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When dehazing underwater images, the patch-by-patch dark channel prior (DCP) method is frequently used. After the 

DCP-based processing, there are still some drawbacks, such as patch artifacts, and these artifacts will seriously affect 

the subjective quality of some challenging images. To remove the patch artifacts from the DCP-guided enhancement 

mechanism, this paper proposes a coordinated underwater dark channel prior (CUDCP) method. The proposed method 

considers the characteristics of the red-green-blue channels with different attenuation situations, and thus the 

attenuation ratios of the red-green-blue channels are adaptively coordinated in diverse images. The requirement for 

color restoration is then assessed by an evaluation criterion, and the color restoration is carried out by using the 

compensated gray world (CGW) theory, which further coordinates the intensity of various red-green-blue channels. 

Our method next applies a patch-division average filter in accordance with the sub-patch classification. On the typical 

dataset, the enhanced images of our CUDCP method have higher average underwater image quality measure (UIQM) 

scores (about 2.274 8) when compared with the original images and those of some state-of-the-art enhancement 

methods, while the computational cost of CUDCP (about 88.618 8 s) is slightly higher than that of the original DCP 

(about 87.493 8 s). The experimental results demonstrate that in comparison to state-of-the-art enhancement methods, 

the proposed method can significantly reduce patch artifacts in challenging image enhancement, while maintaining the 

objective quality of such underwater images, and also enhancing their subjective quality at a reasonable computational 

cost. 
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Underwater imagery is becoming increasingly important 

with the increasing demand in the fields of fisheries, 

nuclear power plant underwater monitoring, land 

engineering in the sea, and diving. But there are far more 

factors affecting light propagation underwater than on 

land. As the underwater is full of humus, organic matter, 

and plankton, they will inevitably affect the propagation 

of light. For original underwater images, there are often 

defects such as blur, severe noise, low contrast, and color 

cast due to the shooting environment, especially for 

challenging underwater scenes[1]. Therefore, it has 

become a priority for researchers to make underwater 

images more realistic and clearer. Ref.[2] has some 

current reviews on underwater image enhancement.  

During underwater image enhancement, some areas will 

be oversaturated for those low-contrast images[3]. In 

addition, the dark channel prior (DCP) based methods 

always perform the enhancement patch-by-patch. If the 

correlation between patches is ignored, artifacts will 

appear on the edges of these patches[4].   

To obtain better image results, HE et al[5] firstly 

established a DCP which may be used in various image 

restoration tasks. Since then, the DCP-based methods are 

successively proposed. Due to the similarity between 

underwater images and foggy images, it is feasible for 

the DCP method to process underwater images, but there 

are a number of important aspects to take into 

consideration. Because the underwater shooting 

environment is different from the land shooting 

environment, it is unreasonable to directly use DCP. A 

DCP-based variation that successfully incorporates the 

fast attenuation of red light in waterbody has been well-

extended for underwater image enhancement[6]. When 

red light decays rapidly, the transmission map estimated 

by DCP will become the value of the red channel, which 

is not what the prior expects. Further, AKKAYNAK et 

al[7] created a Sea-thru method that estimates the 

backscattered light and optimizes the image imaging 

model in the DCP method to make the processed 

underwater image look like it is acquired on land.  

In nearshore or open sea, and deep sea or shallow sea, 

different situations need be carefully distinguished. 
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Therefore, the backscattered light is estimated by using 

the quartile strategy up until the target areas are chosen[8].  

LIANG et al[9] provided a generalization of underwater 

dark channel prior (GUDCP) for underwater image 

enhancement. More importantly, the image processing 

with the GUDCP method has a different estimation of 

backscattered light than on land, as well as a different 

estimation of the transmission map. In addition, HOU et 

al[10] proposed a variational dark channel prior (VDCP) 

for underwater image enhancement. Although VDCP is 

based on the original DCP method, it uses a fast 

algorithm that makes the processing time even shorter 

than the original DCP method. However, the above 

DCP-guided enhancement will lead to patch artifacts that 

affect the subjective quality of enhanced images. 

Enlightened by the GUDCP method, this paper firstly 

utilizes the intensity of the red-green-blue (RGB) 

channels to determine the attenuation ratio of the relevant 

channel, and thus obtains a severely attenuated channel, 

and then tentatively compensates for this channel. The 

transmission map will therefore be more accurate than 

that of the old DCP method, and the dehazing 

performance will be more significant. After the coarse 

output image is acquired, the average hue of all pixels in 

the whole image is calculated as an indicator which 

determines whether the color restoration is still needed. 

