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A large mode area multi-core orbital angular momentum (OAM) transmission fiber is designed and optimized by neu-

ral network and optimization algorithms. The neural network model has been established first to predict the optical 

properties of multi-core OAM transmission fibers with high accuracy and speed, including mode area, nonlinear coef-

ficient, purity, dispersion, and effective index difference. Then the trained neural network model is combined with dif-

ferent particle swarm optimization (PSO) algorithms for automatic iterative optimization of multi-core structures re-

spectively. Due to the structural advantages of multi-core fiber and the automatic optimization process, we designed a 

number of multi-core structures with high OAM mode purity (>95%) and ultra-large mode area (>3 000 μm2), which 

is larger by more than an order of magnitude compared to the conventional ring-core OAM transmission fibers. 
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Orbital angular momentum (OAM) modes, which are 
promising to improve the capacity of fiber communica-
tion systems, have attracted extensive research interests 
in recent years[1-3]. Due to the unique optical properties 
of OAM modes, conventional fibers cannot support sta-
ble transmission of OAM states and the near degeneracy 
of vector eigenmodes is easy to occur. Accordingly, var-
ious kinds of OAM transmission fibers with high con-
trast-index ring-core structures are emerging in an end-
less stream[4-7]. The high contrast and thin index rings 
provide adequate effective index separation (>1.0×10-4) 
between near eigenmodes and reduce the inter-mode 
crosstalk, which ensure the stable transmission of OAM 
modes. However, in turn, the mode effective area is re-
duced due to the high contrast and thin rings, resulting in 
unexpected high nonlinearity. Similar to conventional 
fiber communication systems, OAM transmission fibers 
are also susceptible to nonlinear effects, which will affect 
the fiber transmission capacity and lead to performance 
deterioration[8,9]. For OAM transmission, nonlinear ef-
fects can also cause nonlinearity-induced power loss and 
reduce the purity of OAM spectrum. Increasing the mode 
field area can effectively reduce the optical power den-
sity and the adverse effects caused by nonlinearity[10,11]. 

But on the other hand, the purity of OAM mode and the 
effective index separation between near eigenmodes will 
also be affected by the structural adjustment. Therefore, 
OAM transmission fibers with large mode area should be 
specially designed to take into account all these optical 
issues. 

Multi-core supermode fibers[12-14], whose transmitted 
mode field energy is distributed in multiple cores, are 
easy to achieve large mode area, and have been used for 
high-power fiber transmission, high-power laser and 
space division multiplexing systems. The design and 
optimization of multi-core large mode area OAM trans-
mission fibers need to adjust several interdependent and 
even contradictory optical properties at the same time, 
including mode area, nonlinear coefficient, effective in-
dex difference (Δneff), OAM purity, etc. Generally, the 
design and optimization of fiber structures mainly de-
pend on various numerical simulation methods and 
manual trial-and-error framework. The traditional nu-
merical simulation methods[15-17], such as plane wave 
expansion and finite element method, require a lot of 
computing resources, and the calculation and conver-
gence process is very slow. The manual trial-and-error 
process depends heavily on the physical intuition and 
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design experience of researchers, which makes the opti-
mization process time-consuming and inefficient. The 
relationships and laws between the optical properties of 
OAM transmission fibers are complex and obscure, 
which makes it difficult to obtain appropriate and desired 
structures only by intuitive experience and structural 
fine-tuning. 

In recent years, neural networks have been proved to 
have excellent performance in the prediction of optical 
properties for complex optical structures[18-20]. The ex-
tremely fast computation speed of neural networks can 
be fully utilized and combined with various efficient 
optimization algorithms[21-23], providing a new approach 
for automatic optimization and reverse design. In this 
paper, neural network and different particle swarm opti-
mization (PSO) algorithms are applied to realize the au-
tomatic optimization and design of large mode area mul-
ti-core OAM transmission fibers. The neural network has 
been established to achieve efficient and accurate predic-
tions of multiple optical properties for different mul-
ti-core fibers, including mode area, nonlinear coefficient, 
purity, dispersion, and effective index difference. Then 
the trained neural network is combined with PSO and 
multi-objective particle swarm optimization (MOPSO) 
algorithms respectively to search for the desired fiber 
structures automatically. Due to the structural advantages 
of multi-core fiber and the automatic optimization proc-
ess, we designed a number of multi-core structures with 
high OAM mode purity (>95%) and ultra-large mode 
area (>3 000 μm2), which is larger by more than an order 
of magnitude compared to the conventional ring-core 
OAM transmission fibers. 

In this section, multi-core fiber structure is applied to 
construct the structural framework of large mode area 
OAM transmission fibers, and the prediction neural net-
work has been established to realize the fast and accurate 
prediction of the corresponding optical properties, in-
cluding mode area, nonlinear coefficient, purity, disper-
sion, and effective index difference. 

