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Specular highlight usually causes serious information degradation, which leads to the failure of many computer vision 

algorithms. We have proposed a novel bifurcated convolution neural network to tackle the problem of high reflectivity 

image information degradation. A two-stage process is proposed for the extraction and elimination of the specular 

highlight features, with the procedure starting at a coarse level and progressing towards a finer level, to ensure the 

generated diffuse images are less affected by visual artifacts and information distortions. A bifurcated feature selection 

module is designed to remove the specular highlight features, thereby enhancing the detection capability of the net-

work. The experiments on two types of challenging datasets demonstrate that our method outperforms state-of-the-art 

approaches for specular highlight detection and removal. The effectiveness of the proposed bifurcated feature selection 

module and the overall network is also verified. 

Document code: A Article ID: 1673-1905(2023)12-0756-6 

DOI  https://doi.org/10.1007/s11801-023-3029-6 

                                                              
*   This work has been supported by the National Key R&D Program of China (No.2018YFB1305200). 

**  E-mail: edliu@zjut.edu.cn 

 

 

Specular highlight, as a common phenomenon in the 

digital images, often presents as bright spots on the sur-

face of high-reflective materials. Specular highlights 

usually conceal essential image features, such as colors, 

textures and structures. Due to the proximity of the cam-

era light source and object surfaces, digital images al-

ways suffer from strong specular highlights, which can 

both negatively affect the visual quality and extremely 

degrade the subsequent tasks of computer vision algo-

rithms, such as object detection and tracking, image 

segmentation and stereo reconstruction[1,2]. Therefore, 

specular highlight detection and removal technology 

plays an important role in the downstream tasks of digital 

image processing. It is further desirable to remove specu-

lar highlights while preserving the original color, struc-

ture and texture details of the objects for better perform.  

In recent years, numerous specular highlight removal 

methods have been proposed in the literatures. Early 

methods usually perform color or shape segmentation, 

but are not robust to complex backgrounds and illumina-

tion conditions[3,4]. Subsequently, several methods based 

on the dichromatic reflection model have been presented. 

They are convenient to implement, but do not have the 

ability to distinguish the specular highlight regions from 

the white objects in the theory of color homeostasis[1,5]. 

To cope with the issues, people leverage deep learning 

based approaches and construct large-scale real-world 

datasets. In 2021, WU et al[6] presented a novel genera-

tive adversarial network (GAN) for specular highlight 

removal in a single image. In 2022, WANG et al[7] pro-

posed a fully convolutional network for single image 

highlight removal with a real-world dataset. Compared 

with traditional approaches, deep learning based ap-

proaches perform better without the constraints of the 

traditional models. The state-of-the-art methods, such as 

WU et al[6], have made great progress but still have some 

shortcomings, as illustrated in Fig.1. The ability of 

specular highlight detection in the high-brightness and 

low-saturation regions is weak. Indicated in the first row 

of Fig.1, the specular highlights cannot be detected when 

there is a white background in the environment. The 

high-brightness and low-saturation areas in the image are 

mistakenly recognized as specular highlights generated 

by WU et al[6], resulting in the overall darkening of the 

image. However, our method can distinguish the low-

saturation and highlight areas. The removal of specular 

highlights is incomplete, as shown by the red box of the 

second row in Fig.1. The large specular highlight regions 

are not completely removed. The compensated areas in 

the generated diffuse images are damaged by visual arti-

facts and information distortion in color, structure, and 

texture. As shown in the red box of the third row in 

Fig.1, there are visual artifacts in the compensation area 

generated, but our results are much more realistic.  
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Fig.1 Visual comparison of specular highlight re-
moval on SHIQ dataset[8] 

 

We reported the preliminary research results as the oral 

presentation of the international conference on intelligent  

robotics and applications (ICIRA)[9]. Now in this paper, 

we have made some expansions and modifications. 

Our network is divided into two stages to remove 

specular highlights from coarse to fine. The proposed 

specular highlight reflection model is expressed as 

� � � � � �fine fine
I X D X S X� � �  

             � � � � � �� � � �coarse coarse fine fine
,D X S X S X S X�� ��  (1)       

where Dfine(X) and Sfine(X) denote the fine diffuse image 

and specular highlight feature mask image, Dcoarse(X) and 
Scoarse(X) denote the coarse diffuse image and specular 

highlight feature mask image, � , �  and α denote convo-

lution, concatenation and convolution operation, respec-

tively. The architecture of our network is illustrated in 

Fig.2. 

