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Recent advancements in artificial intelligence (AI) have shown promising potential for the automated screening and 

grading of cataracts. However, the different types of visual impairment caused by cataracts exhibit similar phenotypes, 

posing significant challenges for accurately assessing the severity of visual impairment. To address this issue, we pro-

pose a dense convolution combined with attention mechanism and multi-level classifier (DAMC_Net) for visual im-

pairment grading. First, the double-attention mechanism is utilized to enable the DAMC_Net to focus on le-

sions-related regions. Then, a hierarchical multi-level classifier is constructed to enhance the recognition ability in dis-

tinguishing the severities of visual impairment, while maintaining a better screening rate for normal samples. In addi-

tion, a cost-sensitive method is applied to address the problem of higher false-negative rate caused by the imbalanced 

dataset. Experimental results demonstrated that the DAMC_Net outperformed ResNet50 and dense convolutional 

network 121 (DenseNet121) models, with sensitivity improvements of 6.0% and 3.4% on the category of mild visual 

impairment caused by cataracts (MVICC), and 2.1% and 4.3% on the category of moderate to severe visual impair-

ment caused by cataracts (MSVICC), respectively. The comparable performance on two external test datasets was 

achieved, further verifying the effectiveness and generalizability of the DAMC_Net. 
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Cataract is a prevalent visual impairment disease with a 

high risk of blindness, primarily characterized by pro-

gressive loss of vision. According to statistics, cata-

ract-induced blindness affects a substantial number of 

individuals, ranging from 16 million to 21 million 

worldwide[1], accounting for approximately 60% of all 

cases of blindness. Notably, the incidence of cata-

ract-related blindness is higher in populations with lower 

socioeconomic status and in developing countries[2]. 

Therefore, early detection and prompt treatment of cata-

ract have become pressing priorities that require imme-

diate attention.  

Cataract surgery is a routine ophthalmological proce-

dure and remains the most effective treatment for cata-

ract[3]. The standard surgical approach involves cataract 

phacoemulsification combined with intraocular lens im-

plantation[4,5]. However, certain clinical criteria restrict 

the eligibility of patients for cataract surgery, and it is 

reserved for individuals who meet specific conditions[3]. 

First of all, visual acuity requirements must be met, 

typically necessitating a best-corrected visual acuity of 

less than 0.3. Additionally, there should be no active in-

flammation in the eyes, such as conjunctivitis or kerati-

tis, and any systemic diseases like diabetes or hyperten-

sion must be carefully monitored and controlled during 

the surgical procedure. On the contrary, patients with a 

best-corrected visual acuity equal to or greater than 0.3 

are recommended to undergo conservative drug treat-

ment instead. Therefore, accurately assessing the degree 

of visual impairment during the diagnosis stage is of 

utmost importance in determining the appropriate treat-

ment plan. According to the aforementioned criteria[6], 

the degree of visual impairment caused by cataracts can 

be categorized into two groups: mild visual impairment 

caused by cataracts (MVICC) with a best-corrected vis-

ual acuity equal to or greater than 0.3, and moderate to 

severe visual impairment caused by cataract (MSVICC) 

with best-corrected visual acuity less than 0.3. 

The grading of visual impairment in cataract patients 

usually requires a skilled ophthalmologist to examine 
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patients’ best corrected visual acuity by methods of a 

routine vision examination. However, there is current 

and expected future shortfall of ophthalmologists in both 

developing and developed countries[7]. In particular, in 

developing countries like China, there are large differ-

ences in medical resources among different regions. 

More cataract patients in remote areas may become blind 

due to a lack of timely treatment. Moreover, the grading 

of visual impairment by ophthalmologists has several 

drawbacks, including being time-consuming, la-

bor-intensive, and susceptible to subjective factors. 

