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In order to improve the super-resolution reconstruction effect of the single image, a novel multiple dictionaries learn-

ing via support vector regression (SVR) and improved iterative back-projection (IBP) are proposed. To characterize 

the image structure, the low-frequency dictionary is constructed from the normalized brightness of low-frequency im-

age patches in a discrete-cosine-transform (DCT) domain. Pixels determined by Gaussian weighting are added to the 

input vector to restore more high-frequency information when training the high-frequency image patch dictionary in 

the space domain. During post-processing, the improved IBP is employed to reduce regression errors each time. Ex-

periment results show that the peak signal-to-noise ratio (PSNR)and structural similarity (SSIM) of the proposed 

method are enhanced by 1.6%—5.5% and 1.5%—13.1% compared with those of bicubic interpolation, and the pro-

posed method visually outperforms several algorithms. 
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Image super-resolution (SR) reconstruction aims to re-
cover high-frequency information from one or more 
low-resolution (LR) images[1]. Because it includes more 
image details, high-resolution (HR) images are widely 
used in medicine, remote sensing and video surveillance 
as well as by the military[2]. However, the cost of im-
proving hardware to obtain HR images is expensive, so 
the research on image reconstruction algorithm is essen-
tial. 

SR reconstruction algorithms are broadly classified 
into three categories: interpolation, reconstruction-based 
methods and example-based methods. The first type of 
algorithm is simple but tends to produce artifacts at the 
edges of the image[3]. The second one utilizes the rich 
information obtained from multiple complementary LR 
images, but it requires prior knowledge of the image for 
reconstruction[4,5]. The learning method can obtain more 
high-frequency details by learning the relationships be-
tween the LR and HR images[6-9]. Timofte et al[10] pro-
posed an algorithm that combined anchored neighbor-
hood regression (ANR) with simple functions to improve 
the quality of ANR. It was based on image features and 
anchored regression instead of using a dictionary to learn 
regression. Wang et al[11] proposed a method based on 
support vector regression (SVR) and self-similarity of 

image patches. Their method produced better reconstruc-
tion effect that has highly similar textural structure. Lin 
et al[12] proposed an algorithm that applied cyclical-scan 
actions and SVR to single-image reconstruction and 
found that it was more competitive than other methods. 
However, it did not make full use of the characteristics of 
the high- and low-frequency image patches because it 
adopted the same feature vector to learn from the high- 
and low-frequency dictionaries. To avoid this problem, a 
novel method that uses different feature vectors to create 
different dictionaries is presented. First, the Log algo-
rithm is adopted to distinguish high- and low-frequency 
image patches, and different feature vectors are extracted 
to train the different dictionaries. The SVR is applied to 
construct two dictionaries using the high- and 
low-frequency image patches in space and dis-
crete-cosine-transform (DCT) domains, respectively. It is 
noteworthy that some of the pixel used for training the 
high-frequency dictionary are determined by Gaussian 
weighting. Moreover, the normalized brightness of the 
image patches in a DCT domain is employed as the input 
vector to train the low-frequency dictionary because the 
energy of the image is mainly concentrated in the 
low-frequency components in the DCT domain. Then, 
the improved iterative back-projection (IBP) is used to
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reduce the regression errors in the regression image. Ex-
perimental findings show that the proposed method per-
forms more accurately than several SR algorithms. 

The SVR linearly estimates the output of the nonlinear 
input in a higher dimensional feature space. SVR[13] is 
used to solve the following optimization problem: 
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where xi represents the feature input vector, yi is the pixel 
label, and ω is the norm vector of a nonlinear mapping 
function. The trade-off c is a constant that lies between 
the upper and lower training error bounds ζi and ζi

*, re-
spectively, which are subject to threshold ε. The number 
of training samples is k, and xi is mapped into high di-
mensional space by ϕ(xi). In this method, yi is formed 
from the central pixel value of the high-resolution image 
patch, and b is the offset of the regression model. The 
kernel function in the proposed method is a radial basis 
kernel function (RBF), with the parameters c=22, σ=0.01 
and ε=0.1, which can map data onto a high-dimensional 
feature space. 