To reduce color cast, the direct utilization of gray world 

theory may exacerbate the artifacts. Therefore, the 

compensated gray world (CGW) theory will be used to 

avoid exacerbating the artifacts[11]. 

The DCP method is valid in the image dehazing 

process, and it is also reasonable for estimating the 

transmission map on land. The DCP-guided 

enhancement methods usually produce some patch 

artifacts for challenging underwater images, where the 

artifact removal becomes a crucial task. Targeting the 

patch artifacts, this paper combines several mechanisms 

to finish the artifact removal. The following is the 

contributions of this paper.                                                                                       

Adaptive classification and processing (ACP):  

Distinguish an underwater image into three cases: (1) 

Heavy attenuation of the B channel; (2) Heavy 

attenuation of the R channel; (3) Somewhat uniform 

attenuation for each channel. According to the results of 

the distinction, different mechanisms are applied for the 

transmission map estimation. 

Compensated color restoration and post-processing 

(CCRP): Design a novel mechanism to determine 

whether the color restoration is needed. If the color 

restoration is needed, the CGW theory is utilized. In 

post-processing, each sub-patch is classified, and an 

extra filter is added to further achieve our goal.   

In recent years, the research on underwater image 

dehazing is proliferating. LU et al[12] established a multi-

scale adversarial network for underwater image recovery, 

which uses deep learning and DCP dehazing to improve 

the recovery quality. BIANCO et al[13] used the 

differences of RGB three-channel attenuation ratios in 

water body to predict the underwater scene depth and 

obtain a more precise estimation of the transmission map. 

CHIANG et al[14] used a wavelength compensation 

method to improve underwater images. CUI et al[15] 

combined the DCP and Pyramid image fusion to finally 

achieve the recovery and enhancement of underwater 

images. GALDRAN et al[16] proposed a restoration 

method especially for the R channel, which can well 

improve the color cast and visibility.       

For removing various artifacts during image 

enhancement, MUSUNURI et al[17] proposed a hidden 

Markov random field method to recover the hazy images, 

which can reduce artifacts and make the image clear. 

SINGH et al[18] established a bright channel prior where 

a gain intervention filter is used to deal with the artifacts, 

and the prior can effectively reduce the computational 

cost. HAN et al[19] utilized a scene radiance constraint to 

accurately estimate the transmission map, and thus 

obtained an excellent performance on color restoration. 

Considering the low light situation, MARQUES et al 

proposed an inverse dehazing method that subtracts a 

maximum value from each pixel, turns the dark area into 

a bright area, and then treats the bright area as a hazy 

area during the dehazing process.                            

What we want to achieve in this paper is the removal 

of the patch artifact that appears in the DCP-guided 

enhancement, especially challenging underwater images. 

If we want to get a refine transmission map from the 

original image, the intensity attenuation of the RGB 

channels should be fully taken into account, and the 

mechanism of Ref.[6] can be used to estimate the 

backscattered light. By analyzing plenty of image data, 

HE et al[5] came to the conclusion that most non-sky 

areas always have a channel with a very low intensity 

approach to zero. For the convenience of discussion, a 

basic imaging model is shown as   

P(i)=Q(i)T(i)+L[1−T(i)] ,                     (1) 

where P(i) is the original input image, T(i) is the trans-

mission map, and Q(i) is the output image that is haze-

free, and L is the backscattered light. In Eq.(1), the DCP 

mechanism can gradually estimate L, T(i), and Q(i). In 

the DCP-based dehazing methods, the DCP can be used 

as an elimination operation that makes Q(i) close to 0: 

Qdark(i)→0.                                (2) 

Thus, the dark channel operations are simultaneously 

performed on both sides of Eq.(1), and they will make 

Q(i)T(i) approach 0. After getting L, the original DCP 

method can easily obtain the transmission map 

approximation ( ),T i� which can eventually be substituted 

into Eq.(1) to get the desired output Q(i). In the DCP 

method, the transmission map of the RGB channels can 

be expressed as 

{ , , } ( )

( )
( ) 1 min [ min ],

S

S R G B j Ω i

P jT i
L

�
� �

� � �                (3) 

where Ω(i) is the patch size, θ is the ratio parameter, and 

S is one of the RGB channels. By choosing patch sizes, 
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different transmission maps may be obtained in a very 

refined manner[20]. The intermediate image is employed 

for the guided filtering after the transmission map has 

been obtained. The generated images with the 

aforementioned patch-by-patch procedure might have 

some artifacts[7,9]. In challenging image enhancement, the 

DCP-based method will unavoidably cause some patch 

artifacts. Meanwhile, the color restoration may 

oversaturate some areas and cause some small artifacts. 

