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rier transform of laser-induced breakdown spectroscopy 
 

HOU Jiaxin* and WANG Yang’en  
College of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China12 
 

(Received 30 August 2021; Revised 24 March 2022) 

©Tianjin University of Technology 2022 

 
The identification of rice seeds is crucial for agriculture production. An inverse Fourier transform (IFT) method based 

on laser-induced breakdown spectroscopy (LIBS) is proposed to identify five kinds of rice seeds. The LIBS data of the 

samples were preprocessed by inverse fast Fourier transform (IFFT), and the time-domain signals of rice seeds were 

obtained. The back propagation (BP) neural network was used to establish full spectrum, segmented spectrum, 

time-domain full spectrum and time-domain segmented spectrum discrimination models. Compared with the original 

spectrum, the time-domain spectrum can significantly improve the identification accuracy. The time-domain 

full-spectrum identification accuracy reached 95.28%, and the time-domain segmented spectrum identification accu-

racy reached 94.36%, whose identification time was only a few seconds. The results demonstrate that LIBS detection 

technology combined IFFT and BP neural network is fast and accurate, which provides a new idea for batch detection 

of rice seeds. 
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At present, the commonly used methods of rice identifi-
cation are morphological identification, chemical identi-
fication, and molecular marker technology[1], etc. But 
these methods have many limitations, such as low identi-
fication accuracy, complex and long identification proc-
ess, high requirements for professional operation tech-
nology, which are not suitable for rapid batch detection 
and nondestructive analysis of rice seeds. In recent years, 
spectral technology has been widely used in rice detec-
tion. For example, LIN et al[2] used near infrared spec-
troscopy to identify transgenic Bt rice and its parents, 
and achieved good identification accuracy. SAMPAIO et 
al[3] used near infrared spectroscopy to effectively dis-
tinguish indica and japonica rice. WANG et al[4] fused 
the hyperspectral data of three rice varieties with the 
characteristics of chalkiness and rice shape, and estab-
lished a discrimination model by reverse neural network 
with an accuracy of 94.45%. Moreover, LU et al[5] estab-
lished a prediction model of rice seed moisture content 
based on hyperspectral technology combining clustering 
algorithm and support vector machine, which provided a 
reference for the quality monitoring and screening of rice 
seeds. ZHANG et al[6] established a classification model 
with good performance based on hyperspectral image 
technology for six groups of rice seed samples treated 
with different degrees of freezing injury.   

Laser-induced breakdown spectroscopy (LIBS) is an 
element analysis method based on plasma emission 
spectroscopy[7]. Compared with other analytical methods, 

LIBS technology requires no or less sample preparation 
and is non-destructive to sample. Besides, LIBS can si-
multaneously detect multiple elements in any form of 
sample, and has good adaptability to the environment. 
Due to its unique advantages, LIBS has been widely used 
in material classification and recognition in industry[8], 
food[9,10], geological exploration[11,12], agriculture[13,14], 
medicine[15,16], etc. In view of the great potential of LIBS, 
an inverse fast Fourier transform (IFFT) method based 
on LIBS was proposed in this work to identify five 
common rice seeds in Hubei Province of China. 

The experimental instrument used is RT100-HP LIBS. 
The laser source is a nanosecond Q-switched Nd:YAG 
1 064 nm laser, meanwhile, it is equipped with a 670 nm 
red laser ablation point guiding laser to guide the user to 
select the ablation location. The laser ablation is uniform, 
ensuring efficient analysis of sample. The intensified 
charge coupled device (ICCD) detector and double-grating 
Cheney-Turner spectrometer are used to collect and ana-
lyze spectral signals. The TruLIBS emission spectrum 
database and powerful spectrum analysis tools are selected. 
In this experiment, the laser energy was 30 mJ, the laser 
spot size was 200 μm, the gain intensity was 80, the de-
tector sampling gate width was 3 μs, the spectrum detec-
tion delay was 2 μs, and the laser repetition frequency was 
4 Hz. Five rice varieties used in the experiment were 
Luoyou 9348, Jingyou Xindao, Y Liangyou 302, Huayun 
Fudao and e Fufengyou 11, numbered from Sample 1 to 
Sample 5. There were 25 rice seeds of each variety, a 
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total of 125 samples. Every seed was measured 20 times 
at different positions. Due to the limited wavelength 
range of the optical signal collected by the ICCD detec-
tor each time, it is necessary to perform multiple segment 
measurements on the sample to obtain full spectrum. A 
total of 11 segmented spectra were collected, as shown in 
Tab.1, where CWL means the central wavelength of the 
spectrum.   

