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Simultaneous localization and mapping (SLAM) technology is a research hotspot in the field of intelligent mobile ro-

bot, and many researchers have developed many classic systems in the past few decades. However, most of the exist-

ing SLAM methods assume that the environment of the robot is static, which results in the performance of the system 

being greatly reduced in the dynamic environment. To solve this problem, a new dynamic object detection method 

based on point cloud motion analysis is proposed and incorporated into ORB-SLAM2. First, the method is regarded as 

a preprocessing stage, detecting moving objects in the scene, and then removing the moving objects to enhance the 

performance of the SLAM system. Experiments performed on a public RGB-D dataset show that the motion cancella-

tion method proposed in this paper can effectively improve the performance of ORB-SLAM2 in a highly dynamic en-

vironment. 
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In the field of intelligent mobile robots, simultaneous 
localization and mapping (SLAM) is one of the most 
basic and important functions, which can determine the 
environment perception ability of a robot. With the de-
velopment of RGB-D camera and computer vision, some 
advanced SLAM systems have achieved satisfactory 
performance, such as DVO-SLAM[1] and ORB- 
SLAM2[2]. 

However, the results of many current slam algorithms 
are obtained under the assumption that the surrounding 
environment is static. But this assumption is usually in-
correct in the real environment because moving objects 
in a real scene are inevitable. Therefore, these algorithms 
do not work well in real scenarios with dynamic objects. 
In some cases, the movement of objects in the scene will 
affect the quality of state estimation, and even lead to 
system failure. For example, in the environment, dynam-
ic objects (pedestrians, animals) will cause inaccurate 
feature matching between the front and rear frames, and 
cause the SLAM system to record the object in the final 
generated map, which affects the accuracy of the gener-
ated map[3]. Therefore, how to keep the stability of the 
existing slam algorithm in dynamic scenarios is still a 
challenge.  

In fact, some classic SLAM systems are robust to dy-
namic environments. For example, RANSAC matching[4], 
They can adapt to a small number of dynamic changes in 
the scene. However, when dynamic objects occupy a 
large proportion in the environment, a specific method is 

needed to distinguish moving objects and static scenes. 
In recent years, with the continuous research on slam 
problem, for dynamic scenes, it is roughly divided into 
two methods: geometric angle and deep learning meth-
ods. The most typical geometric angle is the method us-
ing optical flow method and depth data correlation[5]. 
And deep learning focuses on using learning methods to 
find out the dynamic objects that may exist in the scene 
and then discriminate them[6]. 

In this paper, in order to improve the robustness of the 
slam system in a dynamic environment, based on point 
cloud motion analysis[7], we propose a new method to 
detect dynamic objects by using point cloud motion vec-
tor information, focusing on detecting and filtering dy-
namic objects in real scenes. This method only uses 
three-dimensional (3D) point cloud information, so it is 
robust to light changes. At the same time, the method is 
incorporated into ORB-SLAM2, as the preprocessing 
stage, which is used to detect the dynamic objects that 
appear in the scene. Experiments on public RGB-D da-
tasets show that our method performs well. 

The main contributions of this paper are as follows: 
1. A new method of dynamic object detection is pro-

posed. This method only uses RGB-D data to detect dy-
namic objects that appear in the scene. 

2. Based on ORB-SLAM2, a thread for detecting dy-
namic objects is added, and the robustness and accuracy 
of SLAM are improved by filtering dynamic objects in 
dynamic scenes by combining RGB images. Experiments 
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are performed on the TUM RGB-D dataset, and the re-
sults prove the effectiveness of the method in improving 
the ORB-SLAM2 system in a dynamic environment. 

The original design of the SLAM system is based on 
the assumption that the scene is static. This leads to the 
drift and even loss of attitude estimation due to the lack 
of effective processing of dynamic objects in a dynamic 
environment. 

To solve this problem, dynamic object removal is re-
quired for the images captured by the camera. In the past 
few years, many methods for removing moving objects 
have been proposed. The optical flow method is a very 
classic algorithm for detecting dynamic objects in a sce-
ne[8]. It uses the changes in the time domain of pixels in 
the image sequence and the correlation between adjacent 
frames to find the correspondence between the previous 
frame and the current frame Relationship to calculate the 
motion information of objects between adjacent frames. 

For RGB-D data, DEWAN et al[3] found matching 
sparse feature pairs from two frames of RGB-D data, 
segmented them into different motion groups, and pro-
cessed outliers and dynamic scenes in this way. SCONA 
et al[9] proposed an RGB-D SLAM system based on 
Surfel, which simultaneously estimates the pose of the 
RGB-D camera and divides the static pixels in the cur-
rent frame of the picture. 