Recent developments in deep learning algorithms have 

resulted in the widespread applications of artificial intel-

ligence (AI) in various healthcare domains, including 

disease diagnosis, medical image segmentation, and le-

sion localization[8-11]. In particular, the combination of 

deep learning with medical big data has provided poten-

tial opportunities for the automatic diagnosis and grading 

of eye disease. In the field of ophthalmology, numerous 

studies have successfully developed high-accuracy AI 

system using fundus images for automatic disease 

screening, including diabetic retinopathy, glaucoma, 

retinal exudation, and retinal hemorrhage[12-14]. In addi-

tion, there have been investigations utilizing anterior 

segment images for disease diagnosis and severity grad-

ing, such as keratitis, pterygium, and eye tumor[15,16]. 

Several studies have specifically focused on the devel-

opment of deep learning-based systems for the automatic 

diagnosis and grading of cataracts[17-19]. However, com-

pared to previous studies, the grading of visual impair-

ment based on fundus images presents unique character-

istics. The MVICC and MSVICC categories share many 

similarities in phenotypes, which easily result in a lower 

sensitivity in the diagnostic system. Furthermore, due to 

the turbidity of the lens of cataract patients, the varying 

degrees of damage to blood vessels and optic disc tis-

sues, exacerbating the difficulty of grading visual im-

pairment. Especially for patients with visual acuity 

around 0.3, the distinguishability is even lower. 

To address the above-mentioned issues, this study 

proposes a dense convolution combined with attention 

and multi-level classification network (DAMC_Net) for 

fine-grained assessment of visual impairment in cataract 

patients. First, the dense convolution combined with 

double-attention network is proposed to extract fundus 

features from input images. At the same time, to optimize 

model parameters and reduce calculation time, the 

depthwise separable convolution is employed instead of 

the traditional 3×3 convolution in the dense layer. Sec-

ond, by constructing two-level classification tasks and 

assigning different weight coefficients, the extracted 

features of visual impairment are classified. The 

first-level classifier distinguishes between normal and 

cataract, while the second-level classifier differentiates 

among normal, MVICC, and MSVICC. Notably, a 

cost-sensitive is employed in the second-level classifier 

to address the problem of high false negative rates 

caused by training with imbalanced dataset. Lastly, this 

study explores and compares the impact of different 

weight coefficients of two tasks on the performance of 

the DAMC_Net for fine-grained assessment of normal, 

MVICC, and MSVICC. 

In this study, a total of 7 686 fundus images derived 

from routine examinations between April 2019 and Sep-

tember 2022 at Zhejiang Eye Hospital at Wenzhou 

(ZEHWZ) were used to develop the DAMC_Net. An 

additional external test set comprising 1 398 fundus im-

ages were collected from Ningbo Eye Hospital (NEH) 

and Zhejiang Eye Hospital at Hangzhou (ZEHHZ). Each 

fundus image was examined, discussed, and labeled by 

three experienced ophthalmologists, and then classified 

into three categories: normal, MVICC, and MSVICC. 

The fundus images from the ZEHWZ dataset were ran-

domly divided into three groups: 70% for training (5 354 

images), 15% for validation (1 158 images), and 15% for 

the internal test dataset (1 174 images). The training and 

validation datasets were employed to develop the 

DAMC_Net and the internal test dataset was used to 

evaluate its performance. Further details regarding the 

datasets obtained from ZEHWZ, NEH, and ZEHHZ are 

summarized in Tab.1. 

Tab.1 Distribution of cataract fundus images 

ZEHWZ 

dataset 

NEH 

dataset 

ZEHHZ 

dataset Type 

Train Val Test   

Normal 2 120 461 477 107 405 

MVICC 1 933 425 417 103 560 

MSVICC 1 301 272 280 91 132 

Total 5 354 1 158 1 174 301 1 097 

As shown in Fig.1, the overall framework of the 

DAMC_Net primarily consists of three stages: input im-

age preprocessing, feature extraction, and multi-level 

classification. In stage Ⅰ, data augmentation tech-

niques[15,20] are employed to preprocess the input fundus 

images, including random cropping, random rotations 

around the image center, and data normalization. These 

preprocessing techniques are beneficial in enhancing the 

diversity of the dataset, improving the network conver-

gence speed, and preventing overfitting and bias prob-

lems during training. In stage Ⅱ, the proposed dense 

convolution combined with the double-attention network 

is utilized to extract meaningful fundus features from the 

input images. In the stage Ⅲ, the extracted features are 

processed by multi-level classifiers to achieve a 

fine-grained assessment of visual impairment in cataract 

patients. 

