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A geo-localization method is proposed for military and civilian applications, which is used when no global navigation 

satellite system (GNSS) information is available. The open graphics library (OpenGL) is used to build a 

three-dimensional geographic model of the test area using digital elevation model (DEM) data, and the skyline can 

thus be extracted with the model to form a database. Then, MultiSkip DeepLab (MS-DeepLab), a fully convolutional 

semantic segmentation network with multiple skip structures, is proposed to extract the skyline from the query image. 

Finally, a matching model based on convolutional neural network (CNN) feature is adopted to calculate the similarity 

between the skyline features of the query image and the DEM database to realize automatic geo-localization. The ex-

periments are conducted at a 202.6 km2 test site in north-eastern Changsha, China. 50 test points are selected to verify 

the effectiveness of the proposed method, and an excellent result with an average positioning error of 49.29 m is ob-

tained. 
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Recently, automatic geo-localization using a digital ele-

vation model (DEM) and panoramic skyline has emerged 

as a powerful tool that can support a large range of mili-

tary and civil applications, especially when no global 

navigation satellite system (GNSS) information is avail-

able. In this case, geo-localization using natural envi-

ronment images is very useful. However, this is not an 

easy task because of complex and changeable conditions, 

such as lighting, vegetation, and seasons, in natural 

scenes. 

A variety of image-based methods have been proposed 

to locate the position from captured images in recent 

years. These methods mainly determine the image loca-

tion by constructing some features to compare the query 

image with a database image that has geographic mark-

ers. These methods can be divided into two categories, 

geo-localization in urban scenes and geo-localization in 

nonurban scenes. Compared with the former one, 

geo-localization in nonurban natural scenes is considered 

to be more challenging and has gained attention recently. 

For example, TALLURI et al[1] matched horizon lines 

extracted from a query image against those rendered 

from DEM to achieve the geo-localization. STEIN et al[2] 

also used horizon lines for localization. Localization us-

ing horizon line was further studied by NAVAL et al[3, 4]. 

WOO et al[5] studied navigation of unmanned aerial ve-

hicle in mountain areas using DEM and infrared images 

with known altitude using altimeter. BAATZ et al[6] used 

horizon lines to construct local features (contourlets) and 

find the position. Geo-localization of untagged desert 

imagery was studied by TZENG et al[7], who proposed a 

novel skyline-based feature based on concavities. PORZI 

et al[8] proposed a fast method of automatic pho-

to-to-terrain alignment for precise augmented reality on a 

mobile device. Smartphone sensors were used as an ini-

tial estimate for camera orientation, which was refined 

by silhouette matching algorithm similar to Ref.[9]. 

HAMMOUD et al[10] developed a geo-localization 

framework of street-level outdoor images using multiple 

sources of overhead reference imagery, including light 

detection and ranging (LIDAR), DEM and multi-spectral 

land cover/use imagery. An advanced approach based on 

horizon lines was presented by CHEN et al[11]. SAURER 

et al[12] proposed an automated approach for very 

large-scale visual localization that can efficiently exploit 

visual information (contours) and geometric constraints 

simultaneously. GRELSSON et al[13] proposed a position 

estimation method where the horizon line is extracted in 

a 360° panoramic image around the unmanned surface 

vessels. CHIODINI et al[14] performed a sensitivity anal-

ysis of the visual position estimator for rover algorithm 

using data and images provided by the National Aero-

nautics and Space Administration (NASA) mars explora-

tion rover (MER) and the NASA mars reconnaissance 

orbiter. FUKUDA et al[15] used the skyline in a dune area 

to correct the position obtained by GNSS. They first used 
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GNSS to obtain the current unknown area and the am-

plitude components were then extracted as skyline fea-

tures to refine the position.  

However, these existing methods mainly adopted 

hand-crafted features of skyline (e.g., contour words, 

concave-convex feature, amplitude components, etc) to 

obtain the final position. According to the published ref-

erences, these methods seldom obtained accurate me-

ter-level or even 10-meter-level localization in 

large-scale areas. This may be due to the complexity of 

the skyline positioning task (human disturbance and ve-

getation changes, poor skyline discrimination), and the 

complexity of designing features that describe the sky-

line more robustly. Compared to the traditional features 

used to describe the skyline in most studies, convolu-

tional neural network (CNN) can save a lot of manual 

work and obtain more robust features in images by 

learning from a large amount of data[16]. Thus, a location 

algorithm is proposed to improve the accuracy of loca-

tion estimation in a GNSS-denied environment. The 

main contributions of the letter are as follows.  

