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According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine 

(SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and 

migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model 

should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples 

would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not 

greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets dur-

ing the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of 

incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly 

predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed 

algorithm can achieve good performance with high efficiency, high speed and good accuracy. 
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Incremental learning methods are proposed to deal with 
the problems of data arriving sequentially. There are two 
approaches of incremental learning: one is batch incre-
mental method, i.e. training a batch of samples at a time; 
the other is instance-incremental method (or called 
online learning method), i.e. learning from each sample 
as it arrives[1]. Through these approaches, incremental 
learning methods can reserve the historical results and 
avoid repeating study of old samples. Because of its fast 
speed and good efficiency, incremental support vector 
machine (ISVM) has been applied to anomaly identifica-
tion[2], intrusion detection[3], defect detection[4], clinical 
medicine[5], finance[6], and so on. 

Many basic theoretical works around solving the quad-
ratic programming (QP) problem of ISVM have been done 
over the past decade[7-10]. For ISVM, there is an important 
issue that only the support vectors (SVs) will influence the 
classification hyperplane of SVM. Then, an important 
view has attacked many researchers’ attention that which 
of the new samples will be new SVs and how the new 
samples will influence the migration of the vectors be-
tween error set, reserved set and support set[11-14]. Based on 
Karush-Kuhn-Tucker (KKT) conditions, when new sam-
ples arrive, part or all of the new samples will be new SVs 
and the old vectors will change between SVs and 

non-support vectors (NSVs), and the current learning 
model should be updated at the same time. However, it is 
not exactly clear that which samples would change be-
tween NSV set and SV set. Particularly, we believe that it 
is not very necessary to update the current model at every 
time of such a violating sample’s arriving and propose a 
new algorithm to select candidate SVs and trigger the in-
cremental update processing according to the wrongly 
predicted sample simultaneously. This procedure is very 
satisfied with the need of online tasks in the reality: if the 
current model is frequently updated, it could not catch up 
with the speed of samples’ arriving; and if the current 
model can correctly classify all the current samples, we 
don't need to update it to find the optimal one. 

Given the training set and their labels {(x, y)|x∈Rn, 
yi=±1, i=1,...,m}, the standard classification problem of 
SVM is to solve an optimization problem as 
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where ξi is the vector of slack variables, and C is the 
regularization parameter. To solve such a problem, one 
can obtain the dual formulation as follows by introducing 
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Lagrangian multipliers a: 
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where Qi,j=yiyjk(xi, xj) represents the kernel matrix. The 
KKT conditions are the necessary and sufficient condi-
tions for an optimal point of a convex QP problem. For 
the dual-problem, KKT conditions are described as fol-
lows: 
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When a new sample xl is added to the training set, the 
margin vector coefficients are updated, 

= :k k p k Sα βΔ Δ ∀ ∈ ，                        (5) 

= : ,l l p l Uα λΔ Δ ∀ ∈                          (6) 

= ,b pβΔ Δ                                  (7)                    

where Δp is the minimum change during the incremental 
learning. All the possible changes were listed in a cate-
gory and the details were described in Ref.[8]. 

After that, the optimal hyperplane is obtained. The de-
cision function of SVM is 
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Because only the SVs will influence the classification 
hyperplane of SVM, many incremental SVM algorithms 
focus on improving SVM training process through col-
lecting more useful data as SVs or deleting less useful 
data as NSVs[11,15]. For the KKT conditions, there are 
basic theorems[16,17]: 

If there are samples in newly-increased samples which 
violate the KKT conditions, part or total of these samples 
will transfer to SVs and the NSVs in the original classi-
fication SVM can transfer to SVs. 

In Fig.1, points A, B and C represent three different 
samples of violating KKT conditions, which can be ex-
pressed as yf(x)<1: A is in the margin with correctly pre-
dicted label, B is in the opposite margin with the  
wrongly predicted label, and C is out of the margin with 
the wrongly predicted label. 