The fundus images contain both underlying texture 

features and high-level semantic information, which are 

crucial for accurately assessing visual impairment in 

cataract patients. To improve the accuracy of this grading 

task, we introduce the double-attention mechanism in the 

convolutional neural network. The dense convolutional
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network (DenseNet)[21] is chosen as backbone network 

due to its exceptional performance with reduced compu-

tations and increased effectiveness. In this study, the 

double-attention mechanism[22] is further applied in the 

DenseNet to enhance the performance and generalization 

ability of fine-grained assessment of visual impairment. 

Specifically, a channel attention module is embedded 

before the depthwise separable convolution following the 

1×1 convolution operation, and a spatial attention mod-

ule is concatenated after the depthwise separable convo-

lution, as depicted in Fig.1.   

The channel attention map is generated by leveraging 

the inter-channel relationship of features. Each channel 

in the feature map is considered as a feature detector, 

enabling the channel attention to focuses on ‘what’ is 

meaningful given an input image. To compute the chan-

nel attention efficiently, we squeeze the spatial dimen-

sion of the input feature map. Specifically, as shown in 

Fig.2(a), the spatial information of the input feature map 

is aggregated using both average-pooling and 

max-pooling operations, resulting in the generation of 

two distinct spatial context descriptors: c

avgF and c

maxF . 

Both descriptors are then fed into a shared network to 

produce our channel attention map Mc. The shared net-

work is composed of multi-layer perceptron (MLP) with 

one hidden layer. After applying the shared network to 

each descriptor, the output feature vectors are merged 

using element-wise summation followed by a sigmoid 

activation function. The channel attention can be formal-

ized as  

c ( ) (MLP(AvgPool( )) MLP(MaxPool( )))=M F F F�� �

         c c

1 0 maxavg 1 0( )) ( ( ))),( (W W F W W F� �        (1) 

where σ, AvgPool, MaxPool, F denote the sigmoid func-

tion, average-pooling operation, max-pooling operation, 

and input feature map, respectively. W0 and W1 are the 

weights of MLP. 

 

 

Fig.1 The overall framework of the DAMC_Net 

 

The spatial attention map is generated by utilizing the 

inter-spatial relationship of features. Unlike the channel 

attention, the spatial attention focuses on ‘where’ is an 

informative part, which is complementary to the channel 

attention. As shown in Fig.2(b), max-pooling and aver-

age-pooling are employed to aggregate information of 

feature map, generating two 2D maps: s

avgF and s

maxF . 

The two 2D maps denote the average-pooled features 

and max-pooled features across the channel, respectively. 

Subsequently, these feature maps are concatenated and 

convolved using a standard convolution layer, yielding 

the spatial attention map. The spatial attention can be 

formalized as  

7 7

s ( ) ( ([AvgPool( );  MaxPool ( )]))=M F f F F� ��  

       7 7 s s

avg max;( (  ])[ ),f F F� �                (2) 

where f 7×7 represents a convolution operation with the 

filter size of 7×7. 

 

 

Fig.2 Diagram of the double-attention mechanism 

The structure of the improved feature extraction net-

work is complex. To reduce the number of model 
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parameters and the calculation time, a depth separable 

convolution method[23] is introduced in the backbone 

network of DenseNet. As shown in Fig.1, we replaced 

3×3 convolution in DenseLayer with a depthwise sepa-

rable convolution module. This module divides a tradi-

tional convolution into two operations: a depthwise con-

volution and a pointwise convolution. First, the depth-

wise convolution performs a separate convolution opera-

tion on each channel of the input feature map, and then 

the resulting convolution output is concatenated to cap-

ture comprehensive information. Then, the pointwise 

convolution is employed to weight and combine the fea-

ture maps obtained from the previous step using a 1×1 

convolution operation. By leveraging feature information 

from different channels at the same spatial position, the 

pointwise convolution facilitates effective feature fusion 

and representation learning. The use of depthwise sepa-

rable convolution significantly reduces the number of 

model parameters and improves the computational effi-

ciency by reducing the cross-channel interactions and 

parameter sharing across different spatial locations. Also, 

this design maintains model accuracy by preserving im-

portant spatial and channel-wise information. 