The effective encoding of skyline is realized by using 

the pretrained VGG16 model and principal component 

analysis (PCA). The VGG16 convolution layer in our 

method is trained into an encoder to express the 

high-dimensional feature of the skyline, and we then use 

PCA to reduce the dimensionality of the CNN feature. 

The use of CNN makes it easier to extract robust features 

by training on large datasets than by designing traditional 

features. Using the learned representation of skyline 

from the encoder, the skyline feature of query image and 

DEM can be compared. 

A new semantic segmentation model is constructed to 

extract the skyline from query image. The key idea is 

that the model combines the skip structure and the image 

detail obtained from the DeepLab V3+ to realize the 

combination of high-level semantics and low-level edge 

information. We refer to our proposed network as the 

MultiSkip DeepLab (MS-DeepLab). We show experi-

mentally that the MS-DeepLab is better than other exist-

ing networks on the skyline extraction task. 

Extensive experiments on the real testing points de- 

monstrate that our method generally outperforms some 

existing methods for localization in GNSS-denied envi-

ronment. Besides, our method can achieve 

geo-localization using only DEM data and panoramic 

images in a large outdoor area in China. 

The main idea of this letter is to determine the geo-

graphic location of the query image by searching for the 

skyline image in the database that is most similar to the 

skyline in the query image. The proposed framework 

consists of two stages (see Fig.1).  

The offline stage consists of constructing the skyline 

knowledge base, where we use open graphics library 

(OpenGL) to render panoramic renderings and encode 

their skylines. The online stage consists of segmenting 

skyline, encoding skyline image, matching feature to the 

reference knowledge base, generating probability map 

and output location.  

 

  
Fig.1 Flowchart of the proposed algorithm 

 

Our query image is in fact a cylindrical projection. 

Thus, it is necessary to ensure that the images in the pa-

noramic database are also cylindrical projections. Spe-

cifically, we developed an OpenGL camera roaming pro-

gram. When rendering the model, the background is set 

to a specific pixel value, and the model color is replaced 

by the model depth. In the program, four images are ob-

tained at each sampling point by controlling the position 

and viewing angle of the camera. The perspective projec-

tion rendering is used as an intermediate result (Fig.2(a)) 

to express the surrounding environment of the sampling 

point. The parameters of the rendered image are vertical 

field of view angle of 38°, horizontal field of view angle 

of 90°, pitch angle of 0°, and roll angle of 0°. This makes 

the rendered map also a depth map, and these four maps 

include all the environmental information around the 

360° of the sampling points. Since what we need is a 

cylindrical projection panoramic image, we thus convert 

the above four perspective projection renderings to cy-

lindrical projection (Fig.2(b)). Then the four renderings 

are stitched together to obtain a cylindrical projection 

panoramic rendering (Fig.2(c)). Therefore, the pano-

ramic database is created and the edge of the skyline 

(Fig.2(d)) can be easily obtained using pixel segmenta-

tion. 
 

       

Fig.2 DEM rendering process: (a) Perspective projec-
tion rendering; (b) Cylindrical projection rendering; (c) 
Panoramic image obtained by cylindrical projection; 
(d) Extracted skyline from image (c)
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The segmentation targets targeted by DeepLab V3+ 

are regional targets that require more attention to high-

er-level semantic features, but as a skyline segmentation 

task, our segmentation target can be seen as a boundary. 

In order to improve the segmentation accuracy of the 

boundary, the decoder section of MS-DeepLab pays spe-

cial attention to the low-level feature maps that contrib-

ute to the boundary segmentation, as shown in Fig.4. In 

MS-decoder, ASPP-outX is first up-sampled by a factor of 4 

and concatenated with 2

EN-outX  to obtain 1

DE-outX . 

