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Crowd counting is a challenging task, which is partly due to the multiscale variation and perspective distortion of 

crowd images. To solve these problems, an improved deep multiscale crowd counting network with perspective 

awareness was proposed. This network contains two branches. One branch uses the improved ResNet50 network to 

extract multiscale features, and the other extracts perspective information using a perspective-aware network formed 

by fully convolutional networks. The proposed network structure improves the counting accuracy when the crowd 

scale changes, and reduce the influence of perspective distortion. To accommodate various crowd scenarios, 

data-driven approaches are used to fine-tune the trained convolutional neural networks (CNN) model of the target 

scenes. The extensive experiments on three public datasets demonstrate the validity and reliability of the proposed 

method.  
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With the development of the economy and society, the 

law of crowd activity has been attracting increasing at-

tention from researchers. Crowd counting provides a 

quantifiable digital foundation for crowd activity laws 

and plays an important role in traffic monitoring and risk 

control in cities. The development of crowd counting 

mainly revolves around convolutional neural networks 

(CNN). Given the further improvement of graphics 

processing unit, the detection method of crowd counting 

continuously emerges. 

Crowd counting methods are divided into three cate-

gories: methods based on feature detection, regression, 

and density map. The methods based on pedestrian fea-

ture detection are implemented by designing a pedestrian 

detector to detect human body contours or head features 

and calculate the number of individuals. One example of 

these methods is the traditional human body feature de-

tection based on histogram of oriented gradients
[1]. 

However, the posture of the human body in crowd im-

ages is complex and variable. Regression-based ap-

proaches learn manual features from the input images 

and subsequently use a machine learning model to map 

the relationship between the features and the counts. The 

regression model is established through methods that 

directly map the relationship between the crowd image 

and the count, such as support vector machine[2] and deep 

learning. However, some effective manual features are 

difficult to capture such challenge reduces the accuracy 

and robustness of regression-based methods. 

Methods based on density map consider the crowd 

counting problem as estimating a continuous density 

function that integrates feature maps to determine the 

number of persons. These approaches are the current 

mainstream method for crowd counting. Compared with 

the feature detection and regression-based methods, den-

sity maps not only provide information about the number 

of individuals, but also indicate the distribution of pedes-

trians. This advantage allows the model to effectively fit 

the original image. The density map of crowd images can 

be obtained using CNNs. 

The problem of the scale change of pedestrian targets is 

one of the main factors affecting the performance of 

crowd counting. To solve the problem of multiscale 

change in crowd images, Zhang et al[3] proposed a 

multi-column CNN (MCNN) that uses three different 

columns of branches to determine different crowd densi-

ties and extract parallel scale variation information. Sam et 

al[4] introduced the switching CNN, which uses a classifier 

to explicitly select one of the three branches for a given 

input image in accordance with its crowd density level. 

Cao et al[5] proposed an encoder-decoder network called 

scale aggregation network (SANet), which uses modules 

similar to the Inception architecture to extract multiscale 

features and improves the quality of the density maps 

through deconvolution. Li et al[6] presented a sin-

gle-column CNN method based on dilated convolution, 
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i.e., congested scene recognition net (CSRNet). The front 

end uses a VGG-16 network that removes the fully con-

nected layers to extract features, whereas the back end 

utilizes dilated convolution to analyze highly crowded 

scenes. In order to reduce the influence of perspective 

distortion in crowd images, perspective information is 

used in ground truth or body part mapping to normalize 

the proportion of pedestrians. Idrees et al[7] used locally 

consistent proportional prior maps to detect and calculate 

densely populated people. Arteta et al[8] utilized depth 

maps to predict the size of field objects and count them. 
With the deepening of research methods[9,10], the accuracy 

of population counting has been continuously improved. 

However, the problems caused by scale changes and per-

spective distortion have not been effectively solved. 

The multi-column CNN structure addresses the prob-

lem of scale change within a certain range. However, 

integrating and utilizing the multiscale features learned 

by different CNN structures without losing information 

while reducing the influence of perspective distortion to 

generate high quality density maps remains a challenge. 

Therefore, an improved deep multiscale CNN with per-

spective awareness is proposed in this study. 

One branch adopts a network structure similar to that 

of ResNet50[11] to remap the multiscale features of the 

images. Four convolutional blocks are used in the middle 

to extract different scale features. Each convolutional 

layer is followed by a batch normalization layer and a 

rectified linear unit (ReLU) activation function. The set-

ting of the residual block allows the input to skip the 

convolution and be added directly before the final activa-

tion function, so that it can extract accurate multiscale 

visual information and train an effective deep neural 

network. Another branch introduces the perspective 

awareness network (PAN) with a fully convolutional 

network (FCN) structure containing five convolutional 

layers. After obtaining the perspective map, the local 

pattern consistency between this and the ground truth 

map is measured using the DSSIM loss. The Euclidean 

distance of each pixel between the ground truth map and 

the density map generated by the network is used as a 

loss function to optimize the predicted density map while 

reducing the difficulty of network training and improving 

the accuracy of crowd counting. Finally, the outputs of 

the two branches are fused through fully connected lay-

ers to obtain the estimated density map. 

