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The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex 
feature structures, a high number of feature dimensions, and inaccurate prediction results. To overcome these problems, 
this paper proposes a deep-learning model combining an autoencoder network and a long short-term memory network. 
First, this model applies the characteristics of the autoencoder to reduce the dimensionality of the high-dimensional 
features extracted from the battery data set and realize the fusion of complex time-domain features, which overcomes 
the problems of redundant model information and low computational efficiency. This model then uses a long 
short-term memory network that is sensitive to time-series data to solve the long-path dependence problem in the pre-
diction of battery life. Lastly, the attention mechanism is used to give greater weight to features that have a greater 
impact on the target value, which enhances the learning effect of the model on the long input sequence. To verify the 
efficacy of the proposed model, this paper uses NASA's lithium-ion battery cycle life data set. 
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Lithium-ion batteries possess many advantages over tra-
ditional batteries, such as high output voltage, high en-
ergy density[1], low self-discharge rate, long cycle life, 
and high reliability[2]. They have been widely applied in 
vehicles, household equipment, communications, the 
aerospace industry, and so on[3]. Lithium-ion batteries 
that exceed their service life often lead to accidents, such 
as fires and explosions. The accurate prediction of lith-
ium-ion batteries’ remaining useful life (RUL) plays an 
important role in state estimation and health management 
of lithium-ion batteries. 

The methods for predicting a lithium-ion battery’s 
RUL can be divided into three categories: experi-
ence-based, model-based, and data-driven. The experi-
ence-based method uses the battery’s history data to es-
timate its service life, but it cannot describe the physical 
and chemical changes inside the battery. This method is 
applicable only under special conditions and has gradu-
ally been abandoned in favor of other methods. 

The model-based method integrates the material char-
acteristics, the decay mechanism, and the operating en-
vironment inside the battery[4]. However, due to the 
complexity of chemical reactions in lithium-ion batteries 
and the fact that the state of lithium-ion batteries is af-
fected by temperature[5] and humidity in the working 
environment[6], predictions from this method cannot meet 
the accuracy requirement. 

The data-driven method does not consider the complex 
material characteristics and changes inside the battery; it 
relies on previously observed data to predict the state of 
the system[7] or infer the RUL by matching historically 
similar models[8]. With the development of computer 
technology, neural networks have also been widely ap-
plied[9]. Due to their self-learning ability, neural networks 
can obtain more accurate data without relying on an ac-
curate model[10]. Hence, this technology has also been 
adopted to predict the RUL of lithium-ion batteries. 
However, the methods mentioned above still face many 
challenges, such as determining the threshold, determin-
ing which data describe normal behavior, and solving the 
problem of over-fitting[11]. 

The key to improving the accuracy of predictions of 
lithium-ion batteries’ RUL is to select the characteristics 
that can significantly reflect the health state of the battery. 
The characteristics commonly applied to characterize the 
degradation of battery health include capacity and im-
pedance. However, these parameters cannot be measured 
directly. The parameters that can be measured directly, 
such as current and voltage, have higher dimensions. 
Thus, they cannot be used directly. In addition, most of 
the current mainstream methods are based on a single 
data-driven model; they do not benefit from the advan-
tages of combining different prediction models, and so 
the performance of such models is less than ideal.
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To overcome the problems described above, this paper 
proposes a deep-learning method for the RUL prediction 
of lithium-ion batteries using the fusion model. The 
method integrates an autoencoder (AE) network[12] and a 
long short-term memory (LSTM) network[13]. The di-
mensions of the extracted multi-dimensional key features 
are reduced to realize the fusion of complex time-domain 
features, which overcomes the problems of model infor-
mation redundancy and low calculation efficiency. The 
use of LSTM can solve the long-range dependence prob-
lem in battery life prediction. An attention mechanism is 
introduced in the LSTM network, so that features that 
have a greater impact on the target value have greater 
weight in the optimization of the output result. 

The overall framework of the RUL prediction method 
for lithium-ion batteries is shown in Fig.1. The method 
consists of four modules: feature-extraction module, 
feature-fusion module, data-conversion and normaliza-
tion module, and life-prediction module. Among them, 
the feature-extraction module includes the features ex-
tracted from the charging stage and the discharging stage. 
The feature-fusion module uses an autoencoder to reduce 
the features to 15 dimensions. The data-conversion and 
normalization module needs to convert the input of un-
supervised data into supervised data and perform nor-
malization. These three modules are collectively referred 
to as the data preprocessing module. The life-prediction 
module uses a long short-term memory network and an 
attention mechanism. 
 