  
Tab.1 Wavelength range of sectional spectra 

CWL (nm) Wavelength range (nm) Grating (mm) 
250 222.176—275.783 2 400 

290 263.623—314.187 2 400 

330 305.156—353.411 2 400 

370 346.488—390.207 2 400 

405 383.109—423.478 2 400 

440 420.188—455.561 2 400 

490 432.146—541.897 1 200 

570 515.755—619.844 1 200 

650 598.747—696.388 1 200 

730 682.758—772.428 1 200 

810 765.379—848.525 1 200 

 
There are obvious background noises in unprocessed 

spectra. These strong background noises affect the accu-
racy and stability of LIBS technology. Fig.1 shows the 
original spectrum and denoising spectrum. Take the three 
signal peaks with higher spectral intensity in Fig.1 as 
examples. Their signal-to-noise ratio (SNR) values are 
about 30.82 dB, 31.93 dB and 29.90 dB before denoising. 
After eliminating the background noise, their SNR values 
increase to 44.86 dB, 45.27 dB, and 40.43 dB, respec-
tively. Obviously, compared with the original spectrum, 
the spectral SNR after eliminating the background noise 
is significantly improved.  

Rice seeds are an organic matter, whose LIBS spec-
trum has atomic and ion spectrum lines, as well as mo-
lecular and molecular chain spectrum lines. Some spec-
trum lines will reduce the effect of type identification. 
Therefore, the spectral data need to be preprocessed. 
Fourier transform is a common tool in the field of signal 
processing, which can separate the signal from the inter-
ference and improve spectral SNR. However, the fre-
quency-domain data obtained by Fourier transform is not 
integer. If it is forced to be converted into integer, it will 
cause data loss. Secondly, the spectral signal of rice seed 
is relatively complex, so its frequency-domain informa-
tion is difficult to be represented by an image. Moreover, 
a frequency domain image can only reflect one fre-
quency spectrum, and cannot simultaneously reflect the 
phase spectrum. Therefore, we consider the inverse fast 
Fourier transform (IFFT) to preprocess data. The 
time-domain signal can be obtained by IFFT, and its in-
formation contained is exactly the same as that contained 
in the original spectrum, only the expression of informa-
tion different. The time-domain is less time-consuming 

and simultaneously obtaining all the information of all 
frequencies. Based on above reasons, this paper uses the 
IFFT as the data preprocessing method.    

 

 
 

  
Fig.1 Spectra of Sample 1 

 
The 11 segments of spectrum in Tab.1 were synthesized 

into a full spectrum with the wavelength range from 
222.176 nm to 848.948 nm. Fig.2(a) illustrates the full 
spectrum of sample 1 at the 1st, 5th, 10th, 15th and 20th 
measurement, respectively. Due to the unstable laser en-
ergy output at the beginning, the spectrum of the first 
measurement is quite different from that of other sampling 
points. Though the spectra of other four sampling points 
are similar, there are still slight differences between them. 
This is because the element contents at different positions 
on the sample surface are not completely consistent, and 
the element content has a certain relationship with the 
spectral intensity, then the spectrum measured each time 
fluctuates slightly. Similarly, there are also slight differ-
ences in morphology and element content of different 
seeds of the same variety, so their spectra also have a 
certain difference. Fig.2(b) shows the spectra of five 
seeds in Sample 1. To reduce the error caused by the 
above factors, the spectra of 20 sampling points were 
identified, and the identification results were averaged. 
Overall, the spectra of five rice varieties, as shown in 
Fig.2(c), are extremely similar, which makes it impossi-
ble to intuitively distinguish sample spectra to classify 
the samples. Therefore, it is required to combine chemi-
cal metrology to achieve identification.
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Fig.2 Full spectra of samples: (a) Sample 1 at the 1st, 
5th, 10th, 15th and 20th measurement; (b) Five seeds 
in Sample 1; (c) Five rice varieties 