In this study, an improved deep multiscale crowd 

counting network with perspective awareness is pro-

posed. This paper also adopts a patch-wise strategy that 

utilizes an image patch X as the input of the networks. 

Unlike the traditional neural network-based density es-

timation methods, the mapping from scene patches to 

density maps has singly one branch, whereas the multi-

task learning framework uses another network branch for 

perspective awareness. The outputs of the two branches 

are concatenated, and the number of pedestrians is ob-

tained through integration after mapping using the fully 

connected neural networks.  

The architecture of the proposed network is shown in 

Fig.1. Information transmission in the traditional CNN 

requires layer-by-layer connection, which means that 

the information input of any layer in the network is a 

reflection of the information output from a previous 

layer. But such information transmission will lead to 

loss of information more or less. ResNet network solves 

this problem to some extent
[11]. It safeguards the integ-

rity of information by directly transmitting the input 

information through cross-layer connection. And the 

entire network only needs to learn the part that differs 

between input and output, which makes it easier and 

more simple to learn. As shown in Fig.2, cross-layer 

connectivity is a direct connection from a lower level of 

the network to a higher level of the network, introduc-

ing additional connections between the original input 

and output channels. Thus, multiple scales of receptive 

fields in the network will be generated as a result as 

multiple connections different in network depths be-

tween inputs and outputs play a role. Cross-layer con-

nectivity can be approximately considered as the multi-

layer CNN model, different only in that cross-layer 

connectivity enables the extraction of multiscale fea-

tures through low-level feature multiplexing. 

 

Fig.1 Architecture of the proposed network
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Fig.2 The improved ResNet50 network 

 

This study improved the ResNet50 network to intro-

duce beneficial modifications to the original one, which 

is used for crowd counting. The final average pooling 

layer and fully connected layer are removed, but all 

convolutional layers are retained. The input size of the 

original Resnet50 network is 224×224, and the output 

size of the final convolution is 7×7, that is, the feature 

map generated by the last convolutional layer has a spa-

tial resolution of approximately 1/32 of the input image. 

This is achieved using the CNN with a first convolution 

kernel of 7×7 (stride of 2), a max pooling layer of 3×3 

(stride of 2), and four different convolutional blocks. The 

backbone of Resnet50 is made up of four multiscale units, 

each with two additional cross-layer connections, gener-

ating three receptive fields different in size. By cascading 

the multiscale units in Resnet50, the number of receptive 

fields with different sizes can be greatly increased. To 

ensure the spatial resolution of the crucial output density 

maps in crowd counting, an upsampling layer starter 

module is added from the last of the original ResNet50 

network. Therefore, when the input size is 2
n, the output 

of the modified network is exactly 1/8 spatial resolution 

of the input image. The pretrained weights can be di-

rectly loaded and used because the number of parameters 

of the network structure did not change.  

Unlike in existing works, the perspective map in the 

present study is used to extract more salient features for 

density mapping estimation under the multitask learning 

framework. The PAN is then added to guide the genera-

tion of density maps, which comprises conv1—conv5. 

Each convolutional layer is followed by a ReLU activa-

tion function, which is populated to make it identical to 

the last layer. The network structure is described as 

conv1(32,7)-conv2(64,5)-pool3(2)-conv3(128,3)-conv4 

(256,3)-conv5(1,1), where ‘conv’ represents a convolu-

tion layer, and ‘pool’ represents a max-pooling layer. 

Numbers in the parentheses are respectively number of 

channels and kernel size. The regression perspective af-

ter conv5(1,1) has exactly 1/16 resolution of the input 

image.  The input image is further upsampled to 1/8 

resolution to obtain the final perspective view. The 

ground truth perspective map is then downsampled to 

match the size of the predicted density map. 

The perspective map plays an important role in the 

generation of density maps. The ground truth perspective 

value of pg each mapped pixel is defined as the number 

of pixels that represent one meter at that location in the 

real scene. Therefore, the size of the object observed in 

the image is related to the perspective value. The tradi-

tional method for calculating the value of perspective 
g

jp  is to interpret the sample perspective values in terms 

of human height, that is, 
( )

h

f C Hy
z
�

� ,                           (1) 

where yh is the observed position of the human head in 

the image plane, h is the height of the observed person, z 

is the optical depth of the observed person, and pg is cal-

culated as 

g 1
h

hp y
H C H

� �
�

.                        (2) 

To generate a perspective view of the crowd image, 

the general approximate is set to the average height of 

1.75 m. Given that C is fixed for each image, pg becomes 

a linear function of yh and remains unchanged in each 

row. To estimated image C, the heights of several pedes-

trians at different positions in each image are manually 

marked, linear regression method is then used to fit Eq.(2) 

to generate the entire ground truth perspective map. The 

ground truth perspective map generated using this 

method is displayed in Fig.3.  