As shown in Tab.1, the ZEHWZ dataset is an imbal-

anced dataset. Although, the number of normal samples 

and MVICC is equivalent, the number of MSVICCs is 

lower compared to normal and MVICCs samples. This 

imbalanced dataset can easily cause higher false-negative 

rates of classifiers. To effectively address this imbal-

anced dataset problem, the cost-sensitive approach
[24] is 

adopted to adjust the weights of different classes in the 

loss function. Specifically, we discriminatively determine 

the cost of misclassification of different classes and as-

sign a larger weight to the MSVICC class. During each 

iterative training stage, n samples are selected at random 

to form a training dataset {[x (1), y (1)], [x (2), y (2)], …, [x (n), 
y (n)]}, where x (i) �R l and y (i) �{1,…,k}. Here, x (i) de-

notes the features of the ith sample and y (i) represents the 

category label. The cost-sensitive loss function is com-

puted according to  

� � � �( ) ( )

1 1

1
( ) *  MSVICC *

m k
i i

i j
F I y j CS y

m
�

� �

	
� 
 � ��

�
  

      
( )

( )

2

1 1

1

e
log ,

2
e

T i
j

T i
S

x k n

ijk
x i j

s

�

�

�
�

� �

�

�
�
� �
�
��




            (3) 

where n, m, k, and θ denote the number of training sam-

ples, the number of input neurons, the number of classes, 

and trainable parameters, respectively. I{y(i)=j} repre-

sents the indicator function (I{y(i) is equal to j}=1 and I 
{y(i) is not equal to j}=0) while CS{y(i)=MSVICC} is 

the cost-sensitive weight function (CS{y(i) is the 

MSVICC class lable}=C and CS{y(i) is not the MSVICC 

class lable}=1). Using a grid-search procedure, we de-

termined that the effective cost-sensitive weight parame-

ter C falls within the interval [2—4]. 2

1 12

k n
iji j

�
�

� �   is 

a weight decay term applied to penalize larger trainable 

weights. To obtain the optimal trainable weights θ* (as 

shown in Eq.(4)), we aim to minimize the objective 

function F(θ) using mini-batch gradient descent 

(Mini-batch-GD) shown as 
* arg min ( ),F�� ��                         (4) 
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 � �� (5)   

In the grading of visual impairment in cataract pa-

tients, the normal samples exhibit better separability. 

However, for patients with MVICC and MSVICC, the 

inter-class variance between these two visual impairment 

grades is small, resulting in high image similarity and 

posing challenges for accurate grading. To address this 

issue, a multi-level classifier is proposed to achieve a 

fine-grained assessment of cataract visual impairment by 

introducing a multi-task learning approach. Specifically, 

the extracted fundus features are fed into a two-level 

classifier. The first level is dedicated to the screening of 

cataracts, distinguishing between normal and cataract 

cases. The second level focuses on the fine-grained as-

sessment of cataract visual impairment grade, further 

categorizing them as normal, MVICC and MSVICC. In 

our study, two-level loss functions for the two-level clas-

sifier are constructed during the training process, which 

can be expressed mathematically as  

1loss 2loss* (1 )* .Loss level level� �� � 
            (6) 

By adjusting the weight coefficient α, we can dynami-

cally manage the correlation between the two-level of 

loss functions. One loss function is utilized for the 

screening task, which calculates the loss value for the 

screening of normal and cataract visual impairment. An-

other loss function is employed for grading the severity 

of cataract visual impairment. These two loss functions 

are combined to train the model parameters. As a result, 

the trained model can simultaneously perform both 

screening and grading tasks in parallel. In addition, to 

address the problem of sample imbalance between 

MVICC and MSVICCs cases, we have introduced a cost 

sensitive algorithm into the second-level loss function. 

This algorithm assigns a greater weight factor to 

MSVICCs, thereby improving the recognition rate of the 

minority class of severe patients in the grading task. 