We take a real image r
 
as the input. In the first stage of 

the network, we propose a bifurcated feature selection 

module combining an attention mechanism of convolu-

tional block attention module (CBAM)[10], to generate  
Dcoarse(X) and Scoarse(X). The specular highlight feature 

extraction module (SFE) is denoted as 

� � � �� �diff spec
F F F r r� � �� � � � ,               (2) 

which subtracts highlight feature map Fspec from original 

feature map F to generate diffuse feature map Fdiff. ρ and 

γ
 
are the processes of image preprocessing and highlight 

features extraction, respectively.  

 

 

 
Fig.2 Architecture of the proposed network 

 
We extract adjacent pixels with large changes in pixel 

values as highlight features, and roughly remove them in 

the original features with explicitly leveraging subtrac-

tion operation. Based on the output of SFE, we use bifur-

cated feature selection module combined with CBAM to 

extract five levels of highlight features, expressed as
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where β
 
represents the convolution. Specular highlight 

feature 
spec

if is derived from the convolution operation of 

1

spec

if � . As shown in Fig.2, for example, we perform convo-

lution calculations on 1

spec
f to obtain 2

spec
f . And then the 

result of processing CBAM on 2

spec
f is subtracted from 

1

diff
f to get 2

diff
f . Like this, we filter out specular highlight 

features from original features layer by layer and finally 

obtain the coarse diffuse image 5

diff
f  and specular high-

light feature mask image 
spec
f . 

The detailed information in low-level features is es-

sential to generate fine diffuse images. In contrast, the 

global context information contained in high-level fea-

tures is conducive to locate specular highlights. Inspired 

by this, we use the details of low-level features to sup-

plement high-level features, to improve the effectiveness 

and robustness of specular highlights removal. 

In the second stage of the network, we make full use 

of the information acquisition capability of the fully con-

volutional neural network. We design the encoder and 

decoder structures to remove specular highlights in the 

coarse diffuse image fdiff and output the fine diffuse im-

age foutput. The core components of the encoder are the 

dilated convolution layers. The decoder is a combination 

of the up-sampling and convolutional layers. After ob-

taining the detailed highlight mask image, we assign 

different weights to different features, and retain useful 

features through gated convolution and residual calcula-

tion. The features of each layer are fused without infor-

mation pollution between highlight and diffuse regions.  

We exploit two prediction losses to calculate the total 

loss L of the training process, which is given by 

1 dete 2 remL L L� �� � ,   (4) 

where we empirically set 1=1.0�  and 2=0.5� . Ldete and 

Lrem denote the training loss of specular highlight detec-

tion and removal, which can be formulated as 

� � � �
� �

dete coarse detailed 0 1 focal coarse detailed

2 focal detailed 0

, , ,

, ,

L S S S w L S S

w L S S

� �
 

� � � �rem coarse detailed 0 1 pixel coarse detailed, , ,L D D D w L D D� �  
                                        � �2 pixel detailed 0, .w L D D             (5) 
We set w1=0.5, w2=1.0 according to existing stud-

ies[11,12]. Given the input image with ground-truth of 

specular highlight mask image S0 and diffuse image D0, 

the network outputs two specular highlight mask images 

Scoarse, Sdetailed and two diffuse images Dcoarse, Ddetailed. We 

use the focal loss[9] Lfocal to train the network to detect 

specular highlights, which maintains good performance 

even when processing high-brightness, low-saturation 

pixels. In order to minimize visual artifacts and informa-

tion distortion problems of the image caused by highlight 

removal, we also use a pixel loss[9] Lpixel. 

We train and test our network on two NVIDIA TITAN 

RTX graphics processing units (GPUs). To train our 

model, we randomly divide the dataset into two sets: 10k 

for training and 3k for testing. We resize the input im-

ages to 256 by 256 pixels. The initial learning rate is set 

to 10-4, and is multiplied by 0.2 after every 5 epochs in 

the first 10 epochs. With batch size of 4, the whole train-

ing process requires nearly 22 h. 