The proposed method for getting rid of the patch artifacts 

will be demonstrated in the following section. 

In this work, a coordinated underwater dark channel 

prior (CUDCP) method is proposed to reduce the patch 

artifacts, especially for challenging underwater images. 

Moreover, the CGW theory is used to avoid the patch 

artifacts that would be exacerbated by other white 

balance algorithms. In addition, a patch-division average 

filter is implemented. A single processing mechanism is 

difficult for the artifact removal, so this paper utilizes 

multiple mechanisms together to reach the goal. The 

CUDCP method compensates for differences in 

wavelength attenuation to alleviate color cast. According 

to earlier studies results, the physical modeling of a 

trichromatic underwater image can be expressed as 

( ) ( ) ( ) [1 ( )], { , , },S S S S SP i Q i T i L T i S R G B� � � �   (4) 

where i is a pixel in an image, and ( ) [0,1]ST i �  is a 

transmission map to describe the fraction of light arrival, 

and LS is the backscattered light. ( ) ( )S SQ i T i is a part of 

the final image during underwater imagery, 

and [1 ( )]S SL T i�  is another part of its final image from 

the backscattered light. To obtain a hazy-free image 

( )SQ i , ( )ST i and LS must be estimated. The DCP 

method is to use the dark channel prior to get the 

transmission map, but it is irrational for directly applying 

DCP to underwater images. Due to the absorption of 

water for light, the underwater images after simple 

enhancement may also have color cast, so we also need 

to add some suitable operations for color restoration. 

Under underwater circumstances, the proposed method 

coordinates every channel to mitigate the defects of other 

DCP-based methods, particularly patch artifacts. Overall, 

Fig.1 illustrates the detailed flowchart of the proposed 

CUDCP method. 

For estimating the backscattered light, a DCP-based 

method is straightforward by selecting the brightest pixel 

in an image[6]. In many actual cases, the brightest pixel 

may be in a white area. In this work, the DCP 

mechanism is extended for a more accurate estimation of 

backscattered light. Our CUDCP method firstly operates 

with the dark channel prior, and then chooses the 

brightest 0.1% of the pixel points, and subsequently 

chooses the point with the highest intensity among these 

selected pixel points as the backscattered light estimation. 

Despite the fact that this estimation might not be the 

brightest component of the original image, these 

operations will certainly make the estimation more 

accurate. This estimation serves as the foundation for the 

succeeding steps of our CUDCP method. 

 

 
Fig.1 Flowchart of the CUDCP method 

 

The previous subsection has obtained LS. Furthermore, 

the transmission map is obtained by dividing both sides 

of Eq.(4) by LS simultaneously. Due to the nature of the 

DCP, the intensity of a hazy-free image processed by 

dark channel prior will tend to be 0. As a more realistic 

and accurate imaging model, the trichromatic 

transmission map can be estimated by the following dark 

channel prior: 

( ) { , , }

( )
( ) 1 min[ min ],

S
S

Sj Ω i S R G B

P jT i
L

�
� �

� � �            (5) 

where the parameter θ can make our model accurate, 

typically θ=0.95. The transmission map will undoubtedly 

be impacted by the value of the parameter Ω(i), which 

stands for the patch size. Fig.2 shows the enhancement 

results of different patch sizes, where column (a), (b), 

and (c) represent the enhancement results of 15×15, 9×9, 

and 3×3 patch sizes, respectively. A small patch size can 

remarkably diminish the patch artifacts, but this is at the 

cost of the dehazing effect. For a reasonable and fair 

comparison with other DCP-based methods, the patch 

size of 15×15 pixels is still used herein. 