In this study, the training procedure of DAMC_Net 

methods was conducted in parallel using four NVIDIA 

TITAN RTX graphics processing unit (GPU). The im-

plementation was based on the Pytorch deep learning 

framework running on Ubuntu 18.04 LTS. The initial 

learning rate was set at 10
-4 and progressively decreased 

by one tenth of the original value every 20 epochs. The 

total number of epochs was set to 80. A batch size of 64 

was utilized on each GPU. During the training process, 
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the performance of the model was evaluated using the 

validation set, and the model with the highest accuracy 

on the validation set was saved as the optimal model. 

To evaluate the superiority of the DAMC_Net method 

compared to conventional methods, we calculated the 

confusion matrix and several evaluation indicators, in-

cluding accuracy (Acc), sensitivity (Sen), and specificity 

(Spe), as described below  

,
TP TNAcc

TP FP FN TN
�

�
� � �

                  (7) 

,
TPSen

TP FN
�

�
                           (8)    

  ,
TNSpe

TN FP
�

�
                          (9) 

where true positives (TP) represents the number of sam-

ples correctly predicted to be of a specific grade, false 

positives (FP) represents the number of samples incor-

rectly predicted to be of a specific grade when they actu-

ally belong to other grades, true negative (TN) represents 

the number of samples correctly predicted to be of other 

grades when they indeed belong to other grades, and 

false negative (FN) represents the number of samples 

incorrectly predicted to be of other grades when they 

should be classified as the specific grade. Accuracy, sen-

sitivity, and specificity are the most commonly used 

evaluation metrics. Additionally, two important objective 

measures, the receiver operating characteristic (ROC)  

curve and the area under the ROC curve (AUC) were 

used for comparison and analysis. 

To further assess the performance of DAMC_Net in 

fine-grained grading of visual impairment in cataract 

patients, two conventional convolutional neural networks 

(CNNs) were selected for comparison experiments in this 

study, including dense convolutional network 121 

(DenseNet121) and ResNet50. The performance on the 

internal test dataset is shown in Fig.3, illustrating that the 

performance of DAMC_Net was superior to those of 

other classical CNNs. Tab.2 provides detailed informa-

tion on the accuracies, sensitivities, and specificities of 

these three methods. The DAMC_Net method exhibited 

remarkable performance in distinguishing normal images 

from abnormal images (including MVICC and MSVICC 

images), with an AUC of 0.996 (95% confidence interval 

(CI), 0.991—0.999), a sensitivity of 98.7% (95% CI, 
97.7—99.7), and a specificity of 98.7% (95% CI, 
97.9—9.5). The DAMC_Net discriminated MVICC im-

ages from normal images and MSVICC images with an 

AUC of 0.971 (95% CI, 0.960—0.980), a sensitivity of 

94.0% (95% CI, 91.7—96.3), and a specificity of 92.7% 

(95% CI, 90.9—94.6). Also, our method discriminated 

MSVICC images from normal images and MVICC im-

ages with an AUC of 0.980 (95% CI, 0.972—0.986), a 

sensitivity of 82.5% (95% CI, 78.0—87.0), and a speci-

ficity of 98.2% (95% CI, 97.3—99.1).  

Fig.3 (a) Confusion matrices and (b) ROC curves of DAMC_Net and conventional CNNs in the internal test dataset 
for discriminating Normal, MVICC, and MSVICC 

To validate the generalization ability of the 

DAMC_Net, we conducted further evaluations using two 

external test datasets. The performance on these external 

test datasets is presented in Fig.4, further confirming its 

superiority over other conventional CNNs. In the NEH 

external test dataset, the DAMC_Net achieved AUCs of 

0.990 (95% CI, 0.972—1.000), 0.969 (95% CI, 
0.946—0.988), and 0.986 (95% CI, 0.971—0.988) for 

distinguishing normal, MVICC, and MSVICC, respec-

tively. Similarly, in the ZEHHZ dataset, the DAMC_Net  

demonstrated excellent performance with AUCs of 0.998 

(95% CI, 0.995—0.999), 0.943 (95% CI, 0.928—0.957), 
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and 0.934 (95% CI, 0.915—0.950) for distinguishing 

