. The efficient feature extraction module is 
responsible for extracting multi-scale features[11] from the 
image, which plays a crucial role in subsequent localiza-
tion and recognition tasks. The effective feature augment 
module enhances the extracted features by fusing infor-
mation from different scales and phases. The detection 
head module then adapts the outputs, converting the fea-
tures into target box coordinates, confidence scores, and 
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classification probabilities for each detected object in the 
frame.  

Compared to the general-purpose object detection 
models, our proposed model incorporates additional spe-
cial designs. Firstly, we introduce a lightweight module 
called GBM, which reduces redundant calculations and 
accelerates the inference speed. In the neck part, we pro-
pose a CAM to achieve more comprehensive features and 
improve detection accuracy. Next, we will introduce these 
two designs in more detail.  

GBM is a lightweight module compared with previous  

designs. As shown in Fig.1, we observe that X-ray images 
have a significant amount of black background due to the 
requirement of filling the image’s surroundings with a 
solid black color to accommodate device specifications. 
However, when utilizing traditional feature extractors, 
often results in the generation of numerous redundant 
feature maps that resemble the background. To address 
this issue, we propose an efficient feature extraction 
module, GBM, which employs a linear operation to ac-
celerate the overall processing by altering the generation 
method of redundant features.  

 

Fig.2 Overall framework of EAE-Net 

As shown in Fig.3, the GBM exhibits a structure simi-
lar to the ResNet[12] bottleneck, with the ghost module 
serving as its core component. To show the effectiveness 
of the ghost module, we compare three different convolu-
tions in Fig.3. Fig.3(a) is an ordinary convolution opera-
tion, and each box in the figure is the feature of a channel. 
The ordinary convolution operation performs convolution 
on all channels, which is slower and consumes more 
memory in the case of large channel dimensions or 
stacking multiple layers. Fig.3(b) shows the cross stage 
partial (CSP) network[12], which only performs complex 
convolution on partial channels, and then fuses the fea-
tures of the original other channels and the encoded 
channels by transition operation to obtain the output. By 
reducing the number of connections and complexity, 
CSP-based networks can get better features significantly 
faster. Different from the above two types of convolu-
tions, the ghost module uses a set of intrinsic feature 
maps, which are obtained by standard convolution, and 
then applies some transformations with cheap cost, such 
as depth-wise convolution and pointwise linear projec-
tion, to produce more feature maps that could fully reveal 
the information of the intrinsic features. 

For a standard convolution operation, given input data 
h w cX R � �� , where h is the height of the input feature map, 

w is the width of the input feature map, and c is the num-

ber of input channels, the operation of any convolution 
layer generating n feature maps is shown as 

,Y X f b� � �                            (1) 
where b is the deviation term, c k k nf R � � ��  is the con-
volution kernel of the feature layer, and h w nY R � �� ��  is 
the output feature graph with n output channels. In this 
convolution process, the amount of calculation FLOP is 
huge, and its operation is shown as 

,FLOP c k k n h w� �� � � � � �                  (2) 
where h′ and w′ are the height and width of the output 
feature map respectively, and k is the size of the convolu-
tion kernel f. 

The ghost module is a convolution operation on part of 
the feature graphs, that is, a standard convolution is used 
to complete m original output feature graphs h w mY R � �� ��� , 
where m n� , the operation is shown as  

,Y X f� �� �                                 (3) 
where c k k mf R � � ���  is the convolution kernel used by 
the feature layer and does not contain the deviation term. 
In order to further obtain the required n feature maps, a 
series of simple linear changes are carried out on the ob-
tained m-dimensional feature maps to generate s similar 
feature maps: 

, ( )    1,..., , 1,..., ,ij i j iy y i m j s�� 	 � ��            (4)
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where iy�  is the ith original feature graph in Y′, and ϕi,j is 
the jth linear calculation used to generate the jth similar 
feature graph yij. The calculation of FLOP is shown as 

nFLOP c k k h w
s

� �� � � � � � �  

         ( 1) ,
n d d s h w
s

� �� � � 
 � �             (5) 

where d is the average kernel size per linear operation. 
From Eq.(5), it can be seen that the ghost module divides 
the calculation into two parts, one part is the ordinary 
convolution operation, the other part is the linear trans-
formation operation, combined with Eq.(2), the compres-
sion ratio of the model is about s, which greatly reduces 
the number of parameters. 