To validate the effectiveness of our algorithm, we 

conduct experiments on two datasets (PSD[6] and 

SHIQ[8]) that have ground-truths. We compare with six 

state-of-the-art highlight detection and removal methods 

(Multi-class generative adversarial network (GAN)[13], 

Spec-CGAN[14], SHEN et al[1], YAMAMOTO et al[15], 

FU et al[8], and WU et al[6]). For quantitative evaluation, 

we adopt three commonly used metrics including mean-

squared error (MSE), structural similarity index (SSIM), 

and peak signal to noise ratio (PSNR). The statistical 

results are shown in Tab.1. In general, lower MSE, 

higher PSNR and SSIM scores indicate better removal 

results. The best and second best results are highlighted 

in bold and underlined formats, respectively. 

Apparently, our method outperforms all others in MSE 

and PSNR. Since the method from WU et al[6] has strong 

adaptability to PSD dataset they proposed, it performs 

slightly better than ours on PSD dataset in SSIM. How-

ever, its performance on SHIQ dataset is obviously infe-

rior to ours in MSE, PSNR and SSIM. According to the 

experimental findings, our proposed network has exhib-

ited a higher level of performance compared to all the 

other methods that were evaluated.  

Tab.1 Quantitative comparison on PSD[6] and SHIQ[8] 

Dataset PSD
[6]

 SHIQ
[8]

 

Metric 

Method 
MSE/10

-2
↓ PSNR↑ SSIM↑ MSE/10

-2
↓ PSNR↑ SSIM↑ 

Full 0.08 32.95 0.97 0.11 31.68 0.97 

[6] 0.14 

3 

 

0.46 
0.99 0.24 28.23 0.94 

[8] 0.22 29.32 0.92 0.35 28.17 0.86 

[13] 0.50 23.52 0.91 0.48 27.63 0.88 

[14] 0.36 25.70 0.86 0.42 26.44 0.85 

[1] 1.07 20.62 0.88 1.12 21.90 0.80 

[15] 8.46 11.85 0.62 4.76 19.54 0.63 

 

Then we conduct comparison on the real-world images 

from SHIQ in terms of visual inspection. Since PSD 

dataset has no corresponding ground-truth mask images 

of specular highlight detection and is composed of labo-

ratory images, we do not evaluate on PSD dataset. To 

fully perform the comparison, we choose SHIQ dataset 

with ground-truth mask and diffuse images. Compared 

with the most advanced method presented by WU et al[6], 

the promising results produced by our method indicate 

the effectiveness of ours. We evaluate our method on 



XU et al.                                                                                                                               Optoelectron. Lett. Vol.19 No.12 0759

SHIQ dataset (with ground-truth mask and diffuse images) 

and select three images as shown in Fig.3. Our method is 

capable of producing high-quality results that have fewer 

occurrences of visual artifacts and information distortions 

in the compensated area, as is evident. The final specular 

highlight mask images generated by our method success-

fully detect most of the regions of specular highlights, 

even in challenging cases such as high reflectivity and 

low saturation. Additionally, the diffuse images pro-

duced by our method are more accurate compared to 

existing advanced methods, and they closely resemble 

the ground-truth.  

To further analyze how each component contributes to 

the final performance of our designed network, the net-

works N1, N2, N3 and N4 composed of different compo-

nents are retrained. N1 represents a new network that re-

places the subtraction operation in our network with the 

addition operation. N2 abandons our bifurcated feature 

selection module of our complete network. N3 extracts 

features from one layer less. Similarly, N4 takes from one 

layer more. From Tab.2 (the best result of each measure-

ment is highlighted in bold), we can see that our complete 

network achieves a quantity superior over N1, N2, N3 and 

N4. The higher PSNR, higher SSIM performance and lower 

MSE value of our network prove it has the best perform 

ance of specular highlight detection and removal.