 

 

Fig.3 (a)–(c) Original images and (d)–(f) the corre-
sponding ground truth perspective maps 
 

Two loss functions are used to optimize the network. 
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The first is the Euclidean loss function (L1), which is 

applied to the density map estimation. This function is 

used to estimate the difference between the ground truth 

and estimated density maps in the crowd count estima-

tion network module. 
2
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where Θ represents the parameter model, F(Xi; Θ) de-

notes the final output of the ResNet50 network, Xi is the 

ith input image, and Fi is the ground truth. 

The second loss function LDSSIM (L2) is applied to the 

PAN. The DSSIM loss estimates the local pattern con-

sistency between the perspective and ground truth maps. 

This loss is derived from the structural similarity (SSIM). 
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where E and G denote the perspective and ground truth 

maps, respectively. The mean value ,( )
i iE GU U  and stan-

dard deviation ( ), ,
i i i iE G EG� � �  are calculated using a 

Gaussian filter, and constants C1 and C2 are included to 

prevent the denominator from being zero. Therefore, the 

overall loss for proposed network structure is expressed 

as follows: 

L=L1+αL2,                                 (6) 

where the coefficient α is a hyper parameter that balances 

the relative weight of losses. 

Extensive experiments were conducted on published 

datasets to evaluate the performance of the proposed 

network. Moreover, a comparative analysis with other 

existing advanced methods was conducted.  

The ShanghaiTech dataset consists of two parts: 

Part_A and Part_B. The UCF-CC-50 dataset contains 50 

images with minimum and maximum counts of 94 and 

4 534, respectively. The UCF-QNRF dataset contains 

1 535 high-resolution images, among which 1 201 im-

ages are used for training and 334 images are used for 

testing. The details of these datasets are summarized in 

Tab.1. 

Tab.1 Comparison of dataset statistics 

Dataset 
Number 

of images 

Average 

count 

Number of 

annotation 

ShanghaiTech(A) 482 501 241 677 

ShanghaiTech (B) 716 123 88 488 

UCF_CC_50 50 1 279 63 974 

UCF-QNRF 1 535 815 1 251 642 

 

Two metrics are used to evaluate the performance of 

the different models in the experiments, namely, mean 

absolute error (MAE) and mean square error (MSE). 

MAE and MSE are used to measure the accuracy and 

robustness of the model prediction, respectively. 

1
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The model is implemented on the basis of the Pytorch 

network framework, the network is trained with the 

Adam optimizer. The initial learning rate is set to 1×10-5, 

with a decay of 0.1 after every 50 epochs. The total 

number of training epochs is set to 400 to facilitate an 

effective model convergence. 

Tab.2 shows that the proposed method achieves an 

MAE and MSE of 65.3 and 108.4 for the relatively dense 

Part_A, and the best MAE of 8.1 and the second best 

MSE of 13.3 for the more realistic Part_B. The perform-

ance is improved compared to other crowd counting al-

gorithms. Fig.4 shows the true and estimated density 

maps for the test images in the ShanghaiTech dataset. 

The visualization results are closer to each other as can 

be seen by comparison, which further demonstrates the 

effectiveness of the proposed method. 

 

Tab.2 Comparison on ShanghaiTech dataset 

ShanghaiTech 

Part_A 

ShanghaiTech 

Part_B 

 

Method 

MAE MSE MAE MSE 

MCNN [3] 110.2 173.2 26.4 41.3 

Switching CNN[4] 90.4 135.0 21.6 33.4 

MSCNN[12] 83.8 127.4 17.7 30.2 

CSRNet[6] 68.2 115.0 10.6 16.0 

SANet[5] 67.0 104.5 8.4 13.6 

ESRN[17] 64.1 104.1 8.3 12.8 

DADNet[13] 63.7 107.4 9.4 15.1 

TEDNet[14] 64.2 109.1 8.2 12.8 

Proposed method 65.3 108.4 8.1 13.3 

 

 

Fig.4 Results on ShanghaiTech dataset, where the 
number inside the parenthesis indicates the count 
 

Compared with other datasets, the UCF-QNRF dataset 

has a large variation in crowd scale. The experimental 

results on the UCF-QNRF dataset are presented in Tab.3. 