Ref.[10] focused on the attenuation anomaly of the R 

channel, and the attenuation ratio is greater than that of 

the green (G) and blue (B) channels, so only the G and B 

channels were used in the subsequent estimation of the 

transmission map. However, in shallow sea regions, such 

assumptions are not valid. Therefore, the following 

formula is used herein to estimate the channel-aware 

transmission map.
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( ) (1 ) ( ) otherwise

S
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T i I
T i T i I

T i T i

�
�

� �

� �
	

� �

	 � � ��

  (6) 

where GB ( )ST i  is the transmission map which is got by 

the G and B channels. By the same token, RG ( )ST i  is got 

by the R and G channels. σ=0.2, (mean ( ) 0.5) 1=[1+e ] ,S SL�� � � �  

and ε is typically 32. 

It can be seen from Eq.(6) that if the average intensity 

of the R channel is below the threshold σ, the R channel  

will be ignored when the transmission map is estimated. 

The same operation is performed if the average intensity 

of the B channel is below the threshold σ. Depending on 

the average intensity of the RGB channels, all 

underwater images can be simply divided into three 

types: heavy attenuation of the B channel, heavy 

attenuation of the R channel, and somewhat uniform 

attenuation for each channel. Therefore, Fig.3 displays 

three different attenuation diagrams respectively. The 

channel-aware transmission map is the basis of our 

method. 

Fig.2 Processing results with different patch sizes 
 

After obtaining the channel-aware transmission map, 

through Eq.(4) we can recover the scene radiance. But if 

the transmission map ( )ST i approaches 0, the 

conformity term ( ) ( )S SQ i T i  approaches 0, where noise 

is easily generated in the preliminary dehazed 

scene ( ).SQ i As the CUDCP method has limited the 

transmission map ( )ST i  to the lower limit T0 as a result 

of this observation, some blurs are now only present in 

extremely dense locations. In order to recover the scene 

radiance ( )SQ i , LS and ( )ST i  from ( )SP i  is needed. The 

dehazed scene is demonstrated by using the physical 

modeling described above along with DCP, and the 

scene is expressed as 

0

( )
( ) , { , , },

max( ( ), )

S S
S S

S

P i LQ i L S R G B
T i T
�

� � �       (7) 

where T0 is often set to 0.1 because the denominator 

shouldn't be too small. When the blur is removed, the 

image will appear a little bit darker because the scene 

brightness is often lower than the brightness of the 

backscattered light. Thus, the proposed method has got a 

coarse dehazed image, and it is far from enough by the 

above operations. After already considering the different 

absorption of waterbody for different channels, the 

CUDCP method can divide the underwater images into 

three types and adaptively process them for different 

types. In the next subsection, this paper will use the 

CGW theory to coordinate with the coarse dehazed 

image. 

Since water affects the travel of light, the suspended 

substances in waterbody can cause scattering of light, 

and they can lead to degradation of image quality, which 

ultimately reduces the hue, visibility, and overall contrast 

of the intermediate image. So, this paper uses the white 

balance for further processing. Usually the gray world 

theory is very appropriate for white balancing 

underwater images. But due to the R or B channel 

attenuation, the direct utilization of gray world theory 

may result in some artifacts. By applying the CGW 

theory to coordinate channel intensity, our CUDCP 

method can effectively solve the distortion problem 

caused by channel differences.  

To determine whether the white balance is needed, we 

provide the formula below 

1
( ( )),

i
k h h i

MN
� ��                        (8) 

where M and N are the height and width of the original 

image, h(i) is the brightness at pixel position i, while k 
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can be thought of as a brightness indicator for the entire 

image, and h  is created by averaging the hue values 

throughout the entire image. The intermediate image 

does not need the white balance, according to k>σ 

(σ=0.2), or else, the intermediate image achieves the 

white balance through the CGW theory. 

 

Fig.3 Diagram of attenuations for the three types: (a) Heavy attenuation of the B channel; (b) Heavy attenuation 
of the R channel; (c) Somewhat uniform attenuation for each channel 
 

Based on the characteristics of DCP, the appearance of 

the patch artifacts is inevitable in the DCP-based results. 

After implementing the previous steps, an additional 

module will be added to further reduce patch artifacts. 