Fig.1 Overall framework of RUL prediction for lith-
ium-ion batteries 

 
  The method proposed in this paper preprocesses the 

data as follows. First, the features are extracted from the 
original data. Second, the AE model is applied to com-
plete the feature fusion. Third, the unsupervised data are 
converted into supervised data through feature transfor-
mation, and the data are normalized. This chapter dis-
cusses these three processes. 

In general, the information representation is positively 
correlated with the information dimension. The more fea-
tures that are extracted from the original data, the more 
accurate the prediction. However, an excessive number of 
features would make the calculation more complex. The 
characterization parameters of battery life are very abun-
dant, and so it is necessary to select appropriate parame-
ters to characterize the aging and actual performance of 
the batteries, ensuring that the parameters are still highly 
reliable and accurate under different aging conditions. 
After a great deal of investigation and experiment, the 
typical characteristics of the charge–discharge cycle are 
extracted in the following way. 

The features extracted from the charging process are 
different from those extracted from the discharge process. 
During charging, the feature extraction of the terminal 
voltage is shown as 

(tmin[i], vi),  s.t. vi≥4.2 V,    i=1,2,3,...n,        (1) 
where tmin[i] refers to the time when the terminal voltage 
first reaches the maximum value, vi refers to the value 
when the terminal output voltage first reaches the maxi-
mum value, and n is the sample size. The feature extrac-
tion of the output current is shown as 

(tmin[i], Ai),  s.t. Ai≤1.5 V,    i=1,2,3,...n,        (2)   
where tmin[i] refers to the time when the battery output 
current starts to decrease, Ai stands for the current value 
when the battery terminal current starts to decrease, and 
n is the sample size. The feature extraction of the tem-
perature is shown as 

(tbcT, Tbc)={(ti,Ti)|max(n)} ,    i=1,2,3,...n,      (3) 
where tbcT refers to the time when the battery tempera-
ture reaches its maximum, Tbc stands for the maximum 
temperature value, and n is the sample size. The feature 
extraction of the current is shown as 

(tmin[i], Ai),  s.t. Ai≤1.5 V,    i=1,2,3,...n,   (4) 
where tmin[i] refers to the time when the battery’s charge cur-
rent starts to decrease, Ai represents the current value when 
the measured current starts to decrease, and n is the sample 
size. The feature extraction of the voltage is shown as 

(tmcv,vbc)={(ti,vi)|max(vi)},    i=1,2,3,...n,   (5) 
where tmcv refers to the time when the measured voltage 
of the battery reaches its maximum, vbc stands for the 
maximum value of the measured voltage, and n is the 
sample size.  

During discharge, the feature extraction of the terminal 
voltage is shown as 

(tbcT, Tdc)={(ti,vi)|max(vi)},    i=1,2,3,...n,      (6) 
where tbcT refers to the time when the terminal voltage of 
the battery reaches its minimum value, Tdc represents the 
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minimum voltage value, and n is the sample size. Feature 
extraction of the output current is shown as 

(tmin[i], Ai),  s.t. Ai>−2 A,    i=1,2,3,...n,        (7) 
where tmin[i] refers to the time when the battery's output 
current starts to rise, Ai indicates the current value when 
the output current starts to rise, and n is the same size. 
Feature extraction of the temperature is shown as 

(tbcT, Tdc)={(ti,Ti)|max(Ti)},    i=1,2,3,...n,      (8) 
where tbcT indicates the time when the battery tempera-
ture reaches its maximum value, Tdc represents the 
maximum temperature value, and n is the sample size. 
Feature extraction of the load measurement current is 
shown as 

(tmin[i], Ai),  s.t. Ai>−2 A,    i=1,2,3,...n,        (9) 
where tmin[i] stands for the time when the load measure-
ment current starts to rise, Ai indicates the current value 
when the load measurement current starts to rise, and n is 
the sample size. Feature extraction of the load voltage is 
shown as 

(tbcT, vbc)={(ti,vi)|max(vi) s.t. vi≠0}, i=1,2,3,...n, (10) 
where tbcT represents the time when the load voltage 
reaches its maximum value, vbc refers to the maximum 
load voltage value, and n is the sample size. The battery 
capacitance C is extracted directly. 