The prediction performance of neural network model 
depends on appropriate data sets and reliable training 
process. Before training the neural network, we took 
multi-core fiber structure as the design and optimization 
framework and established the data sets. The mode field 
energy in the multi-core fiber is distributed in all core 
channels, providing excellent condition for the design 
and optimization of large mode area OAM transmission 
fiber. As shown in Fig.1, the physical parameters of mul-
ti-core structure include the number of cores k, the core 
radius r, the distance L from each core to the fiber center, 
and the material refractive indices of each core and clad-
ding n1, n2. These physical parameters are adjusted, and 
the corresponding optical properties are calculated and 
collected by COMSOL Multiphysics (commercial finite 
element code) to establish the data sets. 

The adjustment range of each physical parameter in 
the data sets is set to 8≤k≤10, 0.02≤(n1−n2)/n2≤0.05,  

 

Fig.1 Cross section of the multi-core fiber structure 
 

28 μm≤L≤30 μm, 15 μm≤r≤18 μm. As the OAM modes 
are formed by the linear combinations of conventional 
vector eigenmodes 
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where l represents the topological charge number, the 
sign in superscript ± denotes the right or left circular 
polarization, and the sign of ±l denotes the right or left 
wave front rotation direction. Therefore, in this paper, 7 
eigenmodes are selected to evaluate the optical perform-
ance of large mode area multi-core OAM fiber, including 
HE21, TE01, TM01, EH11, HE31, EH21 and HE41 modes. 
The corresponding optical properties of the 7 eigen-
modes calculated and collected in the data sets contain 
the mode field area (Aeff), nonlinear coefficient (γ), dis-
persion (D), effective index difference (Δneff) between 
adjacent higher order modes, and the purity (P) of the 
corresponding OAM modes. All the optical properties 
are calculated in the wavelength range of 
1 500—1 600 nm with an interval of 3 nm. In total, 150 
different structures are calculated and the optical proper-
ties of 7 eigenmodes at 34 wavelengths are collected to 
establish the data sets. 

Before training the neural network model, 70% train-
ing samples are randomly selected from the 150 struc-
tures, 20% validation samples are randomly selected to 
provide an unbiased assessment while adjusting the pa-
rameters of the neural network, and the remaining 10% 
data samples are marked as test data set. After testing 
different parameters, the prediction neural network mod-
el is constructed with only one hidden layer. As shown in 
Fig.2, the calculated mean square error (MSE) values 
under different epochs for one-hidden-layer network are 
shown in Fig.2(a), and the MSE values for a 
two-hidden-layer network are shown in Fig.2(b). There is 
obvious over-fitting phenomenon in the figure, and the 
more hidden layers of the neural network, the earlier the 
over-fitting occurs in training process. 

To address the overfitting issue, the neural network is 
constructed with only one hidden layer, and a dropout 
layer is added to the original one-hidden-layer neural 
network and the corresponding parameter is set to 0.1, 
i.e., each neuron has a 10% probability of being dropped. 
This will increase the sparsity of the neural network, 
making it easier to select features and prevent overfitting. 
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Due to the dropout operation, two neurons do not always 
appear in a dropout network, so that the update of weight 
values no longer depend on the joint action of hidden 
nodes with fixed relationship and the network can learn 
more robust features. In addition, L2 regularization 
methods are also added in the network, which will en-
force certain constraints on the loss function during 
training process, so that the absolute value of the weight 
parameters will decrease with the update. As shown in 
Fig.3(a), the training loss and verification loss can con-
verge to comparable values after the addition of the 
dropout layer and L2 regularization. We further in-
creased the number of epochs to 3 100 and added the 
dynamic learning rate adjustment (the learning rate will 
be reduced to 10% of the original rate after every 1 000 
epochs). The network can converge normally, and the 
oscillation amplitude decreases steadily after increasing 
the number of epochs, as shown in Fig.3(b). 
 

 
 

 
Fig.2 MSE values of the two networks under different 
epochs, each hidden layer of the two networks with 
128 nodes: (a) Overfitting arises after about 25 itera-
tions for one-layer network; (b) Overfitting arises after 
about 10 iterations for two-layer network 
 

Next, we tested the performances of the prediction 
neural network models under different hidden layer 
nodes (32, 64 and 128 nodes). The number of hidden 
layer nodes has little effect on the final MSE conver-
gence value. The network with 128 hidden layer nodes 
converges faster, so the number of hidden layer nodes of 

the prediction network is set to 128 finally. Additionally, 
similar to the number of hidden layer nodes, the 
batch-size affects the network convergence speed, and 
has little impact on the final MSE value. The batch-size 
is finally set to 32 for faster convergence. Adam opti-
mizer is used to optimize the weight value during the 
training process.  