Splitting an image into some sub-patches has many 

advantages. At the same time, the processing of a large-

size image requires a lot of storage space to store image 

information, excellent hardware and software, and a 

proper method. Since the image has been divided, sub-

patches can be stored for parallel processing. Different 

from the above patches, the sub-patches are obtained by 

dividing the input image. The CUDCP method must 

reduce the dependence on resources and increase the 

generalization ability, so as to reduce the memory and 

computing pressure of each operation.  

The image will be split into sub-patches of height H 

and width W. Every sub-patch is marked with a number 

based on its index, which is represented as (0, 0), (0, 

1)…, (i, j)…, (n−1, m−1). It can be seen from Fig.4, the 

beginning of the sub-patch at index (i, j) is the pixel 

point P. It is obvious that the pixel point P is obtained by 

the (0, 0) sub-patch which moves i×Patchwidth pixels to 

the right and j×Patchheight pixels down. By using these 

coordinates, the sub-patches can be recovered in order. 

Since dividing the image into sub-patches, the 

CUDCP method uses a variance threshold in conjunction 

with the Sobel operator to distinguish the offset sub-

patches to be divided into flat and textured sub-patch. 
7 7

0 0

1
( , ),

64 x y
t f y x

� �

� ��  

7 7

0 0

( ( , ) ),f
x y

V f x y t�
� �

� ���    

1,
( ) ,

0,

i
i

i
�

�
�


�
� 
 ��

                            (9)    

 

where Vf represents the pixel number of the texture sub-

patch. The value of Vf can be used to determine whether 

the patch is flat or not. Here, each image is divided into 

8×8 pixels sub-patches, and ξ is empirically set to 30. 

However, the variance threshold is for relatively 

independent sub-patch internal operations. The 

individual variance threshold leads to significant 

differences between patches, and this visual discontinuity 

presents itself in the form of patch artifacts. We can 

lessen the impact of this problem by including the Sobel 

operator. The Sobel operator employs a 3×3 template and 

completely considers the relationship between the 

processed pixel and the adjacent pixels. So, the proposed 

  

 
Fig.4 Splitting of sub-patches 
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CUDCP method applies the Sobel operator to all 

outermost points of the circle and the variance threshold 

to the remaining pixels. The CUDCP method can decide 

how the Sobel operator and the variance threshold should 

be used for the final sum calculation based on the 

number of pixels. 

Because the mean filtering is easy to operate with 

obvious effect, it is an effective solution to use the mean 

filtering mechanism to adaptively reduce the patch 

artifacts. The class-adaptive mean filtering is performed 

according to sub-patch classification. The flat sub-patch 

is given a relatively powerful filter strength treatment, 

while the texture sub-patch receives a relatively weak 

filter strength treatment. Finally, the filtered offset sub-

patches are combined to obtain the final image. 

This paper compares the proposed CUDCP method 

with several state-of-the-art DCP-based methods, i.e., 

DCP[5], VDCP[10], and GUDCP[9]. For these methods, we 

respectively test and analyze their enhancement effects 

on two typical datasets: a challenging underwater image 

enhancement benchmark (CUIEB) dataset[1] and a real-

world underwater image (U45) dataset[21]. Because each 

dataset does not contain any reference image, the non-

reference qualitative and quantitative results are 

comprehensively presented on each dataset. 

The final outcomes in three cases are shown in Fig.5. 

Fig.5(a) is the case where the B channel intensity is 

below a threshold, and the blue light attenuates quickly. 

Fig.5(b) shows the processing results when the R channel 

intensity is comparatively low. Fig.5(c) is the third 

attenuation case. Different operations are used in the 

three cases compared to the current DCP-based methods, 

which makes our CUDCP method more effective. 

 

 
 

 
Fig.5 Final outcomes in three cases 

 

Based on the underwater DCP mechanism, this paper 

proposes the channel-aware transmission map estimation 

which is suitable for challenging underwater scenes. 

Based on the k value from Eq.(8), an indicator can 

determine whether the color correction with white 

balance is necessary. The white balance is utilized to 

increase the intensity coordination of the R or B channel. 

For obtaining a better performance on color restoration, 

the CGW theory is implemented. Finally, the additional 

module can be used to further process patch artifacts to 

achieve the desired result. The patch artifacts may still 

appear in the final result, but they will be greatly reduced 

and removed after the above operations.  

As we can see in Fig.6, compared with the original 

DCP method, DCP+CCRP can improve the color cast 

very well, while DCP+ACP can make the image clearer. 