As the number of extracted features increases, so too 
does the correlation of features, which would lead to 
redundancy in the model information and low computa-
tional efficiency. It is therefore necessary to reduce the 
dimension of features to improve the efficiency of the 
model. There are many time-domain features in the data 
set. Moreover, the combination of different time-domain 
features is very complex. It is therefore necessary to de-
termine the appropriate method of dimension reduction.  

Common dimension-reduction methods include prin-
cipal component analysis (PCA)[14], independent com-
ponent analysis (ICA)[15], and linear discriminant analy-
sis (LDA). The PCA method finds the direction of the 
greatest change in the data and then projects each datum 
into the coordinate system formed by these directions. 
This method is widely applied in data compression, re-
dundancy elimination, elimination of data noise, and so 
on. The ICA method is an effective multi-dimensional 
signal-processing technology that aims to extract un-
known independent signals from known mixed signals, 
thus removing the correlation between the signals. The 
LDA method, widely applied in the field of pattern rec-
ognition, is a dimension-reduction technique for super-
vised learning. It has the advantage of using prior 
knowledge and experience of categories in the process of 
dimension reduction. However, PCA and LDA require 
that the data conform to the Gaussian distribution, and 
ICA needs strict data distribution. Hence, none of them 
can be applied to the data set used in this paper.  

An autoencoder is an unsupervised machine-learning 
technology that uses the low-dimensional data generated 

by a neural network to represent high-dimensional input. 
In the traditional linear dimension-reduction method, the 
linearity limits the dimensions of features that can be 
extracted. In contrast to these traditional methods, AE 
uses an inherent nonlinear neural network to overcome 
these limitations. Furthermore, its requirements for data 
distribution are not strict, and its dimension-reduction 
performance is good. This paper therefore uses an AE as 
the dimension-reduction network. 

An AE is a non-supervised algorithm with a fully 
symmetric network structure[16]. It makes an attempt to 
learn a constant function so that the output result is equal 
to the tag given by the input data. In this case, when the 
output is equal to the input, a hidden neuron may be used 
to represent the input, as shown in Fig.2 (taking a 
three-layer network as an example). 
 

 

Fig.2 Three-layer autoencoder network structure 
 
In the figure, {x1, x2,... xn}refer to the input data of the 

neural network, and n is the dimension of the input data. 
After the encoding process, the n-dimensional input is 
compressed to become m-dimensional, expressed as {l1, 
l2,... lm}. Subsequently, L2 output is sent to the decoder, 
which is decoded to obtain the neural network’s output: 
{y1, y2,... yn}. By training the encoder and decoder, we 
make yi equal to xi. After the training is complete, {l1, l2,... 
lm} can be used to express {x1, x2,... xn}, so as to realize 
the dimension reduction. The algorithm is as follows. 

The encoding process of the initial feature set from the 
input layer to the hidden layer is shown as  

hi=gθ1(xi)=σ(w1+xi+b1),    i=1,2,3,...m,       (11) 
where hi is the fusion feature set, xi is the initial feature 
set, 1w  is the weight set, b1 is the fixed parameter, and m 
is the number of samples. 

The decoding process from the hidden layer to the 
output layer is shown as  

xi'= gθ2(xi)= σ(w2hi+b2),   i=1,2,3,...m,         (12) 
where xi' is the decoding feature set, w2 is a set of 
weights, and b2 is the threshold. The reconstruction error 
loss function of the data set x is shown as  
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where m is the number of samples. 
In this paper, through the coding function of the AE, 

the dimensions in the fusion of time-domain features are 
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reduced from 21 to 15. Due to the characteristics of the 
LSTM network, it is necessary to convert the unsuper-
vised input data into supervised data. The process is as 
follows. 

First, the total number of battery charging and discharge 
cycles is calculated as the battery’s total cycle life j. 
Second the label value yi of the i-th charge-discharge 
cycle (0 < i < j) is calculated by  

1= + −iy j i .           (14) 

Finally, xi and yi are combined to obtain the supervised 
data (xi, yi) as the input of the LSTM-prediction model. 