 

 

Fig.3 (a) The network can converge normally when the 
dropout layer and L2 regularization are added; (b) The 
network can converge normally, and the oscillation 
amplitude decreases steadily after increasing the 
number of epochs and changing the dynamic learning 
rate 

Fig.4 shows the topology of the prediction neural 
network model, including an input layer, hidden layer, 
and output layer. The input layer has 5 nodes corre-
sponding to the 4 structural parameters and wavelength 
λ. Here the parameter n is represented as n=(n1−n2)/n2. 
The output layer is set as 54 nodes to represent the dif-
ferent optical properties of the selected vector modes: the 
mode field area (Aeff), nonlinear coefficient (γ), disper-
sion (D), and the purity (P) of the 12 even and odd vector 
modes (HE21A, HE21B, TE01, TM01, EH11A, EH11B, HE31A, 
HE31B, EH21A, EH21B, HE41A and HE41B), and the effec-
tive index difference (Δneff) between adjacent higher 
order modes (TE01−HE11, TM01−HE11, HE21−HE11, 
HE31−HE21, EH21−EH11 and HE41−HE31). 

Fig.5 shows the prediction error of each optical property, 
and the prediction error is defined as Error = (predicted 
value − true value)/true value×100%. The prediction errors 
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of different vector modes belonging to the same LP 
mode are similar, so in order to show the prediction re-
sults more clearly, we take HE21, HE31 and HE41 modes 
to represent the OAM11, OAM21 and OAM31 modes, re-
spectively. All prediction errors are less than 5%. The 
prediction errors of mode purity, mode field area and 
dispersion are less than 3.5%, and 90% of the nonlinear 
prediction error data is less than 3.5%. The prediction 
results indicate that the neural network model can realize 
the fast and accurate prediction of optical properties for 
multi-core fiber structures. 

After training and testing, the neural network model 
parameters are saved. To realize the optimization and 
reverse design of large mode area OAM transmission 
fiber, PSO and MOPSO algorithms have been applied 
and combined with the trained neural network respec-
tively to search for the desired multi-core structures. 

 

Fig.4 Topology of the prediction neural network model 
with 1 input layer (5 input nodes), 1 hidden layer, and 
1 output layer (54 output nodes) 

 

 

Fig.5 Prediction errors of (a) OAM purity, (b) mode 
field area, (c) dispersion and (d) nonlinear coefficient 
of OAM11 (represented by HE21), OAM21 (represented 
by HE31) and OAM31 (represented by HE41) modes; (e) 
Prediction error of the effective index difference (Δneff) 
between adjacent higher order OAM modes (rep-
resented by HE21-HE11, HE31-HE21, and HE41-HE31,  
respectively) 

The flow chart of PSO algorithm is shown in Fig.6. 
The particle swarm is initialized first and the parameters 
of particles are generated randomly within the specified 
range  of  8≤k≤10,  0.01≤n≤0.05,  20 μm≤L≤30 μm, 
10 μm≤r≤20 μm, 1 500 nm≤λ≤1 600 nm. The particle 
will be re-initialized randomly if the moving particle 
exceeds the defined boundary. Then the algorithm will 
calculate the defined fitness function value for each par-
ticle and update the personal best position (pbest), global 
best position (gbest) and moving velocity in every itera-
tion. The calculation loop is executed until the maximum 
number of iterations is reached, and the algorithm will 
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output the optimal particle position and the optimal fit-
ness function value.  

The fitness function is defined according to different 
design requirements. For OAM transmission fibers, 
OAM purity is a very important optical property. In or-
der to ensure the stability of OAM mode, we set the pu-
rity threshold to be greater than 95%. Fig.7 shows the 
calculation process based on neural network and PSO 
algorithm. Here, we only search for the multi-core struc-
ture with the largest mode field area (Aeff) in the PSO 
algorithm and the fitness function is defined as the sum 
of the mode field areas of the transmission modes: 

eff .fitness A� �                            (2) 

In the optimization process, the number of particles is 
set to 50, and the maximum iteration is set to 50 times. 
After 50 iterations, the algorithm will output a group of 
multi-core fiber structural parameters. 

We have executed the PSO algorithm five times, and 
the corresponding five groups of output structures are 
shown in Tab.1. The fitness function values of the five 
structures are arranged in descending order. 