Common chemical metrology methods include support 
vector machine (SVM), principal component analysis 
(PCA), back propagation (BP) neural network, etc. The 
sample data used in this work are large in scale, and 
SVM is difficult to implement for large-scale training 
samples. Besides, SVM is sensitive to parameter and 
kernel function selection. On the other hand, the 
time-domain signal intensity after IFFT has positive and 
negative value, which will result in unclear PCA com-
prehensive evaluation function and low naming clarity. 
The BP neural network has strong ability of nonlinear 
mapping, self-learning and adaptive, generalization and 
fault tolerance. So BP neural network is selected to es-

tablish the identification model. BP neural network refers 
to a multi-layer feedforward neural network trained by 
error BP algorithm. Its main framework consists of input 
layer, hidden layer and output layer, as shown in Fig.3. 
X1, X2,..., Xn are input signals, Y1, Y2,..., Ym are output 
signals, Wij and Wjk are connection weight matrix, and aj 
and bk represent weight bias. BP algorithm includes sig-
nal forward propagation and error back propagation. 
When propagating forward, the input signal acts on the 
output node through the hidden layer, and performs non-
linear transformation layer-by-layer to generate the out-
put signal. If the output signal is not the expected value, 
go to the back propagation of the error. The weights and 
thresholds of the network are iteratively adjusted ac-
cording to the negative gradient descent direction, and 
the objective function is continuously trained to mini-
mize the error. The weights and thresholds of BP neural 
network are randomly selected in the interval (0,1), and 
each weight bias is constant 1.  

There are many factors that affect the performance of 
network evaluation, such as the complexity of network 
topology and the number of trainings. The complexity of 
topology mainly lies in the number of hidden layers and 
neurons. If the network is too simple, its performance 
will not meet the requirements. If the network is too 
complex, it will lead to huge computation and time con-
suming. The number of hidden layers, neurons, and 
training times, the learning speed and the target value of 
the performance function need to be determined accord-
ing to the specific situation. The samples were divided 
into two groups, one was used for BP neural network 
training, and the other group was used for BP neural 
network testing. After testing multiple sets of neural 
network parameters, the BP neural network structure 
with one hidden layer was determined, and the numbers 
of neurons in the hidden layer and output layer were 30 
and 5 respectively. The network training times was 5 000, 
the learning speed was 0.08, and the target value of the 
performance function was 0.001. 

The identification rate of full spectrum before removing 
background noise is 86.14%, and that after denoising is 
87.42%. The identification effect after denoising is slightly 
improved, so the data used in the subsequent analysis are 
with denoising. To further improve identification accuracy, 
the time-domain spectrum of the sample was used for 
identification. As shown in Fig.4(a), the time-domain 
spectrum after IFFT is symmetrically  distrib-
uted. Therefore, to avoid the duplication of data and re-
duce the calculation amount of BP neural network, only 
the first 300, the first 500 and the first 1 000 data of the 
time-domain full spectrum were used for identifica-
tion. The analysis results are listed in Tab.2, where IA 
represents the average identification accuracy of 20 
measurement results, RSD represents the relative stan-
dard deviation of 20 measurement results, and IT repre-
sents the average identification time. When the first 500 
data of the time-domain full-spectrum are used for type 
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identification, its identification accuracy is the highest, 
which is 95.28%. Compared with the full spectrum be-
fore IFFT, its identification accuracy increases by 7.86%, 
and the identification effect is greatly improved. When 
the first 300 data and the first 1 000 data of the 
time-domain full spectrum are used for identification, 
their identification effects are similar, and the identifica-
tion accuracies are 92.16% and 92.63%, respec-
tively. Obviously, for time-domain full spectrum, the best 
identification effect can be achieved when using only the 
first 500 data for type identification. Less than this data 
quantity, it will lead to lower identification accuracy due 
to less useful information. More than this data quantity, 
the recognition difficulty will be increased due to the 
similarity of too much data, and the improving effect will 
be weakened. 

 

 
Fig.3 BP neural network structure 

 
When the first 500 data of time-domain full spectrum 

are used for identification, the identification errors are 
mainly as follows. Sample 2 was classified as Sample 3 
or Sample 3 was classified as Sample 2. These two types 
of errors account for approximately 84% of all errors. 
From Fig.2(c) and Fig.4(b), it can be seen that in both 
LIBS spectra and time-domain spectra, Sample 2 and 
Sample 3 are most similar. Meanwhile, the spectral dif-
ferences between Sample 1, Sample 4 and Sample 5 in-
crease after IFFT, while the spectral line difference be-
tween Sample 2 and Sample 3 becomes smaller and their 
spectral waveforms are more similar. Thus, it is prone to 
errors when identifying Sample 2 and Sample 3. 