1

DE-outX  is up-sampled by a factor of 2 and then concate-

nated with 1

EN-outX  to obtain 2

DE-outX . Finally, 2

DE-outX
 

is 

up-sampled by a factor of 2 to obtain the segmentation 

result MS-outX . The decode operation is described as 

  1 2

DE-out EN-out 4 ASPP-outConv(Concat(Conv( ),up ( ))),�X X X  

  2 1 1

DE-out EN-out DE-outConv(Concat(Conv( ),up( ,2))),�X X X  

  2

MS-out DEup( ,2).�X X                         (2) 

Due to MS-DeepLab's special attention to low-level 

features that are useful for improving boundary accuracy, 

the MS-DeepLab performs better than DeepLab V3+ on 

the skyline extraction task. 

Generally, the extracted skyline has two characteristics. 

One is that the skyline may have some missing data and 

some noise caused by interference, and the other is that 

the skyline has local similarity, which means that the 

skylines in adjacent areas may have higher similarity. 

Due to factors such as vegetation coverage or artificial 

obstacles, there are slight differences between the skyline 

extracted from the query image and the skyline obtained 

from DEM rendering. We propose a matching model 

based CNN feature to solve the problem. We used the 

VGG16 model to extract the image features and the PCA 

algorithm to dimensionally reduce the features. 

Here, the pretrained VGG16[21] is used to construct the 

feature encoder, and the feature map output is then ex-

tracted by the last convolutional layer of VGG16 as the 

feature expression of the image. Thanks to the effective 

encoding of skyline by using the pretrained VGG16, the 

high-dimensional feature can be better expressed. The 

VGG16 convolution layer pretrained on the ImageNet 

dataset is used to construct our matching model. Al-

though the VGG model aims at the feature extraction of 

the general dataset, the experimental results prove the 

effectiveness of the VGG model for our task. 

For offline knowledgebase establishment, the feature 

encoder is used to encode the skyline of the DEM pano-

ramic rendering to obtain the offline database. In order to 

reduce the storage space of the features and improve the 

efficiency of the operation, we use this feature set to train 

the PCA model to downscale the CNN features, and the 

downscaled feature set is used as a knowledge base for 

online localization. 

For online localization, a feature encoder is used to 

encode the skyline feature of the query image, and di-

mensionally reduce skyline features using a PCA model 

trained in the offline phase. Then, the Euclidean distance 

between the skyline feature of the query image and each 

DEM rendering in the offline skyline knowledge base is 

calculated to obtain the probability matrix of each point 

in the region of interest. To obtain the final location of 

the target, a Gaussian filter is used here to smooth the 

probability matrix. Finally, the point with the highest 

similarity (minimum distance) is selected as our final 

positioning point. 

Fig.5 shows our experimental equipment, and the re-

connaissance ball is used as our main data acquisition 

equipment. The ball contains a horizontal sensor to ob-

tain the pitch angle and roll angle of the equipment. A 

digital compass is also used to collect the heading angle 

by using geomagnetic information. The sensor accuracy 

of the roll angle and pitch angle collected by the hori-

zontal sensor is 0.1°, and the accuracy of the heading 

angle is 1° when no obvious interference exists. We in-

stalled the ball on the experimental vehicle, and the 

height from the ground was approximately 2.5 m when 

the ball was raised. Thus, it is convenient for us to collect 

data in mountain or hilly areas. 

 

 
(a)                 (b)  

 
(c)                         (d) 

Fig.5 Experimental equipment and testing points: (a) 
Reconnaissance ball; (b) Our experimental vehicle; (c) 
Location of our test area; (d) Distribution of 50 test 
points 
 

50 test points are selected to verify the effectiveness of 

the proposed method. For each testing point, we collect a 

panoramic query image that contains position, attitude 

and heading angle. The real position information was 

used as a label to obtain the positioning error, and the 

attitude and heading angle were used to correct the pa-

noramic images. As shown in Fig.5(c), all the samples 

are distributed in a hilly area in north-eastern Changsha, 

China. The corresponding DEM data is obtained from 

the Hunan Remote Sensing Center of China. As can be 

seen in Fig.5(d), a total area of 202.6 km² is regarded as 
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our final test area. Besides, we also notice that the sam-

pling density directly affects the positioning error of the 

final positioning system. To balance the calculation 

speed and the positioning accuracy, we take 10 m as our 

sampling interval to generate our panoramic database.  