In the learning phase, the proposed method treats the 
normalized brightness of the low-frequency image 
patches as an input vector in the DCT domain. Some 
pixels, which are determined by Gaussian weighting in 
the high-frequency image patches, are extracted to form 
the input vector in the space domain. The central pixel of 
the HR image patch is added to the label vector. Accord-
ing to Eq.(1), this procedure generates two dictionaries. 

The basic principle of IBP is that it minimizes the er-
rors between two LR images by back-projecting the re-
sidual to obtain the final HR image, which is shown as 
Xm+1=Xm+ MBP(Y−Ym),                       (2) 

where X and Y are the HR and LR images, respectively, 
and m represents the number of iterations. The observed 
LR image is Ym, and Xm is the reconstructed image. The 
quantity MBP is the back-projection matrix and is used in 
image reconstruction. Xu et al[14] proposed the use of 
bicubic interpolation (BI) to replace MBP in IBP. 

The dictionary-learning algorithm mainly learns a 
mapping between LR and HR images. However, it is 
difficult to uniquely determine MBP in the traditional IBP. 
To avoid this problem and reduce regression errors, an 
improved IBP is used in the post-processing. It is defined 
as  
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where BI represents bicubic of the errors between Y and 
Ym. In order to obtain m

RX , these errors are added to 
m
rX , where m

rX  is got by SVR using two dictionaries. 
Each reconstruction process is regarded as R, so m

rX  is 

different from Xm of the traditional IBP, and this method 
improves the quality of the reconstruction. 

The proposed method comprises three phases: training, 
prediction and post-processing. The training phase is 
shown in Fig.1, and the specific steps are as follows. 

(i) To generate a training set, the degradation model 
shown in Eq.(4) is used to obtain a LR image: 
Y=DBX+n,                                (4) 

where X and Y represent the HR and LR images, respec-
tively, D is the downsampling operator, B is the blurring 
of the HR image, and n represents noise pollution. Many 
denoising algorithms can effectively reduce the noise[15], 
so the noise is not added to the LR image in the 
pre-processing phase of this method. 

The HR image is blurred and downsampled with a 
scale factor of 2 to create an LR image. BI is adopted to 
produce an image of the desired size from this LR image, 
and the resulting image is termed as image Ib.  

 

Fig.1 Training process 

 
(ii) 3×3 image patches are extracted after using the 

raster scan of image Ib. The Log operator is adopted to 
determine whether the patches contain low- or 
high-frequency information, which depends on the mean 
of the edge image patch[12]. The edge image is obtained 
by Log operator. When the mean is zero, a corresponding 
patch of the image Ib mainly contains low-frequency 
information, and the normalized brightness that better 
reflects the low-frequency characteristics in the DCT 
domains is regarded as the input vector. The input vector 
is expressed as  

( )( )( )1 ;...;li l lDCT P Ib avg= −x S

 ( )( )( )lj lDCT P Ib avg − S ,                  (5) 

where P indicates the raster scan of the image, and avgl is 
the mean of the DCT-transformed image patch. Subscript i 
runs over the number of raster scans, and subscript j is the 
number of low-frequency image patches. Sli represents the



·0158·                                                                         Optoelectron. Lett. Vol.15 No.2 

jth low-frequency input vector after the ith raster scan of 
the image, and it contains nine elements that are formed 
of the normalized brightness. The input vector xli is 
comprised of Sli, and the label vector yli is constituted by 
the central pixel of the corresponding HR image patch. 