Though the identification accuracy of time-domain 
full spectrum is high, its identification time is too long. 
At the same time, since only one ICCD detector is in-
stalled in the RT100-HP spectrometer, it is necessary to 
synthesize segmented spectra to obtain full spectra, and 
the whole measurement process takes a long time. To 
solve above problems, segmented spectra were used for 
identification study. Tab.3 demonstrates the analysis re-
sults. It can be seen from Tab.3 that the identification 
accuracy of segmented spectra is quiet low, and the iden-
tification effects are extremely poor. The identification 
rates of only three segments of spectrum are above 70%, 
and the CWLs of these three spectra are 370 nm, 405 nm 
and 810 nm, respectively. Moreover, their RSD values 
are lower, indicating that their identification results have 

higher stability and better reliability. Fig.5 shows that the 
spectra with the CWLs of 405 nm and 810 nm have 
higher SNR, so their identification accuracies are higher. 
The spectra with CWLs of 330 nm and 650 nm have lots 
of small-intensity signals and noises, and their SNR val-
ues are quite low. It is these noises and low-intensity 
signals that cause great interference to identification and 
weaken the identification effect.     

 

 
 

 
 
Fig.4 Time-domain full spectra of (a) Sample 1 and (b) 
five samples 
 
Tab.2 Identification results of time-domain full spectra 

Data size IA (%) RSD (%) IT (s) 

The first 300 data 92.16 5.19 35.75 

The first 500 data 95.28 3.79 39.75 

The first 1 000 data 92.63 3.20 31.94 

    
Overall, the identification effects of segmented spectra 

are not ideal. The reason may be that the useful informa-
tion contained in each segmented spectrum is not enough 
to distinguish the samples. Therefore, the three spectra
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with the highest identification accuracy were combined 
for identification. Among the four groups of combined 
spectrum identification, the identification rates of com-
bined spectra (370—405 nm and 370—810 nm) are not 
exceeding 80%, and these two combinations have little 
effect on improving identification effect. The identifica-
tion rates of other two combined spectra (405—810 nm 
and 370—405—810 nm) exceed 80%, and these two 
combinations contribute to improving the identification 
effect. The identification rate of 370—405—810 nm 
combined spectrum is slightly lower than that of 
405—810 nm combined spectrum, because the spectra 
with CWLs of 370 nm and 405 nm have overlapping 
parts of spectral lines, and the wavelength range of over-
lapping parts is from 383.109 nm to 390.207 nm. The 
overlapping part of the spectrum has a stronger peak, 
which has a greater impact on the identification. Conse-
quently, when the spectra with CWLs of 370 nm and 
405 nm are combined together to identify, the repetition 
of spectral information increases the difficulty of identi-
fication, and leads to a decrease in the identification ac-
curacy on the contrary. Similarly, when a spectrum with 
CWL of 370 nm is added to the combined spectrum of 
405—810 nm, its identification accuracy will also de-
crease. 

   
Tab.3 Identification results of segmented spectra  

CWL (nm) IA (%) RSD (%) IT (s) 

250 56.30 16.92 3.98 

290 65.42 10.04 3.67 

330 49.66 7.68 2.46 

370 72.92 6.95 5.87 

405 75.72 5.71 5.40 

440 57.68 11.49 3.49 

490 64.14 6.33 3.06 

570 68.76 5.82 2.50 

650 43.58 10.71 2.17 

730 60.56 10.10 4.19 

810 73.44 6.50 3.16 

370—405 77.10 4.69 7.72 

370—810 78.26 5.13 6.15 

405—810 82.10 5.18 7.02 

370—405—810 81.74 5.44 4.29 

 

 

 

 

 
Fig.5 Original segmented spectra with CWLs of (a) 
330 nm, (b) 405 nm, (c) 650 nm and (d) 810 nm, re-
spectively 

  
Next, the IFFT was performed on the segmented spec-

trum with the lowest identification rate (CWL of 650 nm), 
the three bands with the highest identification rate 
(CWLs of 370 nm, 405 nm and 810 nm) and the com-
bined spectrum 405—810 nm. Then their time-domain 
signals were input into BP neural network for identifica-
tion, and the analysis results are shown in Tab.4. Com-
pared with the identification result before IFFT, the iden-
tification accuracy of the time-domain spectrum with 
CWL of 650 nm increases by 11.55 % at most. It means 
that the IFFT can also improve the identification effect 
for the band with low identification rate, but the im-
provement is limited. Moreover, the identification effect 
of the time-domain segmented spectrum with CWL of 
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405 nm is significantly improved as well. Nevertheless, 
the identification rate of the time-domain spectra with 
CWLs of 370 nm and 810 nm decreases instead of rising. 
Fig.6 shows the time-domain segmented spectra. It can 
be seen from Fig.6(b) that the time-domain spectrum 
with CWL of 405 nm still has a high SNR, and the spec-
tral difference between samples also increases. So its 
identification effects are greatly improved when the 
time-domain spectral data with CWL of 405 nm are used 
for identification. While the signal intensity and SNR of 
the time-domain spectrum with CWL of 370 nm are quite 
low, as shown in Fig.6(a). Its spectral intensity undulates 
slightly before the 30th data, but the spectral intensity 
fluctuates around zero after the 30th data and the spectral 
line gets very gently, so there is almost no difference 
between the spectra of all samples. Likewise, for the 
time-domain spectrum with CWL of 810 nm, the differ-
ence between the other four samples is small except for 
Sample 3. And there is also almost no difference between 
the spectra of all samples after the 100th data. Therefore, 
although the time-domain spectrum with CWL of 810 nm 
has high SNR, its identification effect is also poor. The 
samples spectra with low SNR or high similarity will 
interfere with the identification and lead to low identifi-
cation accuracy.   