 

 

Fig.3 Three types of convolution: (a) Standard; (b) 
CSP; (c) Ghost 

 
The CAM serves as a feature enhancement module to 

improve performance. It is important to note that there 
exists a domain gap between natural images and X-ray 
images, with X-ray images often exhibiting blurred local 
edge contours while retaining clear global structural in-
formation. Therefore, the objective of this paper is to 
utilize the global structural information as contextual cues 
to obtain more comprehensive features. To effectively 
leverage the correlation of global pixels, CAM employs a 
dual-attention mechanism to process features from dif-
ferent scales. This involves calculating the self-attention 
of individual features and subsequently calculating the 
cross-attention of correlated features. By adopting this 
approach, a more thorough exploration of global informa-
tion can be achieved. In the following sections, we pro-
vide a detailed description of the structure of the 
self/cross attention block.  

As shown in Fig.4, when given an input feature map X, 
we can calculate the global attention as the context to 
augment X to Y. In this way, global context is added to 
the features, which could avoid blurred local edge con-
tours with clear global structural information. 

Tsoftmax( ),x xAttention Q K�  
.xY X Attention V� � �                        (6) 

 

Fig.4 Self/cross attention block 

After that, the head part in EAE-Net will utilize three 
scales of feature maps for bone detection, and get the 
final bounding box prediction through some 
post-processing operations. 

To optimize the network, we consider the complete in-
tersection over union (CIoU) loss function. Different 
from distance intersection over union (DIOU)[13] which 
considers directly minimizing the normalized distance 
between the predicted image and the actual image, the 
overlap area of two frames, distance from the center point 
and length and width are three important factors that 
should be considered in target regression loss. Therefore, 
CIOU loss is adopted as the loss function in this paper: 

2

CIOU 2

( , )
Loss 1 IOU ,

gtb b v
C

� 
 � �
�

�            (7) 

where α is the weight and v is used to measure the aspect 
ratio. An influence factor av operation is added to the 
calculation of CIOU loss, and the aspect ratio is consid-
ered, which makes the convergence speed and precision 
of CIOU loss higher.  

The dataset for this paper was obtained from the Tianjin 
Institute of Orthopaedics, and the source data consists of a 
total of 515 full-length radiographic images of the human 
lower limb, each with a resolution of 1 024×1 024 and 
containing three channels of RGB. In this paper, the data 
set is augmented to 7 210 images using 11 data enhance-
ment methods, including random pixel addition, vertical 
flip, maximum pooling, HSV transform and adaptive his-
togram equalization, which can effectively suppress over-
fitting during model training. After expanding the dataset 
using the above data enhancement methods, the dataset is 
divided into a training set and a test set in the ratio of 9: 1, 
with 5 840 images in the training set, 649 images in the 
validation set and 721 images in the test set. Our goal is to 
detect ankles, hips, knees from a single radiograph of a 
human lower limb. Fig.5 shows the unprocessed X-ray 
image and Fig.6 shows the expected detection results. 
Each image typically contains three pairs. We set these six 
areas that need to be detected (left ankle, right ankle, left 
knee, right knee, left hip, right hip) to the six categories. 
The experiments were conducted using PyTorch 1.8 deep 
learning framework and the code was run on Windows 10 
operating system via Python and accelerated by CUDA 
11.0. The hardware used for running the experiment is
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Intel i7-10700KF for CPU and NVIDIA RTX3090 for 
GPU.  

 

 

Fig.5 Original human lower limb X-ray image 

 

Fig.6 Expected X-ray image detection results 

Our EAE-Net model has an input image size of 
416×416, supervised by the CIOU loss, and the final re-
sults are evaluated using mean average precision (mAP). 
Tab.1, Fig.7 and Fig.8 show the comparison of our pro-
posed model with the existing general purpose object 
detection baselines. It shows that our model has compa-
rable or better performance in all metrics, and there is a 
significant improvement in processing speed. The mAP of 
our proposed EAE-Net model achieves an average im-
provement of 0.5 compared to the best results reported in 
previous approaches, which shows the effectiveness of 
our method. Besides, the model introduced in this paper 
improves the frames per second (FPS) by 55%, which 
enables real-time detection. The EAE-Net model show-
cases its improved performance while maintaining light-
weight characteristics, making it suitable for the efficient 
automatic joint detection task. Moreover, according to the 
various metrics of each class, it can be found that the left 
knee and hip are more difficult to detect, and we analyzed 
that it may be because the structure of the place is more 
complex, nevertheless, ours still achieved satisfactory 
results.  