To eliminate the negative effects of different values, 
the range of all extracted feature values is converted to 
[0,1] by the following normalization method: 

* min

max min

−
=

−
x xX

x x
,          (15) 

where xmax is the maximum value of the sample data, and 
xmin is the minimum value of the sample data. 
  As a data-driven prediction method, the LSTM net-
work is widely applied in the field of prediction and bat-
tery-health management. The network does not know the 
internal physical and chemical reactions of the prediction 
object; to carry out the prediction, it can use only the 
historical sequence training network of the prediction 
object. In contrast to the traditional data-driven methods 
(such as autoregressive models and autoregressive mov-
ing-average models), LSTM networks have stronger 
nonlinear approximation capabilities. The sample data 
set for a lithium battery is a long time series. Its predic-
tion task is very complex, and the input information is 
too far apart so that the common neural network is diffi-
cult to remember. Through improvement of the classic 
recurrent neural network implicit layer, LSTM enables 
the network to handle long-distance information, which 
also overcomes the problem of gradient disappearance 
and gradient explosion. The LSTM network thus satisfies 
the prediction demand in this paper. This section de-
scribes how to apply an LSTM network in combination 
with an attention mechanism to predict battery life. 

Long short-term memory is a time-recurrent neural 
network, whose structure is shown in Fig.3. 
 

 

Fig.3 Basic LSTM network structure 

As shown in this figure, the main components of the 
LSTM are the input gate i, the output gate o, the forget-
ting gate f, and the memory cell “Cell.” The door can 
selectively allow information to pass, and the LSTM 
enables the protection and control of information through 
the door structure[17]. The calculation method of each 
structure comprises the following steps: 

it=δ(Wixt+Riyt-1+pict-1+bt),               (16) 

ot=δ(Woxt+Royt-1+poct+bo),               (17) 

f t=δ(Wf xt+Rf yt-1+pf ct-1+bf).               (18) 

The cell is similar to a conveyor belt and operates 
throughout a recurrent network to determine whether to 
keep or discard information. With the storage and modi-
fication of state information, the LSTM unit can achieve 
long-range memory. Finally, the output ot of the output 
layer and the current state ct of the cell determines the 
entire LSTM’s output yt, which can be expressed as fol-
lows: 

zt=tanh(Wzxt+Rzyt-1+bz),                    (19) 

ct=itzt+f tct−1,                        (20) 

yt=oth(ct),                     (21) 

where xt Rd
 is the input vector, yt Rd is the output 

vector containing the battery characteristics of the LSTM 
at time t, δ and h represent the activation functions sig-
moid and tanh, and w*, R*, p* and b* represent the coeffi-
cient matrix and the offset vector, respectively. 

In recent years, inspired by the attention mechanism of 
the human brain, an attention mechanism has been widely 
applied in neural networks. It enables the neural network 
to focus on its input (or feature) subset[18]. It first measures 
the similarity between the query vector “Query” and the 
key “Key”; it then scales and normalizes “Query” and 
“Key”, before conducting the weighted process on weight 
and value “Value.” The formula for calculating the output 
of the attention mechanism is as follows: 

( ), , max=
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

T

k

QK

d
Attention Q K V soft V ,     (22) 

where Q represents the query vector “Queries”, K stands 
for the key “Keys”, V stands for the value “Values”, and 
dk represents the dimension. 

The impact of each feature on the result is different. 
The traditional LSTM network cannot determine which 
dimension is more relevant to the prediction of the target 
value. By adding the attention mechanism, the attention 
weight of each feature can be learned from the sequence, 
and then the feature can be merged according to the at-
tention weight. 

The influence of each characteristic on the decreasing 
trend of the lithium battery’s life is different. To better 
identify this difference and improve the accuracy of the 
model, the attention mechanism is introduced. If the cur-
rent period is t, then model needs to obtain the output 
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matrix of hi in the LSTM layer. It can calculate the cor-
responding attention weight ai of nt with the following 
formula: 

( )
( )

( )
1

exp

exp
=

=

=
+∑

ti att t

ti
i L

tk
k

e f h

e
a

e ε
 ,     (23) 

where fatt is this paper’s tanh function and L is the size of 
nt. By adding the attention layer, the degree of influence 
of each dimension in the hidden layer on the result can 
be determined. Moreover, features with larger weight 
coefficients have a greater impact on the results, focusing 
the network on changes in one or several dimensions.  

The LSTM prediction algorithm, based on an attention 
mechanism, consists of the following steps. 

Step 1: After preprocessing the data set Ta and divid-
ing it into a training set and test set, N is the number of 
samples: 

Ttr=(x1, x2, x3, x4,...xn),                       (24) 
Ttest=(xm+1, xm+2, xm+3, xm+4,...xn),   
1≤m≤n, m, n N.                         (25) 
Step 2: To adapt to the characteristics of the hidden 

layer input, a short-time input sequence is constructed, 
and the length of the time series is determined by a fixed 
step size l. The input of the network model is 

xl={x'l, x'l+1, xl'+2, x'l+3,...x'm},  1≤l≤m−l,  l N.  (26)  

Step 3: After xl enters the network, the output of the 
hidden layer is: 

P={P1, P2, P3, P4,...Pm-l},                    (27) 
Pl=LSTM (x'l, c<t−1>, h<t−1>),                  (28) 

where c<t−1> and h<t−1> are the cell status and hidden layer 
status of the previous moment, respectively. 