 

 

Fig.3 Specular highlight removal results on SHIQ dataset[8]: (a) Input specular highlight images; (b) Generated 
diffuse images by WU et al[6]; (c) Generated specular highlight mask images by WU et al[6]; (d) Generated diffuse 
images by our method; (e) Generated specular highlight mask images by our method; (f) Ground-truths of dif-
fuse images; (g) Ground-truths of specular highlight mask images 
 

Tab.2 Quantitative comparison on SHIQ dataset[8] 

Method MSE/10-2↓ PSNR↑ SSIM↑ 

Ours 0.08 32.95 0.97 

N1 0.29 25.22 0.93 

N2 0.20 26.20 0.94 

N3 0.11 29.91 0.95 

N4 0.16 30.14 0.96 

 

N1 replaces the subtraction operation with addition 

operation in the first stage. Addition operation is com-

monly used in salient feature detection to enhance fea-

ture representation[16]. This paper argues that subtraction 

operation can filter out highlight features. This view is 

proved by the experimental results of N1. As shown in 

Tab.2 and Fig.4(b), the highlight removal effect of N1 is 

not good, which reversely verifies the effectiveness of 

our design. Addition operation cannot remove the high-

light well. Subtraction operation is more suitable for 

highlight removal applications, which represents the de-

sign idea of roughly removing highlight features to gen-

erate preliminary diffuse images. 

N2 abandons the coarse extraction process of specular 

highlight features based on our proposed bifurcated fea-

ture selection module. In this module, we extract high-

light features at different levels. High-level features in an 

image provide rich information of the overall context, 

which is helpful in identifying specular highlight areas. 

On the other hand, low-level features carries a lot of de-

tailed information, which is great for produce refined 

diffuse images
[16]. To take advantage of both, we use the 

detailed information from low-level features to enhance 

the high-level features and gradually separate out the 

specular highlight features from the original features 

layer by layer. Assuming that the coarse extraction proc-

ess is removed, we will get the experimental results as 

shown in Fig.4(c), which are far from the ground-truths. 
The results in Tab.2 also illustrate that N2 has weaker 

performance than the complete network. 

N3 sets the coarse feature extraction module of our bi-

furcated-convolutional neural network (CNN) to a 
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four-layer structure. In the first stage of our network, the 

highlight features in the original features are removed 

layer by layer. As the number of layers increases, the 

size of the image becomes smaller. Although the specu-

lar highlights in the high-level feature map are obviously 

removed, a lot of detail information is lost. The low-level 

feature map retains the detailed features completely, but 

there are obvious specular highlight residues. Therefore, 

the number of layers should be set to the appropriate value. 

N4 sets the coarse feature extraction module of our bi-

furcated-CNN to a six-layer structure. We determined 

the appropriate number of layers through comparative 

experiments. The results of Tab.2 demonstrate that the 

number of layers should be five. Therefore, our method 

uses a five-layer structure, which is better than the four-

layer structure N3 and the six-layer structure N4.  
 

 
Fig.4 Visual comparison on each key component of our designed network (We enlarge several highlight regions 
in the figure): (a) Input specular highlight images; (b) Generated diffuse images by N1; (c) Generated diffuse im-
ages by N2; (d) Generated diffuse images by our complete network; (e) Ground-truths of diffuse images 
 

As shown in Tab.2 and Fig.4, we can see that the 

complete implementation of our network performs better. 

The ablation studies based on N1, N2, N3 and N4 vali-

date that each component contributes greatly to the final 

performance of our designed network. As a complete 

structure, our network achieves the best results and has 

the best practicality and reliability for highlight removal 

applications. 

This paper introduces a specular highlight removal 

network that aims to address the issue of degraded im-

age information caused by high reflectivity materials. 

The network has a two-stage implementation, with a 

bifurcated feature selection module in the first stage 

that enhances the accuracy and robustness of highlight 

detection and removal. In addition, multi-scale high-

light features are extracted to improve the ability of the 

network to handle specular highlights at different 

scales. The second stage achieves refinement removal 

by processing the specular highlight features roughly 

extracted in the first stage. To prevent information pol-
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lution between the highlight and diffuse regions, the 

network utilizes gated convolution and residual calcula-

tion operations. The resulting diffuse images have less 

visual artifacts and information distortions. Experimen-

tal results show that the proposed method outperforms 

the state-of-the-arts. 
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