  The dataset that used for training our MS-DeepLab to 

extract skyline has about 2 000 images, including hun-

dreds of real-captured images and a part of Saurer's pub-

lic dataset[12]. Our MS-DeepLab is trained on this dataset 

from scratch. In our experiments, we compare the inter 

section over union (IOU) index value of the proposed 

MS-DeepLab with those of U-Net and DeepLab V3+ by 

using the same training strategy. Experimental results 

show that the IOU values are 72.53, 71.21 and 76.04 for 

U-Net, DeepLab V3+ and MS-DeepLab, respectively. 

The improvement in skyline extraction accuracy is of 

great significance to the subsequent localization process. 

Although the improvement in IOU is only a few percent, 

it is still very important because these few percent are 

likely to be the pixel that is difficult to classify. Fig.6 

shows the effect of partial skyline segmentation, where 

the scene was successfully localized due to the im-

provement in skyline accuracy. 

 

 

Fig.6 Comparison of segmentation results: (a) Origi-
nal image; (b) Skyline obtained using MS-Deeplab; (c) 
Skyline obtained using DeepLab V3+; (d) Skyline ob-
tained using U-Net 

 

To visualize the location results, we plot our location 

probability. Fig.7(a) shows the positioning probability 

map, and the corresponding local amplified probability 

map is shown in Fig.7(b). In Fig.7(b), the center point of 

the red box is our location point, and the center point of 

the blue box is the labelled location. The closer to the red 

color, the higher the probability of the point is. As shown 

in Fig.7, the predicted location point is very close to the  

ground truth, which verifies the effectiveness of our 

method. 

In our experiments, we also find that when the error is 

very small, the positioning point is located near the la-

belled point. In this case, the positioning is regarded as 

successful. Otherwise, when the error is large, the posi-

tioning point may randomly appear in the region of in-

terest since the point with the highest possibility is bound 

to be output. This is regarded as a failure case.  

 

  
 

(a) 

     
(b) 

Fig.7 Positioning probability maps: (a) Global prob-
ability map; (b) Local amplified probability map 
 

According to our principle, for the 50 test points, when 

directly using the extracted features for localization, the 

positioning success rate is 92%, and the average posi-

tioning error is 49.29 m. More specifically, 64% of the 

sample positioning errors are less than 50 m, 82% of the 

errors are less than meters. After using PCA to down-

scale the features, the localization accuracy did not de-

crease when the feature dimension was reduced to 2 048 

dimensions. The decrease appeared when the feature 

dimension was reduced to 1 024 dimensions, as shown in 

Fig.8. After dimensionality reduction, the localization 

time was reduced to approximately 30 s.  

  

  
Fig.8 The effect of the number of dimensions of re-
tained features on success rates 

 

For the failure case, we find that these samples are 

generally captured in some extreme situations. For 
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example, a large part of the skyline is largely occluded 

by houses, towers or other men-made objects. The 

mountain peak is lost because of the limitation of the 

image view angle. All these factors make it very difficult 

to obtain a nearly complete skyline, and thus finding the 

most similar skyline in the DEM rendering database be-

comes impossible. Besides, we also compared our 

method with some influential localization methods. 

Tab.1 shows the comparison results. Test area defines 

the area on which the method has been tested in original 

publication; localization success rate (Local. succ.) de-

notes the best result achieved with given method; aver-

age error (Avg. err.) and maximum error (Max. err.) de-

note the average distance and maximum distance from 

the ground-truth position which is considered to be cor-

rect localization. 

 

Tab.1 Performance comparison of different 
geo-localization methods 

Method Test area Local. succ. Avg. err. 

Ref.[1] 148 km² — — 

Ref.[2] 298 km² — — 

Ref.[4] — — — 

Ref.[3] 900 km² — — 

Ref.[5] 2.28 km² — 393 m 

Ref.[6] 40 000 km2 88% 
Max. err. 

1 km 

Ref.[7] 10 000 km2 — — 

Ref.[8] 100 places in Alps — 1.87° 

Ref.[9] 
28 photos in Alps, 

Rocky Mnts. 
86% — 

Ref.[10] 20 000 km2 49% — 

Ref.[11] 
10 000 km2 (Amer-

ica Asia) 
60% 

Max. err. 