Tab.1 Comparison between our improved model and the baseline 

Target areas 
Metric Model 

Left knee Right knee Left hip Right hip Left ankle Right ankle 

Faster-RCNN 90.83      98.64 99.86  90.41 99.10 98.97 

CenterNet[14]     93.20 96.91 99.69 93.39 98.12 98.79 

YOLOV3[5] 95.00 97.16 98.90 94.15 97.65 96.51 

YOLOX[15] 92.47 97.71 98.79 93.91 99.45 98.31 

YOLOV4 95.41 98.41 99.41 95.69 98.59 99.54 

mAP 

EAE-Net (Ours) 96.53 99.15 100 96.32 99.65 99.67 

Faster-RCNN 12 13 14 12 12 14 

CenterNet     15 16 15 17 15 16 

YOLOV3 18 17 18 16 17 16 

YOLOX 21 20 22 20 21 21 
YOLOV4 22 22 23 21 22 23 

 
 

FPS 

EAE-Net (Ours) 33 33 34 35 35 33 

 

 

Fig.7 mAP of EAE-Net 

 

Fig.8 FPS of EAE-Net 

 
We also conducted an ablation study on two key com-

ponents of our framework, namely GBM and CAM, as 
shown in Tab.2. When GBM is excluded, the FPS is re-
duced by nearly 50%, while the mAP remains almost un-
changed. This demonstrates the effectiveness of GBM in 
accelerating the inference process without compromising 
accuracy. Additionally, when CAM is not utilized, the 
mAP is decreased by approximately 0.7. This showcases 
the effectiveness of the proposed CAM in capturing 
global context and reducing false detections in X-ray im-
ages. By incorporating CAM into our model, we are able 
to leverage the global structural information present in the 
images, leading to improved accuracy in object detection 
tasks. 

Qualitative analysis experiments the best previous ap-
proach (YOLOV4) and our proposed solution, EAE-Net 
is shown in Fig.9. We visualize the features of the final 
layer of both models. We can observe that compared to 
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the blurry feature maps of YOLOV4, the features of 
EAE-Net are more focused on the body parts (as indi-
cated by the yellow region), which demonstrates that the 
design of EAE-Net effectively eliminates the influence of 
redundant features. Additionally, in the feature maps of 
EAE-Net, there is a clear response in the local joint areas 
of the body (as shown by the blue region), while 
YOLOV4 only exhibits a few feature maps with this 
phenomenon. This also indicates that EAE-Net can utilize 
the CAM module to explore prior knowledge of the hu-
man body, thereby helping to clarify initially blurry re-
gions in the local areas. Additionally, in Fig.10, we com-
pare the heatmaps of different approaches. It can be ob-
served that in the right ankle region, EAE-Net obtains a 
higher response compared to YOLOV4, accurately pre-
dicting the position of the joint. This further demonstrates  

 

the effectiveness of our proposed solution. 

Tab.2 Ablation results of EAE-Net 

CAM GBM mAP (%) FPS (Hz) 

√  98.15 22.17 

 √ 97.27 31.83 

√ √ 98.56 33.83 

 
Furthermore, in order to demonstrate the practical ef-

fectiveness of the introduced model, we visualized the 
model’s predictions between EAE-Net and more previous 
approaches in Fig.11. We performed the inference on an 
average performance PC and expanded the image size to 
1 024×1 024 for more accurate detection. It was found 
that our model was able to accurately localize and classify 
all joints with higher confidence. 

 

Fig.9 Comparison of features maps 

 

Fig.10 Comparison of heatmaps

 

 

Fig.11 Comparison of detection results of different methods
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In summary, this paper explores the detection and lo-
calization of bone joint regions in medical X-ray images. 
Traditional methods rely on subjective interpretation, 
leading to variability and errors. Automated bone joint 
detection techniques have become more feasible with 
advancements in general-purpose object detection. How-
ever, applying these algorithms to X-ray images faces 
challenges due to the distinct characteristics of X-ray im-
ages and the domain gap with natural images. To address 
these challenges, a novel framework called EAE-Net is 
proposed. It incorporates a CAM to capture global struc-
tural information and a GBM to reduce redundant fea-
tures. The EAE-Net model achieves exceptional detection 
performance, balancing accuracy and speed. This ad-
vancement saves time for clinicians and allows them to 
focus on critical aspects of diagnosis and treatment. 
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