normal, MVICC, and MSVICC, respectively. Tab.2 pre-

sented the detailed performance of the DAMC_Net and 

other conventional CNNs on the external datasets. In the 

NEH external test dataset, the sensitivities of the 

DAMC_Net for distinguishing normal, MVICC, and 

MSVICC were 94.4% (95% CI, 90.0—98.8), 93.2% 

(95% CI, 88.3—98.1), and 91.2% (95% CI, 85.4—97.0), 

respectively. In the ZEHHZ external test dataset, the sen-

sitivities of the DAMC_Net for distinguishing normal, 

MVICC, and MSVICC were 95.8% (95% CI, 
93.8—97.8), 85.0% (95% CI, 82.0—88.0), and 72.7% 

(95% CI, 65.1—80.3), respectively. These results further 

validated the robustness and generalization ability of the 

DAMC_Net method across different external test data-

sets. 

Tab.2 Performance comparison of DAMC_Net and conventional CNNs in the internal and external test datasets  

ZEHWZ internal test dataset NEH external test dataset ZEHHZ external test dataset 
One vs. rest 

classification 
Acc (%) 

(95% CI) 
Sen (%) 

(95% CI) 
Spe (%) 

(95% CI) 
Acc (%) 

(95% CI) 
Sen (%) 

(95% CI) 
Spe (%) 

(95% CI) 
Acc (%) 

(95% CI) 
Sen (%) 

(95% CI) 
Spe (%) 

(95% CI) 

Normal vs. MVICC + MSVICC     

DenseNet121 
98.0 

(97.1-98.8) 

98.7 

(97.7-99.7) 

97.4 

(96.2-98.6) 

96.7 

(94.7-98.7) 

91.6 

(86.3-96.8) 

99.5 

(98.5-100) 

92.6 

(91.1-94.2) 

89.1 

(86.1-92.2) 

94.7 

(93.0-96.3) 

ResNet50 
97.5 

(96.6-98.4) 

98.3 

(97.2-99.5) 

97.0 

(95.7-98.3) 

95.0 

(92.6-97.5) 

86.9 

(80.5-93.3) 

99.5 

(98.5-100) 

93.1 

(91.6-94.6) 

82.7 

(79.0-86.4) 

99.1 

(98.4-99.8) 

DAMC_Net 
98.7 

(98.1-99.4) 

98.7 

(97.7-99.7) 

98.7 

(97.9-99.5) 

97.7 

(96.0-99.4) 

94.4 

(90.0-98.8) 

99.5 

(98.5-100) 

98.0 

(97.2-98.8) 

95.8 

(93.8-97.8) 

99.3 

(98.6-99.9) 

MVICC vs. Normal + MSVICC     

DenseNet121 
91.0 

(89.3-92.6) 

90.6 

(87.9-93.4) 

91.1 

(89.1-93.2) 

86.7 

(82.9-90.5) 

92.2 

(87.1-97.4) 

83.8 

(78.7-89.0) 

78.7 

(76.2-81.1) 

73.2 

(69.5-76.9) 

84.4 

(81.3-87.4) 

ResNet50 
90.4 

(88.7-92.1) 

88.0 

(84.9-91.1) 

91.7 

(89.7-93.6) 

88.0 

(84.4-91.7) 

93.2 

(88.3-98.1) 

85.4 

(80.4-90.3) 

82.1 

(79.9-84.4) 

83.9 

(80.9-87.0) 

80.3 

(76.9-83.6) 

DAMC_Net 
93.2 

(91.7-94.6) 

94.0 

(91.7-96.3) 

92.7 

(90.9-94.6) 

93.0 

(90.1-95.9) 

93.2 

(88.3-98.1) 

92.9 

(89.4-96.5) 

87.5 

(85.6-89.5) 

85.0 

(82.0-88.0) 

90.1 

(87.6-92.7) 

MSVICC vs. Normal + MVICC  

DenseNet121 
93.0 

(91.6-94.5) 

78.2 

(73.4-83.0) 

97.7 

(96.7-98.6) 