4.5 km 

Ref.[12] 40 000 km2 88% (<1 km) — 

Ref.[13] 0.006 4 km2 — 2.72 m 

Ref.[14] 1 km2 — 51 m 

Ref.[15] 0.25 km2 — 1.81 m 

Ours 202.6 km2 
92% 
(<200 m) 

43.13 m 

 

As can be seen in Tab.1, most existing methods are 

still not very precise. For example, in the results of 

SAURER et al[12], the distance under which the query is 

considered as correctly localized is 1 km, which is longer 

than our method, whose related distance is 200 m. In 

case of horizon-based localization proposed by SAURER 

et al[12], 40% of query images need user interaction for 

discovering horizon line, mainly due to tree occlusions 

which arise in real-world photos quite often[22]. Thanks 

to MS-DeepLab, our method can automatically extract 

skyline even in this complex situation. Several ap-

proaches for camera orientation estimation are also pro-

vided in Tab.1. The localization success rates of the two 

methods are 86% and 88%, respectively. The localization 

success rate of our method is the highest compared with 

other methods shown in Tab.1. Besides, our test area can 

be further extended to very large scale as long as certain 

conditions are met. It can be generally assumed that the 

larger the location area, the greater the probability of 

location failure, and the greater the probability of loca-

tion error. Therefore, considering the location area size, 

location success rate and location accuracy, it can be 

assumed that our method has a greater advantage over 

some influential existing methods. 

A geo-localization algorithm has been studied in this 

letter. First, we use OpenGL to render the DEM data into 

a three-dimensional model to establish a skyline know- 

ledge base for retrieval and positioning. Second, 

MS-DeepLab is proposed to extract the image skyline. 

Third, the pretrained CNN model is used to extract the 

high-dimensional feature information as the feature ex-

pression of the skyline, which greatly improves the lo-

calization accuracy. A comparative study is proposed 

with a few representative methods, which demonstrates 

that similar or better results can be obtained by using the 

proposed geo-localization method. 

Statements and Declarations 

The authors declare that there are no conflicts of interest 

related to this article. 

 

References  

[1]   TALLURI R, AGGARWAL J. Position estimation for 

an autonomous mobile robot in an outdoor environ-

ment[J]. IEEE transactions on robotics and automation, 

1992, 8(5) 573-584.  

[2]   STEIN F, MEDIONI G. Map-based localization using 

the panoramic horizon[J]. IEEE transactions on robotics 

and automation, 1996, 11(6) 892-896. 

[3]   NAVAL P C. Camera pose estimation by alignment 

from a single mountain image[EB/OL]. (2010-07) 

[2021-10-11]. http //citeseerx.ist.psu.edu/viewdoc/ 

down load;jsessionid=87E95F9B1E103A9679DA9009- 

C4CF1-F74?doi=10.1.1.102.9949&rep=rep1&type=pdf. 

[4]   NAVAL P C, MUKUNOKI M, MINOH M, et al. Esti-

mating camera position and orientation from geo-

graphical map and mountain image[EB/OL]. (1997-04) 

[2021-10-11]. http //citeseerx.ist.psu.edu/viewdoc/ 

Down load?doi=10.1.1.14.3619&rep=rep1&type=pdf. 

[5]   WOO J, SON K, LI T, et al. Vision-based UAV naviga-

tion in mountain area[C]//Proceedings of the IAPR 

Conference on Machine Vision Applications (IAPR 

MVA), May 16-18, 2007, Tokyo, Japan. 2007 236-239.   

[6]   BAATZ G, SAURER O, KOSER K, et al. Large scale 

visual geo-localization of images in mountainous ter-

rain[C]//Proceedings of the 12th European Conference 



0306                                                                           Optoelectron. Lett. Vol.18 No.5 

on Computer Vision, October 7-13, 2012, Florence, It-

aly. Berlin, Heidelberg Springer-Verlag, 2012 517-530. 

[7]   TZENG E, ZHAI A, CLEMENTS M, et al. User-driven 

geolocation of untagged desert imagery using digital 

elevation models[C]//Proceedings of IEEE Conference 

on Computer Vision and Pattern Recognition Work-

shops, June 23-28, 2013, Portland, OR, USA. New 

York IEEE, 2013 237-244. 