 

Fig.6 Flow chart of PSO algorithm 

To verify the accuracy of the output structures by PSO 
algorithm, we select the first three groups of parameters 
in Tab.1 and calculated the corresponding optical proper-
ties by COMSOL Multiphysics. The corresponding 
transmission OAM purity of all the three groups of re-
sults exceeds 95%. The simulation results of mode areas 
are shown in Fig.8. The mode areas of all the selected 8 
eigenmodes (including HE11 mode) exceed 4 000 μm2, 

 

Fig.7 Calculation process based on neural network 
and the PSO algorithm 

Tab.1 Five output results of the PSO algorithm 

k n×103 L (μm) r (μm) λ (μm) Fitness 
10 18.37 29.905 4 19.755 1 1.548 57 50 470.8 

10 14.21 29.816 1 18.108 5 1.534 79 50 401.7 

10 11.25 29.796 3 17.999 8 1.553 44 50 393.8 

10 15.18 29.727 3 18.197 8 1.548 18 50 337.9 

10 26.60 29.856 9 17.025 6 1.569 37 49 334.3 

 

and the largest mode field area exceeds about 4 800 μm2, 
which is larger by more than an order of magnitude 
compared to the conventional ring-core OAM transmis-
sion fibers[4-7]. 

The PSO algorithm with only one fitness function 
provides a simple and direct approach to optimize and 
design multi-core fiber structures. But sometimes multi-
ple optical properties need to be considered and opti-
mized. For OAM transmission fibers, the effective index 
difference (Δneff) between adjacent higher order modes is 
also very important, and large Δneff can prevent mode 
coupling and reduce the crosstalk. Therefore, considering 
the effective index difference Δneff, MOPSO algorithm 
has been applied to optimize both mode area Aeff and 
Δneff for multi-core fibers. The calculation flow chart of 
MOPSO algorithm is shown in Fig.9. Two fitness func-
tions are defined, and the sum of Δneff between four 
groups of adjacent higher order modes (HE21−HE11, 
HE31−HE21, EH21−HE31 and HE41−HE31) is considered 
and defined as the second function. 

1 eff ,fitness A� �                           (3) 
10

2 eff 10 .fitness n� � ��                     (4) 
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Similarly, the number of particles in the MOPSO algo-
rithm is set to 50, and the number of iterations is also set 
to 50. We have executed the MOPSO algorithm five 
times, and the corresponding five groups of output struc-
tures are shown in Tab.2. The corresponding transmission 
OAM purity of all the five groups of results exceeds 
95%. The fitness function values of the five structures 
are arranged in descending order, and we also select the 
first three groups of parameters and calculated the corre-
sponding optical properties (Aeff, Δneff and purity) by 
COMSOL Multiphysics to verify the design and optimi-
zation accuracy.  

 

 
Fig.8 Mode field area of each vector mode of (a-c) the 
first three output structures in Tab.1 calculated by 
COMSOL Multiphysics 

Fig.10 shows the refractive index differences between 
adjacent higher order modes of the first three output 
structures, and all the values of Δneff exceed 10-4, which 

can prevent mode coupling and reduce the crosstalk in 
OAM transmission fibers. The mode areas of all the se-
lected 8 eigenmodes (including HE11 mode) exceed 
3 060 μm2, as shown in Fig.11, which is also larger by 
more than an order of magnitude compared to the con-
ventional ring-core OAM transmission fibers[4-7]. The 
corresponding OAM mode purity of the first three output 
structures is greater than 95%. The optimized output 
multi-core structures can support stable transmission of 
different OAM modes (OAM11, OAM21 and OAM31) and 
possesses ultra-large mode area, making it a good candi-
date for OAM communication system. 

 

Fig.9 Calculation process based on neural network 
and the MOPSO algorithm 

Tab.2 Five output results of the MOPSO algorithm 

k n×103 L (μm) r (μm) λ (μm) Fitness1 Fitness2 

9 21.14 22.720 6 18.874 1 1.598 27 47 875.6 970 292.6 

9 18.09 24.158 7 18.113 9 1.595 55 47 916.3 968 204.3 

10 24.30 22.732 8 17.240 7 1.599 04 47 673.1 967 724.6 

10 12.30 22.924 4 19.362 3 1.597 74 48 267.7 967 116.2 

9 18.95 20.119 6 18.957 9 1.595 12 48 212.3 965 266.5 
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Fig.10 Refractive index differences between adjacent 
higher order modes of (a)-(c) the first three output 
structures in Tab.2 calculated by COMSOL Mul-
tiphysics 

 
 

 

Fig.11 Mode field area of each vector mode of (a)-(c) 
the first three output structures in Tab.2 calculated by 
COMSOL Multiphysics 

Ultra-large mode area multi-core OAM transmission 
fibers are proposed and optimized automatically based on  
accurate prediction neural network model and different 
PSO algorithms. Due to the structural advantages of 
multi-core fiber and the automatic optimization process, 
different multi-core structures with high OAM mode 
purity (>95%) and ultra-large mode area (>3 000 μm2) 
have been proposed, which is larger by more than an 
order of magnitude compared to the conventional 
ring-core OAM transmission fibers. 
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