Besides, some methods are not just using motion seg-
mentation, including CubeSLAM[10] and ClusterVO[11]. 
They use 3D object detection methods to extract objects 
from a single frame of images and provide more con-
straints through the BA adjustment stage of the detected 
objects to improve the robustness of the dynamic SLAM 
system. 

With the development of deep learning, DynaSLAM[6] 
try to integrate semantic segmentation and geometric 
judgment methods to deal with dynamic scenes. In 
Ref.[6], a new one can be improved simultaneously the 
semantic segmentation framework, the segmentation, and 
visual SLAM are performed in an interweaved method 
and the results are used to refine each other. 

Considering that there may not necessarily be a relia-
ble static structure in complex dynamic scenes, research-
ers try to further improve the accuracy of camera pose 
estimation by tracking and estimating a series of attrib-
utes such as the pose change and speed of moving ob-
jects in the scene, such as VDO-SLAM[12] and 
DynaSLAM2[13]. 

Many of the systems mentioned above[6,9-13] use deep 
learning methods more or less. In some cases, the bot-
tleneck caused by the speed of deep learning is the sys-
tem cannot be implemented in real-time. Different from 
other dynamic SLAM with deep learning, our method 
only uses 3D information, we do not rely on CNN to 
detect specific objects (pedestrians, vehicles), we are 
targeting certain moving objects in 3D scenes. These 
moving objects can be in any category, and detecting 
them does not require additional training. Our method 

can be easily extended to outdoor scenes. 
In this section, a dynamic detection method is pro-

posed to improve the performance of ORB-SLAM2 in 
dynamic scenes. The overall process of our SLAM 
framework is illustrated in Fig.1. First of all, the RGB 
image and depth image captured by Kinect2 is processed 
in the tracking thread and the dynamic detection thread at 
the same time. First, the tracking thread extracts the ORB 
feature points of the current frame. Then, according to 
the segmentation result obtained by the dynamic detec-
tion thread, the tracking thread filters out the ORB fea-
ture points located in the dynamic object, thereby ob-
taining a more accurate attitude estimation result. Next, 
the method of detecting dynamic objects will be de-
scribed in detail. 
 

  
Fig.1 The overview of SLAM framework 

 
The first step of the method requires different element 

segmentation based on the 3D point cloud for object de-
tection[14]. Firstly, the obtained point cloud frame is 
gridded by voxel, which is to remove the outliers in the 
point cloud and ensure that there is no excessive noise in 
the point cloud. The filtered point cloud is divided into a 
set of point cloud clusters Pi by Euclidean clustering. For 
each point cloud cluster Pi, their centroids are calculated 
for later detection. 

Due to the limitation of the camera range, the incom-
plete shape of some objects may form trivial and unreli-
able features. In order to ensure the effect of point cloud 
segmentation and the accuracy of detecting dynamic ob-
jects, this paper ignores clusters of less than 200 points. 

For each input frame, suppose P is one of the objects 
in the input segmentation result, let P1 be its most similar 
object in the previous frame:  

 2
: cB y P y P r    ,                   (1) 
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where r is determined by the distance of object from the 
camera. Then calculate the motion vector W(P) of P by 
the following equation: 

   T
arg max

x B

P x
 

 W V .                 (3) 

Eq.(3) can be transformed into a problem of finding a 
singular value vector of a matrix M where each row is 
V(x). 

 
Tab.1 The algorithm for detecting dynamic objects 

 

Algorithm 1: dynamic objects detection 

Input: point cloud array X = X1, …, X9 

Output: mask-image 

  Point cloud segmentation P=Segment(X4) 

  For each Pi∈P 

    Compute motion vector Wi 

For each Xi∈X do 

      Compute histogram Hi 

    End for 

    Construct motion matrix M 

Compute the line integral value δ using line detection 

algorithm on M 

If δ>τ then 

Pi is dynamic 

Else 

Pi is static 

End if 

End for 

Create the mask-image by the P 

 
According to the motion vector W(P), we can get the 

projected histogram of P in the W direction by the fol-
lowing equation:  

   T

, : ,cP x P
D P d d x P

r

      
  

W
W .     (4) 

Considering that the structure of the local point sets is 
preserved, so at time t, the local point set moving in the 
W(P) direction is homomorphic[7]. Then through the 
projection distance of its point set and its motion vector 
W(P), the position of the object can be found recursively 
at each moment. Therefore, we calculate a histogram of 9 
bins by superimposing a total of 9 frames of point clouds 
before and after. The bin in the histogram at each time is 
the projection distance of the object on the motion vector 
W(P). 