[8]   PORZI L, BULO S R, VALIGI P, et al. Learning con-

tours for automatic annotations of mountains pictures on 

smartphone[C]//Proceedings of the International Confer-

ence on Distributed Smart Cameras, September 5, 2014, 

California, USA. New York ACM, 2014 131-136. 

[9]   BABOUD L, CADIK M, EISEMANN E, et al. Auto-

matic photo-to-terrain alignment for the annotation of 

mountain picture[C]//Proceedings of 2011 IEEE Con-

ference on Computer Vision and Pattern Recognition, 

June 20-25, 2011, Colorado Springs, Colorado, USA. 

New York IEEE, 2011 41-48. 

[10]   HAMMOUD R I, KUZDEBA S A, BERARD B, et al. 

Overhead-based image and video geo-localization 

framework[C]//Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition Workshops, 

June 23-28, 2013, Portland, OR, USA. New York IEEE, 

2013 320-327.  

[11]   CHEN Y, QIAN G, GUNDA K, et al. Camera geoloca-

tion from mountain images[C]//Proceedings of the 18th 

International Conference on Information Fusion, July 

6-9, 2015, Washington, DC, USA. New York IEEE, 

2015 1587-1596.  

[12]   SAURER O, BAATZ G, KOSER K, et al. Image based 

geo-localization in the Alps[J]. International journal of 

computer vision, 2016, 116(3) 213-225.  

[13]   GRELSSON B, ROBINSON A, FELSBERG M, et al. 

GNSS-level accurate camera localization with Hori-

zonNet[J]. Journal of field robotics, 2020, 37(6)

951-971. 

[14]   CHIODINI S, PERTILE M, DEBEI S, et al. Mars rov-

ers localization by matching local horizon to surface 

digital elevation models[C]//Proceedings of the IEEE 

International Workshop on Metrology for AeroSpace, 

June 21-23, 2017, Padua, Italy. New York IEEE, 2017. 

[15]   FUKUDA S, NAKATANI S, NISHIYAMA M, et al. 

Geo-localization using ridgeline features extracted from 

360-degree images of sand dunes[C]//Proceedings of 

the 15th International Conference on Computer Vision 

Theory and Applications, February 27-29, 2020, Val-

letta, Malta. New York IEEE, 2020 621-627.  

[16]   DANIEL S T, LI M, MARGARET H. Face recogni-

tion from traditional to deep learning methods[EB/OL].  

(2019-11-15) [2021-10-11]. https //arxiv.org/pdf/1811. 

00116.pdf. 

[17]   RONNEBERGER O, FISCHER P, BROX T. U-net

convolutional networks for biomedical image segmen-

tation[C]//Proceedings of the International Conference 

on Medical Image Computing and Computer-Assisted 

Intervention, October 5-9, 2015, Munich, Germany. 

Berlin, Heidelberg Springer-Verlag, 2015 234-241. 

[18]   CHEN L C, ZHU Y, PAPANDREOU G, et al. En-

coder-decoder with atrous separable convolution for 

semantic image segmentation[C]//Proceedings of the 

European Conference on Computer Vision, September 

8-14, 2018, Munich, Germany. Berlin, Heidelberg  

Springer-Verlag, 2018 833-851.   

[19]   LONG J, SHELHAMER E, DARRELL T. Fully con-

volutional networks for semantic segmenta-

tion[C]//Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, June 7-12, 2015, 

Boston, MA, USA. New York IEEE, 2015 3431-3440. 

[20]   CHEN L C, PAPANDEOU G, KOKKINOS I, et al. 

Deeplab semantic image segmentation with deep 

convolutional nets, atrous convolution, and fully con-

nected CRFs[J]. IEEE transactions on pattern analysis 

and machine intelligence, 2017, 40 834-848. 

[21]   SIMONYAN K, ZISSERMAN A. Very deep convolu-

tional networks for large-scale image recognition 

[EB/OL]. (2014-07-15) [2021-10-11]. https //arxiv.org/ 

pdf/1409.1556v6.pdf. 

[22]   BREJCHA J, CADIK M. State-of-the-art in visual 

geo-localization[J]. Pattern analysis and applications, 

2017, 20 613-637.  

 