(iii) When the mean of the edge image patch is greater 
than zero, a patch of the image Ib mainly contains 
high-frequency information. The feature value is ex-
tracted in the space domain, and the input vector is rep-
resented as 

( )1 , (5), , ;...;hi h havg M LBP M= x S
 ( ), (5), ,hj havg M LBP M S ,                  (6) 

where the local binary pattern (LBP) has invariance of 
rotation and grayscale, the M(5) is the central pixel, and M 
includes some pixels determined by Gaussian weighting. 
Gaussian weighting depends on the distances between the 
central and neighboring pixels, which defines the rela-
tionship between the pixels. The average of the image 
patch pixel is the quantity avgh in the space domain. Here, 
Shi represents the jth high-frequency input vector after the 
ith raster scan of the image Ib, and the length of Shi is 
seven, which contains avgh, M(5), LBP and M. The input 
vector xhi is formed of Shi. The central pixel of the HR 
image patches is included in the label vectors hiy . 

The resulting input vectors xl and xh and the label 
vectors y and yh are shown as 
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and they are constituted after nine raster scans. 
(iv) Two dictionaries of model_l and model_h are 

trained by SVR using the optimized vector pairs. 
The prediction and post-processing phases are shown 

in Fig.2. 

 

Fig.2 Prediction and post-processing processes 

In the prediction phase, the input vector is formed by 
using the same method as training process, and the pre-
dicted label pixels replace the central pixels of image 
patches to obtain the regression image. 

The post-processing phase mainly adopts the im-
proved IBP algorithm to reduce the regression errors and 
ensure consistency between the reconstructed and LR 
images. According to Eq.(3), represent errors of two LR 
images. BI is adopted to obtain the desired residuals 
Em=BI(X−Xm) in the improved IBP. The quantity Em is 
added to the regression image m

rX  which is recon-
structed using two dictionaries. The quantity m is the 
number of raster scans. 

By the experiment, the proposed method is compared 
with four other SR algorithms using different images 
extracted from the USC-SIPI image database. The train-
ing image size is 512×512, and two image sizes of 
256×256 and 512×512 are used for the testing set. In the 
training phase, the LR image is obtained from a blurred 
and downsampled version of the HR image. The scale 
factor of 2 is applied for the decimation operator, and 
image Ib is obtained from the LR image via BI. 3×3 
patches are utilized, which are obtained after segmenting 
image Ib using raster scans, and the corresponding 3×3 
HR image patches are also extracted. The LIBSVM[16] is 
applied for the SVR model in which the kernel function 
is an RBF. To test this method, HR images with different 
sizes are used in the testing set, which contain people, 
scenes and animals. They are shown in Fig.3 and are 
numbered as No.1—No.8.  
 

 

 

Fig.3 Images in testing, from left to right, top row: 
No.1—No.4, bottom row: No.5—No.8 

 
The peak signal-to-noise ratio (PSNR) and the struc-

tural similarity (SSIM) are selected as the evaluation cri-
teria. The PSNR is defined as 
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where I(i, j) and I'(i, j) represent the pixel values at coor-
dinate of (i, j). The size of the image is M×N, and the 
maximum grayscale value of the image is 255. The SSIM 
between two images is defined as 
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where μ and σ are the mean and variance of image x or y, 
respectively, and σxy is the covariance of the images. c1 
and c2 are constants that are used to maintain stability. 

Comparisons of the values of PSNR and SSIM for bi-
cubic (BI), SCSR[6], A+[10], Lin[12], CNN[17] and the pro-
posed method (Pro) are shown in Tabs.1 and 2. 

Tab.1 Performance in terms of PSNR (dB) 

No          BI             CNN           A+           SCSR           Lin          Pro 

1         29.473 8        29.869 7        29.887 7        29.918 8        30.467 2      30.876 4 

2         29.770 5        29.797 5        29.986 7        29.989 2        29.777 4      30.252 2 

3         23.074 0        23.485 3        23.420 8        23.493 5        24.047 0      24.340 9 

4         21.626 4        21.831 4        21.851 8        21.826 5        22.064 8      22.287 8 

5         27.140 1        27.447 4        27.617 5        27.624 4        27.671 6      28.114 9 