Step 4: The attention mechanism is added to adjust the 
weight of the feature: 

Wl=Softmax(Pl)*Pl .                        (29) 
Step 5: The predicted value is output: 
p={p1, p2, p3,...pm}.                         (30) 
The diagram of the improved network structure is 

shown in Fig.4. 
 

 

Fig.4 Improved network structure diagram 
 
The root-mean-square error (RMSE) is applied as the 

loss function, and the calculation method is: 

( )( )2

1

 1
=

= −∑ �
n

l i
i

 RMSE Y Y
n

 ,        (31) 

where �lY is the predicted value of the i-th sample and Yi is 
the true value of the i-th sample. The Adam optimization 
function is applied for the network optimization. 
  The data sets used were those of lithium-ion batteries 
#5, #6, and #7 of NASA’s Prognostic Center of Excel-
lence laboratory, and the experimental environment was 
25 °C. Data in three modes of charge-discharge and elec-
trochemical impedance measurement were recorded. 

The charging process was carried out in 1.5 A constant 
current mode until the battery voltage reached 4.2 V. The 
battery was charged continuously in constant voltage 
mode until the charging current was reduced to 20 mA. 
The discharge process was conducted at the constant 
current level of 2 A until the voltage decreased to 2.7 V 
(#5), 2.5 V (#6), and 2.2 V (#7). In this experiment, #5 
and #6 were taken as training sets, and #7 was taken as 
the test set. 

The repeated charge-discharge cycle is the main cause 
of battery aging. With battery #6 as an example, the rela-
tionship between the battery’s actual capacity and 
charge-discharge cycle is shown in Fig.5. The battery 
capacity degradation curve fluctuates from high to low 
because the battery capacity is directly extracted from 
the battery data set, which is closely related to the battery 
data set. The deeper reason lies in the capacity recovery 
effect of the battery, which is also known as 
"self-charging" or "self-healing". It refers to the phe-
nomenon that the internal ion concentration of the bat-
tery tends to be balanced due to the diffusion effect when 
the battery is in the shelving state, and the voltage rises 
accordingly, and the battery life is also prolonged. NASA 
holds that when the actual capacity of a lithium battery 
drops to 70% of its rated capacity, the battery has failed 
and can no longer be effectively powered. The number of 
charge-discharge cycles between the current capacity and 
the failure threshold is the remaining useful life of the 
battery. 
 

 

Fig.5 The degradation curve of the battery capacity 

After extracting 21 dimensional features, features were 
input into the AE network to reduce the number of dimen-
sions. The maximum number of experimental iterations 
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was set to 200. The accuracy of each iteration is shown in 
Fig.6. As can be seen from the figure, the accuracy rate 
exhibits a large fluctuation before the 25th iteration, after 
which it gradually increases. The reason for the small peak 
in the graph is that, at the beginning of the iteration, net-
work used the local optimal solution, but it eventually 
used the global optimal solution. After 200 iterations, the 
accuracy of the AE network reached 99.74%. 
 

Fig.6 The reduced-dimension network's accuracy  
 
To verify the effectiveness of the dimension-reduction 

network, we compare the model's training time before 
and after the dimension reduction. The experimental pre-
diction model uses linear regression, support-vector ma-
chines (SVM), adaptive LSTM (ALSTM) with no atten-
tion mechanism, and ALSTM with an attention mecha-
nism. Each training time is shown in Tab.1, from which 
it can be seen that the AE network significantly reduces 
the training time of the model. 

 
Tab.1 Comparison of the model’s training time before 
and after dimension reduction (s)

Predictive model 
Before dimension 

reduction 
After dimension 

reduction 

Linear regression 0.012 0 0.004 5 
Support-vector machines 47.191 24.814 

ALSTM (No attention mechanism) 14 min 44.447 s 8 min 46.847 s 

ALSTM 15 min 37.594 s 9 min 26.701 s 

The prediction experiment is divided into two stages: 
training and testing. In the training stage, the data set 
comes from the data of batteries #5 and #6. The maxi-
mum number of iterations is set to 1 200, and the loss 
curve of the loop in the iterative process is shown in 
Fig.7. As can be seen from the figure, after more than 
400 iterations, the loss is reduced to a steady value. 