90.0 

(86.6-93.4) 

74.7 

(65.8-83.7) 

96.7 

(94.2-99.1) 

85.9 

(83.8-87.9) 

68.9 

(61.0-76.8) 

88.2 

(86.2-90.2) 

ResNet50 
92.8 

(91.4-94.3) 

80.4 

(75.7-85.0) 

96.8 

(95.6-97.9) 

93.0 

(90.1-95.9) 

83.5 

(75.9-91.1) 

97.1 

(94.9-99.4) 

88.7 

(86.8-90.6) 

71.2 

(63.5-78.9) 

91.1 

(89.3-92.9) 

DAMC_Net 
94.5 

(93.2-95.8) 

82.5 

(78.0-87.0) 

98.2 

(97.3-99.1) 

95.3 

(93.0-97.7) 

91.2 

(85.4-97.0) 

97.1 

(94.9-99.4) 

89.5 

(87.7-91.3) 

72.7 

(65.1-80.3) 

91.8 

(90.1-93.5) 
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Fig.4 Confusion matrices and ROC curves of DAMC_Net and conventional CNNs in two external test datasets: (a, 
c) Confusion matrices in NEH and ZEHHZ external test datasets; (b, d) ROC curves for discriminating Normal, 
MVICC, and MSVICC in NEH and ZEHHZ external test datasets 

To determine the high efficiency of the proposed 

method, we conducted a comparison of the efficiency 

and resource utilization of the DAMC_Net and conven-

tional CNNs, including the model size, number of train-

able parameters, and running time of training and testing. 
As shown in Tab.3, the model size of the DAMC_Net 

was only 70.04 MB, which was substantially smaller 

than DenseNet121 by 10.37 MB and ResNet50 by 

199.41 MB. Also, the number of trainable parameters of 

the DAMC_Net was lower than the other models. 

Moreover, the training time required for the DAMC_Net 

was a mere 1.47 h, resulting in significant time savings 

when training on a local server. This experimental find-

ing demonstrated that the proposed method outperformed 

other conventional CNNs in terms of efficiency and re-

source utilization. 

Tab.3 Efficiency comparison of different classification 
methods 

Model Size Parameters 
Training 

time 

Testing 

time 

DenseNet121 80.41 MB 8.0×106 1.56 h 0.195 s 

ResNet50 269.46 MB 2.6×107 1.62 h 0.204 s 

DAMC_Net 70.04 MB 7.2×106 1.47 h 0.187 s 

 

The t-distributed stochastic neighbor embedding 

(t-SNE) was employed to intuitively analyze whether the 

characteristics of each category learned by the deep learn-

ing model were discriminative in a two-dimensional 

space. Specifically, we removed the classification layer  

from the network and utilized the output of the previous 

layer, just before the classification layer, as the final ex-

tracted feature. Subsequently, the t-SNE technology was 

applied to visualize the extracted features and assess their 

separability. Visualized maps of the high-level features 

extracted from DAMC_Net and other conventional CNNs 

were displayed in Fig.5. The red points represent normal 

samples, the blue points represent MVICC samples, and 

the green points represent MSVICC samples. Compared 

with DenseNet121 and ResNet50, the separability of the 

DAMC_Net features was improved markedly. Notably, 

the proportion of easily misdiagnosed samples (dotted 

square in Fig.5) is significantly reduced in the DAMC_Net 

model. This analysis showed that the DAMC_Net exhib-

ited a superior capability in separating high-level features 

for fine-grained assessment of visual impairment grading 

in cataract. 