6         26.180 3        26.601 8        26.650 4        26.656 2        27.275 1      27.409 6 

7         26.305 4        26.718 7        26.745 6        26.731 2        27.291 5      27.643 2 

8         22.523 5        22.882 1        22.942 2        22.982 6        23.452 7      23.707 4 

 
Tab.2 Performance in terms of SSIM 

No         BI             CNN          A+           SCSR           Lin          Pro 

1        0.866 8          0.876 1       0.877 4         0.875 8         0.885 8        0.886 3 

2        0.948 2          0.951 2       0.952 0         0.953 4         0.961 2        0.962 2 

3        0.762 8          0.781 5       0.779 0         0.778 6         0.803 6        0.797 3 

4        0.767 1          0.786 6       0.789 0         0.792 4         0.861 2        0.867 9 

5        0.947 6          0.953 1       0.954 0         0.956 2         0.972 2        0.972 7  

6        0.925 9          0.933 5       0.934 7         0.938 1         0.962 0        0.962 4 

7        0.897 5          0.908 0       0.909 8         0.913 0         0.946 7        0.948 8 

8        0.694 1          0.725 6       0.725 2         0.726 8         0.777 3        0.780 0 

 
Tabs.1 and 2 summarize that the proposed method en-

hances PSNR and SSIM by 1.6%—5.5% and 
1.5%—13.1%, respectively, in comparison with BI. 
Moreover, it produces 1.6% improvement in PSNR for 
image No.2 and enhances SSIM by 0.8% for image No.4 
in comparison with Lin’s algorithm. According to these 
quantitative comparisons, the proposed method yields 
better results for different images.  

In terms of the visual perception, we compare image 
No.1 and image No.5, which contain rich details and 
contour information, respectively. The HR image, a 
magnified detail of the HR image called Io, and magni-
fied details produced by different algorithms are shown 
in Figs.4 and 5. 

Among these images, the BI method has the most am-
biguity due to the loss of a large amount of 
high-frequency information. CNN and A+ algorithms 
can recover some of the detailed information, but blur-
ring still exists. SCSR and Lin algorithms also recover 
some high-frequency information, e.g., the black digit 
area in Fig.5(e) and (f). However, the proposed method 
can restore more edge information and provides a better 
visual appearance than other algorithms, e.g., the eye 
area in Fig.4(g) and the white digit area in Fig.5(g) are 
clearer than those observed by other methods. 

Thus, the method not only improves the objective ef-
fect in PSNR and SSIM but also significantly outper-
forms several methods visually. 

 
      (a) HR       (b) Io         (c) BI        (d) CNN 

 
(e) A+      (f) SCSR         (g) Lin        (h) Pro 

Fig.4 (a) The HR image, (b) a magnified detail and 
magnified details produced by (c) BI, (d) CNN[17] (e) 
A+[10], (f) SCSR[6], (g) Lin[12] and (h) the proposed 
method for the image people 

    
 

    (a) HR         (b) Io           (c) BI         (d) CNN
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 (e) A+        (f) SCSR        (g) Lin           (h) Pro 

Fig.5  (a) The HR image, (b) a magnified detail and 
magnified details produced by (c) BI, (d) CNN[17] (e) 
A+[10], (f) SCSR[6], (g) Lin[12] and (h) the proposed 
method for the image plane 

 
In this work, a novel method is adopted which trains 

and uses multiple dictionaries to learn the mapping be-
tween the LR and HR image patches and employs an 
improved IBP to process the regression image. It takes 
full advantage of the image information to recover miss-
ing high-frequency details. In contrast to conventional 
methods, low- and high-frequency image patch diction-
aries are learned via SVR from the LR and HR image 
patches using different feature vectors in the DCT and 
space domains, respectively. Furthermore, the accuracy 
of the recovered image is improved, and the regression 
errors are reduced by employing the improved IBP. The 
experimental results show this method outperforms sev-
eral SR methods from both the objective and subjective 
standpoints. 
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