To increase the contrast of the experiment, the linear 
regression and the SVM algorithm were used to predict 
the outcome of the experiment. The experiment was then 
conducted with the model of the fusion AE and the 
LSTM. Finally, the experiment was conducted after the 

attention mechanism was introduced into the ALSTM 
model. The results of the experiments were then com-
pared. 

 

Fig.7 The loss map  
 
The results of the linear regression, SVM, and the 

ALSTM (no attention mechanism) experiments are 
shown in Fig.8. Except for the true-value curve, the pre-
diction curves exhibit jitter, which is a natural prediction 
phenomenon in the model. Furthermore, before 52 cycles 
of charge and discharge, the fitting of the three methods 
is similar. However, the amplitude of the linear regres-
sion method is larger than those of the other two. As the 
number of charge-discharge cycles increases, the predic-
tion curves of the linear regression and the SVM algo-
rithm begin to deviate gradually from the true value. The 
deviations become larger, and the prediction results are 
poor. In contrast, the fitting of the ALSTM (no attention 
mechanism) algorithm proposed in this paper is superior 
in the early and middle period. After the number of 
charge-discharge cycles reaches 93, however, the curve 
begins to deviate gradually from the true value. 
 

Fig.8 Comparison chart for accuracy of predictive 
model 

 
The prediction results of the ALSTM model with and 

without the attention mechanism are shown in Fig.9. After 
the addition of the attention mechanism, the fitting in the 
first and middle period clearly improved. The number of 
charge-discharge cycles reached 120 before any deviation 
occurred, which was a significant improvement on the
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ALSTM model without the attention mechanism. The 
attention mechanism increased the accuracy of the 
ALSTM model by 4.1%, reaching 97.22%. This result 
indicates that the attention mechanism can effectively im-
prove the accuracy of the prediction. 

 

Fig.9 ALSTM model's prediction accuracy before and 
after the introduction of the attention mechanism 

 
The prediction accuracy of each model is shown in Tab.2. 
 

Tab.2 Prediction accuracy of each RUL model 

Predictive model 
Root-mean-square 

error  
Accuracy 

Linear regression 24.66% 75.34% 
Support-vector machines 18.87% 81.13% 

ALSTM (No attention 
mechanism) 

5.88% 93.12% 

ALSTM 2.78% 97.22% 

 
It can be seen from the table that the accuracy of the 

linear regression and SVM models is much lower than 
the other two models. Moreover, neither of them can 
meet the prediction accuracy requirement. The accuracy 
of the prediction in the ALSTM model was higher. 
Compared with the SVM model, the prediction accuracy 
was 12.99% higher. With the attention mechanism in the 
ALSTM model, the accuracy was further improved by 
4.1%, which proves the effectiveness of the attention 
mechanism. The experimental results reveal that the 
ALSTM fusion model algorithm proposed in this paper 
can predict the remaining service life of lithium-ion bat-
teries more accurately than other methods.  

The algorithm in this paper not only is superior to the 
traditional algorithm, but also has remarkable advantages 
over more recent algorithms, as shown in Tab.3. 

 
Tab.3 Comparison with the latest prediction algorithm 

Prediction algorithm Accuracy 
ELM indirect method[19] 94.20% 

EKF[20] 95.78% 
ALSTM 97.22% 

 
The accuracy of the algorithm proposed in this paper 

is 3.02% higher than that of the ELM indirect prediction 
method proposed by Jiang et al[19] and 1.44% higher than 
that of the extended Kalman filter-based prediction 
method proposed by Wang et al[20]. 
  This paper proposes a deep-learning model that com-
bines an AE network and an LSTM network. In the 
model, dimension reduction is conducted on the ex-
tracted multi-dimensional key features to realize the fu-
sion of the complex time-domain features, according to 
the characteristics of the AE network. The LSTM net-
work is then used for prediction and the attention 
mechanism is introduced in the LSTM network. The ex-
periment showed that the ALSTM model proposed in 
this paper improves the accuracy of the RUL prediction 
and that the attention mechanism has a positive effect on 
the fusion model. Although this paper has greatly im-
proved the traditional algorithm, there is still a large error 
in the prediction of the later period of battery life, be-
cause by this time, the internal structure of the battery 
has changed significantly compared with the initial 
structure. How to improve the accuracy at the later stage 
for the RUL prediction of the lithium-ion battery should 
be the focus of future work. 
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