To obtain the motion relationship between the objects 
from the histogram, we fixed each bin into n parts ac-
cording to the distance, in order to obtain a 9×n 
two-dimensional (2D) matrix. Then calculate the line 
integral in the 2D matrix by applying the line detection 
algorithm to the matrix. Because the position of a static 
object is almost constant, its line integral value must be 
very small. With this in mind, we think that if the line 
integral value is greater than a certain threshold τ, it is a 

dynamic object. After experiments, we have concluded 
that τ=0.25×SP (SP is the total number of points in the 
object P) is a reasonable choice. 

Each point in the point cloud can find the correspond-
ing location in the original image. Therefore, we can find 
the location of the dynamic object directly in the original 
image. The output of the dynamic detection thread is a 
mask of the same size as the original image. The mask 
has only one channel. If a point in the point cloud be-
longs to a dynamic object, its pixel at the corresponding 
position in the image is set to 1, if it is a static object, it is 
set to 0. 

After detecting the ORB feature points of the image, 
all ORB feature points belonging to the dynamic object 
can be filtered out before matching. In this way, the ef-
fect of dynamic objects on the matching effect can be 
significantly reduced. Fig.2 demonstrates some selected 
detection results using the dynamic objects datasets. As 
we can see, our approach is able to detect moving objects 
effectively in various challenging scenarios. 

 

 
 
Fig.2 Detect results using the TUM dynamic objects 
datasets  
 

In this section, experimental results will be provided to 
demonstrate the effectiveness of our method in a dynam-
ic environment. We performed experiments using the 
public dynamic TUM RGB-D dataset and compared it 
with the original ORB-SLAM2 to quantify the improve-
ment of our method in dynamic scenarios. Some images 
of ORB-SLAM2 at runtime are selected to illustrate the 
effectiveness of our method detection in real scenarios. 
Besides, we show the effect of using dynamic detection 
methods on datasets in their own generated dynamic en-
vironment. We ran each sequence ten times to avoid un-
certainty in dynamic scenes. All the experiments are 
performed on a computer with Inter i7 CPU, 16 GB 
memory. 

The TUM RGB-D dataset[15] provides multiple sequ- 
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ences in a dynamic environment. The dataset contains 
the color and depth images of a Microsoft Kinect sensor 
along the ground-truth trajectory of the sensor. The data 
was recorded at full frame rate (30 Hz) and sensor reso-
lution (640×480). In the sitting sequence, there are two 
sitting on a chair and speaking and gesturing, this is a 
low dynamic movement. In the walking sequence, two 
people are walking back and forth at the desk, sometimes 
sitting back in the chair, and sometimes walking out of 
the camera, the scene is highly dynamic. The walking 
sequence is mainly used in our experiments because in 
this highly dynamic environment, the robustness and 
accuracy of the SLAM system will be greatly affected. 
We used four types of camera self-motion sequences to 
test: static, xyz, rpy, and halfsphere. 

Absolute trajectory error (ATE) and relative posture 
error (RPE) are two indicators used for quantitative 
evaluation. The metric ATE measures the global con-
sistency, and the metric RPE measures the odometry 
drift. 

Tabs.2—4 show the results of the quantitative com-
parison, where the first column of xyz, static, rpy, and 
half represent the four types of camera self-motion. 
“Without our method” means using the original 
ORB-SLAM2 system. The term “use our method” means 
that our method of removing dynamic objects is inte-
grated into ORB-SLAM2. The values of root-mean- 
square error (RMSE), mean error, median error and 
standard deviation (S.D.) are introduced in this article, 
while RMSE and S.D. are more worthy of attention be-
cause they can better indicate the robustness and stability 
of the system. We also show the improved performance 
of ORB-SLAM2 after adding our method of removing 
dynamic objects compared to the original ORB-SLAM2. 
The improvement values in the table are calculated as 

100%
 

   

 
,                      (5) 

where η represents the improvement value, α represents 
the value without our approach, and β represents the 
value with our approach. 

From Tab.2, It can be seen that there is the average 
RMSE and S.D. high dynamic sequences have improved 
values of 80.18% and 77.00%, respectively. This shows 
that for high dynamic scenarios, our method can greatly 
improve SLAM performance in terms of ATE. At the 
same time, our method also enhances the stability of 
ORB-SLAM2 in dynamic scenarios. By examining 
RMSE values, we find that our method brings more im-
provements in static and xyz sequences. Tabs.3 and 4 
show the performance of the visual odometer. As we can 
see, the results are consistent with the ATE analysis de-
scribed above. 

We compare our system with several of the latest 
RGB-D SLAM systems designed for dynamic environ-
ments: 

VO-SF[8] is odometry-based methods. Its idea is simi-
lar to ours, it also uses scene flow for dynamic object 

detection. 
 