To visualize the fundus regions contributing most to 

the DAMC_Net, we generated heatmaps using the gra-

dient-weighted class activation mapping (Grad-CAM) 

method. For abnormal fundus images (including MVICC 

and MSVICC), heatmaps effectively highlighted the cap-

illary area around the optic disc. Compared to the 

MVICC, the heatmaps of the MSVICC exhibited fewer 

highlighted areas, which can be attributed to the in-

creased turbidity of the vessels around the optic disc as 

the severity of visual impairment deepens. On the other 

hand, for normal images, heatmaps display highlighted 

visualization on the clear retinal vessels. Typical exam-

ples of the heatmaps for MVICC, MSVICC, and normal 

images were presented in Fig.6. 
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Fig.5 Visualization by t-SNE of the separability for the features learned by DAMC_Net and conventional CNNs: (a) 
DenseNet121; (b) ResNet50; (c) DAMC_Net  

Since the proposed multi-level classifier of 

DAMC_Net contains two levels of classification tasks, 
the performance of the model can be influenced by dif-

ferent combinations of loss functions for these two lev-

els. Therefore, we assigned weight coefficients to the 

loss functions of these two levels, and their weighted 

sum is equal to 1. In total, five different combinations 

were tested and compared in detail (Fig.7). From the 

comparative experiments, it was observed that the 

DAMC_Net achieved the best performance when the 

weight coefficients for the two levels were set to 0.2 and 

0.8, respectively. 
 

Fig.6 Typical examples of the heatmaps for three grades of visual impairment: (a) Normal; (b) MVICC; (C) MSVICC 

 

Fig.7 Performance comparison of different weight coefficients combinations in the multi-level classifier 

The outstanding performance of DAMC_Net for vis-

ual impairment grading in cataract patients can be attrib-

uted to three key reasons. First, the double-attention 

mechanism was performed to enable the DAMC_Net to 

integrate fundus features from two dimensions of spatial 

attention and channel attention. Second, a multi-level 

classifier was proposed to complete the fine-grained as-

sessment of visual impairment grading in cataract, which 

is beneficial to improve the recognition rate of the 

MVICC from MSVICC. Third, the cost-sensitive was 

adopted to facilitate the DAMC_Net to focus more on 

the minority category of MSVICC. When compared to 

ResNet50 and DenseNet121, DAMC_Net demonstrated 

a higher sensitivity in distinguishing MVICC, with an
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increase of 6.0% and 3.4%, respectively. Similarly, in 

differentiating MSVICC, DAMC_Net achieved an in-

crease of 2.1% and 4.3% in sensitivity compared to 

ResNet50 and DenseNet121, respectively. This improved 

performance was also validated on two external datasets, 

indicating the superior generalization ability of the 

DAMC_Net model. Furthermore, the integration of 

depthwise separable convolution in DAMC_Net effec-

tively reduced the number of parameters, training time, 

and testing time, thus improving the efficiency and re-

source utilization of the model. 

Several limitations exist in this study. First, although 

the DAMC_Net provided a feasible method for 

fine-grained assessment for visual impairment grading, it 

currently focused on two levels of severity. This may not 

be sufficient for clinical applications that require more 

precise grading. Future research will explore the devel-

opment of a more fine-grained grading system with mul-

tiple levels. Second, the training of our deep learning 

model heavily relied on high-quality dataset, which was 

often challenging to obtain in the real-world clinical set-

tings. Meta-learning techniques may be advantageous in 

transferring knowledge from large-scale natural image 

datasets to the medical domain with limited data avail-

ability. Third, relying solely on fundus images as input 

data for our model may not fully capture the complexity 

and heterogeneity of visual impairment caused by cata-

racts. Visual impairment is a multifaceted condition in-

fluenced by various factors, including age, medical his-

tory, and underlying diseases, in addition to fundus im-

ages. With the accumulation of more data, the applica-

tion of multimodal in the assessment of visual impair-

ment will be investigated to provide more accurate and 

comprehensive diagnoses in clinic. 

This study presented a feasible fine-grained classifica-

tion algorithm DAMC_Net for assessing visual impair-

ment in cataract patients. The algorithm combined dense 

convolution network, double-attention mechanism, 

depthwise separable convolution, cost-sensitive learning, 

and multiple levels classifiers to accurately grade the 

severities of visual impairment. Experimental results and 

comparison analyses verified that the proposed method 

outperformed other conventional CNNs. The robustness 

and generalizability of DAMC_Net were validated by its 

excellent performance on two external test datasets. This 

research could provide a valuable reference for the 

analysis of other fine-grained assessment of medical im-

ages and promote the application of artificial intelligence 

techniques in clinical settings. 
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