But both CCRP and ACP have other disadvantages when 

being used alone. After combining the two functions, it 

can be seen that the proposed CUDCP method is 

obviously better than both of them when used alone. 

For those compensated or non-compensated images, 

Fig.7 shows the visual effects of artifact removal. The 

image shows that if the gray world algorithm is used 

directly, it will cause artifacts to appear in some areas, 

but after using the CGW theory, some of the negative 

effects of the DCP-based method can be well mitigated. 

More importantly, the details in Fig.7 show that the 

CGW theory can successfully remove artifacts caused by 

the gray world theory. Further, Fig.8 illustrates the 

subjective quality of different enhanced images by 

implementing the DCP, VDCP, GUDCP, and CUDCP 

methods. 
The underwater image quality measure (UIQM), 

which is based on early material, is frequently used to 

determine the non-reference objective quality score of an 

underwater image[1,2]. As seen in Tab.1, based on the 

CUIEB dataset, the enhanced images of our CUDCP 

method have higher average UIQM scores when 

compared with the original images and those of the 

VDCP method, despite the benefit being minimal 

compared to the GUDCP method. For our CUDCP 

method, the patch size of 15×15 is more effective than 

the 3×3, and the visual effects of the final images can be 

significantly improved. In addition to UIQM, the 
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computational cost is also one important indicator for 

evaluating different algorithms. In Tab.2, we provide the 

computational cost of each method on the CUIEB dataset. 

It can be found that the computational cost of CUDCP is 

slightly higher than DCP and lower than GUDCP, while 

the computational cost of VDCP is the lowest. 

 

Fig.6 Three sets of images represented by (a), (b) and (c), with each set of images processed by DCP, 
DCP+CCRP, DCP+ACP, and CUDCP respectively 
 

 

Fig.7 Visual effects of artifact removal 

Tab.1 Average UIQM scores under different patch 
sizes on the CUIEB and U45 datasets 

UIQM scores of each method on the CUIEB  Patch 
size 

Original VDCP GUDCP CUDCP 

15×15 0.015 8 0.488 3 2.148 0 2.274 8 

3×3 0.015 8 0.488 3 1.957 5 1.931 6 

UIQM scores of each method on the U45 Patch 
size 

Original VDCP GUDCP CUDCP 

15×15 2.061 2 0.500 4 4.537 5 5.095 8 

3×3 2.061 2 0.500 4 4.476 5 5.021 4 

Tab.2 Average computational cost under different 
patch sizes on the CUIEB and U45 datasets (Unit: 
second) 

Computational cost of each method on the CUIEB  Patch 

size DCP VDCP GUDCP CUDCP 

15×15 87.493 8 17.395 8 97.567 5 88.618 8 

3×3 54.435 9 11.641 1 59.480 4 54.786 1 

Computational cost of each method on the U45 Patch 

size DCP VDCP GUDCP CUDCP 

15×15 5.602 6 0.647 2 5.867 8 5.714 1 

3×3 4.316 3 0.717 8 4.588 8 4.398 9 

On the U45 dataset, it can be found from Tab.1 that al-

though the original image quality of U45 is far better 

than that of CUIEB, the evaluation score of CUDCP in 

terms of UIQM is still higher than that of GUDCP and 

VDCP. In terms of computational cost, only a small in-

crease is needed to obtain better processing results. 

Overall, the proposed CUDCP method has got good 

results in the subjective quality we focus on, and it also 

is superior to the GUDCP and VDCP methods in the 
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objective UIQM evaluation scores. Therefore, both sub-

jective and objective effects of the proposed method are 

competitive, while its computational cost is acceptable. 

Based on the dark channel prior, this paper proposes an 

effective enhancement method which jointly coordinates 

with the backscattered light estimation, the channel-aware

 

 

Fig.8 Enhancement results of different methods 
 

transmission map estimation, and the white balance for 

robust restoration of underwater images. Compared with 

some recent DCP-based methods, our CUDCP method 

fully considers the attenuation of the RGB channels to 

obtain a more accurate transmission map and implement 

a more suitable white balance, and finally adds a patch-

division average filter to further finish the artifact 

removal. Moreover, the experimental data can show that 

the CUDCP method can significantly optimize the visual 

results, and maintain competitive objective quality with 

an acceptable computational cost. 
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