Tab.2 Results of metrics ATE 
 

 Without our method With our method Improvement

RMSE S.D. RMSE S.D. RMSE S.D.

Static 0.405 0 0.148 5 0.012 1 0.005 6 97.00% 96.22%

xyz 0.588 5 0.508 2 0.018 2 0.009 0 96.90% 98.22%

rpy 0.914 8 0.452 0 0.332 3 0.232 8 63.67% 48.49%

Half 0.533 5 0.260 3 0.167 5 0.054 9 68.65% 78.89%

 
Tab.3 Results of metrics translational drift  

 
 Without our method With our method Improvement

RMSE S.D. RMSE S.D. RMSE S.D.

Static 0.579 5 0.403 6 0.022 5 0.005 6 96.10% 96.76%

xyz 0.836 9 0.472 3 0.026 3 0.009 0 96.85% 97.37%

rpy 1.368 4 0.779 2 0.497 8 0.232 8 63.62% 50.47%

Half 0.792 0 0.492 4 0.284 1 0.054 9 64.16% 63.41%

 
Tab.4 Results of metrics rotational drift  

 
 Without our method With our method Improvement 

RMSE S.D. RMSE S.D. RMSE S.D. 

Static 10.558 9 7.342 3 0.524 0 0.306 4 95.04% 95.83%

xyz 15.952 1 9.063 4 0.648 0 0.332 7 95.94% 96.33%

rpy 25.129 4 15.581 0 9.257 4 7.443 8 63.16% 52.23%

Half 18.497 0 10.966 0 3.985 4 2.294 8 78.45% 79.07%

 
MR-DVO[5] detecting the motion of moving objects 

based on self-motion compensation image difference. 
StaticFusion[9] simultaneously estimate the motion of 

the camera and the probabilistic static/dynamic segmen-
tation of the current RGB-D image pair. Then use this 
segmentation for weighted dense RGB-D fusion, and use 
the 3D model for frame-to-model alignment and stat-
ic/dynamic segmentation. 

Tab.5 shows the results of these methods and our 
method in 3 high dynamic sequences. As we can see, in 
the static and xyz data sets, our method is superior to 
other methods, its ATE is just around 1—2 cm. But in 
the fr3/half dataset, the result of our method is not very 
good, it’s around 10 cm away from the best result.  

 
Tab.5 Results of metric ATE 

 
 VO-SF StaticFusion MR-DVO Our method

Static 0.327 0.014 0.065 0.012 

xyz 0.874 0.127 0.065 0.018 

Half 0.739 0.391 0.066 0.167 

 
Real-time performance is a key indicator for evaluat-

ing the SLAM system. Tab.6 shows the time required for 
some of the main modules in our method. The average 
time for dynamically judging objects is 0.373 s per frame, 
which is mainly spent on constructing movement Histo-
gram through the point clouds of the adjacent frames.  
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Compared with some other methods of detecting dy-
namic objects, such as DynaSLAM[6], which takes more 
than 0.5 s per frame to detect dynamic objects, our 
method is more suitable for real scenes. 

 
Tab.6 Time evaluation  

 
Module Compute motion 

vector 

Dynamic object 

judgement 

Remove 

outliers 

Time (s) 0.007 0.373 0.026 

 
Figs.3 and 4 show the ATE and RPE diagrams select-

ed from the ORB-SLAM2 without our method and the 
ORB-SLAM2 with our method with a highly dynamic 
xyz sequence. As we can see, errors in the ORBSLAM2 
with our method have been greatly reduced. 

 

 
 

 
 

Fig.3 Results from ORB-SLAM2 without our method 
 

 

 

Fig.4 Results from ORB-SLAM2 with our method 
 

In this paper, we propose a method to detect dynamic 
objects in the scene by using point cloud motion vector 
information and improve the performance of the SLAM 
system in a high dynamic scene by filtering out dynamic 
objects. The method only needs to provide RGB-D data 
to determine whether there are dynamic objects in the 
scene. The method has been paralleled into ORB- 
SLAM2 to act as a preprocessing phase to filter dynamic 
objects in the image. In the experimental section, the 
method is evaluated using a high dynamic sequence in 
the RGB-D dataset. The results show that our method 
can effectively improve the performance of ORBSLAM2 
in various dynamic scenarios. However, our method has 
some limitations, when the moving object is still, it will 
reduce the accuracy of detection of the object. Because 
this method can detect and determine moving objects, 
but it cannot identify those stationary and possibly mov-
ing objects. In the future, we hope to incorporate seman-
tic segmentation methods, by marking those objects that 
may move as candidates for tracking, if they will move 
in the future, then we will treat them as dynamic objects. 
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