The proposed method obtains the best MAE and a 
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competitive MSE. The MAE value of the proposed 

method decreases by 2.5% compared to TEDNet, which 

has the advantage of dealing with the scale change prob-

lem. Compared with other advanced methods, the gener-

ated model can count people in different densities. The 

details of the findings are depicted in Fig.5. 

 

Tab.3 Comparison on UCF-QNRF dataset 
Method MAE MSE 

MCNN[3] 277.0 426.0 

Switching CNN[4] 228.0 445.0 

PCCNet[15] 148.7 247.3 

CSRNet[6] 122.1 192.9 

DADNet[13] 113.2 189.4 

TEDNet[14] 113.0 188.0 

Proposed method 110.1 197.8 

 
 

 

Fig.5 Results on UCF-QNRF dataset, where the num-
ber inside the parenthesis indicates the count 
 

Tab.4 shows the comparison of the performances of 

several methods trained on UCF_CC_50 dataset. The 

proposed method achieves the best MAE (245.3) and 

MSE (318.8) among the compared approaches. Com-

pared to TEDNet, the ResNet network is simple and the 

network depth is deep enough. The inclusion of 

cross-layer connectivity network branches also ensures 

the integrity of the information. The details of the results 

are shown in Fig.6. 

The initial set of network was trained with 200 epochs, 

and after gradually increasing to 400 epochs, the network 

gradually converges. Despite spending a long time train-

ing the model, the proposed method demonstrates a bet-

ter feature extraction performance in scenes with ex-

tremely dense crowds. In summary, the above results 

show that the proposed method not only achieves excel-

lent performance in scenes with large variation of crowd 

target scales, but also still achieves low counting errors 

in scenes with extremely dense crowds. 

To more effectively verify the effectiveness of the 

proposed method when the scale changes. 1) The effec-

tiveness of crowd scale variation between different im-

ages. 100 crowd images with large scale variation were 

selected from the above three datasets for validation in 

this paper. And compared with the published PCCNet, 

CSRNet and DADNet, the prediction accuracy in the 

above datasets were 81.7%, 85.1% and 86.1% respec-

tively. But the proposed method has the best prediction 

accuracy of 86.4%. 2) The effectiveness of scale changes 

under the same crowd image. An image was randomly 

selected from the above and the visualization results as 

shown in Fig.7. After enlarging and shrinking the red 

box area of image A, images B and C are obtained. The 

proposed method still obtains more accurate counts, and 

has good adaptability to different scales of crowd images. 

In conclusion, the proposed method improves the count-

ing accuracy when the population scale changes. 
 

Tab.4 Comparison on UCF_CC_50 dataset 

Method MAE MSE 

MCNN[3] 377.6 509.1 

IG-CNN[16] 291.4 349.4 

DADNet[13] 285.5 389.7 

CSRNet[6] 266.1 397.5 

SANet[5] 258.4 334.9 

TEDNet[14] 249.4 354.5 

Proposed method 245.3 318.8 
 

 
Fig.6 Results on UCF-CC-50 dataset, where the num-
ber inside the parenthesis indicates the count 

 
 

Fig.7 Results on scale changes, where the number 
inside the parenthesis indicates the count 
 

The ResNet50 network exhibits positive results in 

crowd counting. Tab.5 presents the detailed result of the 

ablation study. The findings indicate that the addition of 

PAN improves the counting accuracy. The perspective 

map strengthens the connection among local pixels while 
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making the details of the generated density map easier to 

learn for the network. This phenomenon results in a den-

sity map with improved quality (Fig.8). The density map 

generated by the ResNet50+PAN network architecture 

reflects the crowd distribution better than that generated 

by ResNet50 alone. The results show that PAN can ef-

fectively eliminate perspective distortion and obtain 

more accurate scene expression capabilities. 

 
Tab.5 Ablation study on ShanghaiTech dataset 

Shanghaitech 

Part_A 

Shanghaitech 

Part_B Method 

MAE MSE MAE MSE 
ResNet50 (only) 67.3 112.6 10.5 15.5 

ResNet50+PAN 65.3 108.4 8.1 13.3 
 

 
Fig.8 Results on ablation study, where the number 
inside the parenthesis indicates the count 
 

In this study, the effectiveness of ResNet50 network in 

crowd counting is investigated. An improved deep mul-

tiscale network structure with perspective awareness is 

proposed that uses Resnet50 network as the backbone. 

Using the perspective map to guide the density map gen-

eration yields a high-quality density map and improved 

crowd counting accuracy. The experimental results of 

three commonly used datasets demonstrate the excellent 

performance of the proposed network architecture, which 

can be ascribed to the combination of perspective 

awareness and the improved ResNet50 network. In the 

future, the real-time performance of the model will be 

further improved and actual scenario application may 

come true. 
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