It can be found from Tab.4 that the identification ac-
curacies of time-domain spectra increase first and then 
decrease with the increase of the data used. Taking the 
segmented spectrum with CWL of 405 nm as an example, 
when the first 100 data were used for identification, the 
identification rate was 91.44%, which was increased by 
15.72% than that before IFFT. When the first 200 data 
were used for identification, the identification rate con-
tinued to increase to 94.36%. But when the first 300 data 
were used for identification, the identification rate de-
creased to 89.88%. Fig.6(b) shows that the spectral in-
tensity is higher and fluctuates greatly before the 200 
data, and there are great differences between the time 
domain spectra of the five samples. After the 200 data, 
the spectral intensity decreases to around zero, the spec-
tral line tends to level off, and the difference between the 
spectra is greatly reduced. The other time-domain spectra 
also have similar cases. Because IFFT can be regarded as 
a band-pass filter, which filters a large number of useless 
interference information and retains useful spectral in-
formation, so that the useful information is separated 
from interference information. The spectral band with 
tiny intensity in the time-domain spectrum is the inter-
ference information. The more the interference informa-
tion is, the worse the identification effect is. The effec-
tive information contained in the first 200 data of the 
time domain spectrum with a CWL of 405 nm is the most, 
so its identification accuracy is the highest, and the iden-
tification accuracy of the first 300 data is the lowest due 
to the increasing interference information.  

Tab.4 Identification results of time-domain segmented 
spectra   

IA (%) 
CWL  
(nm) The first  

100 data 

The first 

200 data 

The first  

300 data 

650 55.13 53.27 47.48 

370 69.63 63.85 56.33 

405 91.44 94.36 89.88 

810 76.26 62.66 45.74 

405—810 - 92.10 94.40 

 

 

 

Fig.6 Time-domain segmented spectra with CWLs of 
(a) 370 nm, (b) 405 nm, and (c) 810 nm, respectively
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The spectral intensity of the combined spectrum 
405—810 nm in time domain tends to zero after the 
300th data, and the spectral band after the 300th data is 
unfavorable for type distinction of samples. On the other 
hand, the useful information contained in the first 100 
data is too little for the combined spectrum, so it would 
be difficult to achieve the purpose of improving identifi-
cation effect. Therefore, only the first 200 data and the 
first 300 data of time-domain combined spectrum were 
used for identification analysis. When the first 200 data 
were used for identification, the identification accuracy 
was 92.10%, while when the first 300 data were used for 
identification, the identification accuracy was 94.40%. 
The identification effects of the time-domain combined 
spectrum are similar to those of the time-domain seg-
mented spectrum with a CWL of 405 nm, and their iden-
tification time is shorter, all within 10 s. It demonstrates 
that the segmented spectrum with a CWL of 405 nm 
plays a major role in identification of time-domain com-
bined spectrum, while the spectrum with CWL of 810 nm 
has little effect on the combined spectrum identification. 

The IFFT method based on LIBS has achieved good 
classification results for the identification of full spec-
trum, segmented spectrum with CWL of 405 nm and 
combined spectrum of 405—810 nm, and their identifi-
cation accuracies are above 94%. The identification ef-
fect of time-domain full spectrum is the best, but its 
measurement time and identification time are very long, 
which is not suitable for fast identification. The identifi-
cation time of time-domain segmented spectrum and 
combined spectrum is very short, which is more suitable 
for rapid batch detection of rice seeds. The combination 
of IFFT and piecewise modeling greatly reduces the data 
dimension of LIBS, and improves the identification ac-
curacy as well as speed. In future research, varieties of 
rice samples will be increased to further study the uni-
versality of LIBS for rice identification, and further im-
prove the identification accuracy and the stability of the 
identification results at the same time.  
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