 
Fig.1 Violating KKT conditions  

There are many algorithms relying on the idea of in-
troducing a new vector, and then migrating specific vec-
tors between the sets to have the satisfied KKT condi-
tions again[7,12]. The KKT conditions guide the samples 

to migrate between reserved set, SV set and error set. 
However, it is not exactly clear that which samples of SV 
set would change into NSVs and which samples of NSV 
set would change into SVs when new samples are added. 
Particularly, the learning model will be immediately up-
dated once a sample violating KKT conditions appears. 
However, we consider that it is not always necessary and 
will not greatly increase its accuracy but decrease its 
efficiency. Inspired by those ideas, we propose a new 
algorithm to select candidate SVs and only use the 
wrongly predicted sample to trigger the incremental 
processing simultaneously.  

At the beginning, we only select one positive and one 
negative sample to train the initial SVM. When a newly 
arriving sample, like point A, B or C in Fig.2, is violating 
KKT conditions, in traditional methods, it will be a new 
SV and causes some of the old NSVs to change into SVs, 
and the retraining or updating processing must be acted 
immediately according to the new SVs. In our method, 
unless the current model meets a new sample with its 
predicted label not the same as its true label such as point 
B or C in Fig.2, we don’t update it but only collect all the 
samples violating KKT conditions. Once we obtain a 
wrongly predicted sample like point B or point C, we 
immediately trigger the incremental updating process 
and only use the nearest sample(s) to current hyper-plane 
in the collected set above to update the current SVM 
model with bigger penalty coefficient C. Our algorithm 
is described in Tab.1. 

 

 
Fig.2 Collecting candidate SVs 
Tab.1 The proposed algorithm 

 
Input: Sequential data 
Output: Predicted labels 
Step 1 Initial training 
1.1 select one positive and one negative sample from the 
labeled data set; 
1.2 train the initial SVM;  
Step 2 Incremental learning  
if current sample violates KKT conditions 

collect it to candidate set V;  
if the predicted label is not equal to the actual label 

find the nearest sample(s) to the hyperplane in the 
candidate set V;  

use the nearest sample(s) to update current SVM with 
a bigger C;  

end 
end 
Step 3 Testing 
3.1 use the last 10% of samples for prediction and test; 
3.2 evaluate the performance by 10-ford cross-validation. 
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Experiments are presented with seven data sets listed 
in Tab.2 from UCI machine learning repository[20]. All 
experiments were running on Intel(R) Core i7-6820 CPU 
@2.7 GHz, 16.0 GB RAM machine. 

To make comparisons with recent methods, we firstly 
design experiments to compare our method with 
non-incremental batch learning methods (i.e. classic 
SVM implemented based on LibSVM[18]) and the 
batch-incremental method (i.e. ISVM[8]). Secondly, we 
design experiments to compare our method with recent 
online methods (i.e. mcpIncSVM (http://www-ti.inform 
atik.uni-tuebingen.de/ ~spueler/mcpIncSVM/) and LASVM[9]). 

 
Tab.2 Data sets description 

 
Data set      Size 

Breast 683×9 

Car 1 728×6 

Messidor 1 151×9 

KrvsKp 3 196×36 

Spambase 4 061×57 

Ring 7 400×20 

Coil 9 822×85 

Credit 30 000×23 
 

 
We use 10-ford cross-validation to get the average 

accuracy, training time and the SV number. The accu-
racy is defined as the proportion of correctly predicted 
samples in the test set. The training time is defined as the 
CPU time of training the model with different methods. 
After training, the number of SVs is calculated. 

Firstly, comparisons between the proposed method 
and batch learning methods, such as classic SVM and 
classic ISVM, are presented in Figs.3—5. 

 

 
Fig.3 Accuracy comparison with batch learning 
methods 
 

 
Fig.4 Training time comparison with batch learning 
methods 

 
Fig.5 SV number comparison with batch learning 
methods 

 
It is shown in Fig.3 that for all the data sets, our 

method has a better accuracy than ISVM. Though the 
accuracy is not better than LibSVM for the ring data set, 
it is very similar to it. As observed in Fig.4, the per-
formance of training time of our method is much worse 
than that of LibSVM. This is because our method is un-
der the particular suggestion of flow-based data which 
needs to check samples one by one, however, LibSVM is 
a pool-based method which processes all the training 
data at the same time. So when the number of instances 
is small, our method doesn't show a high speed under 
this condition. But when the number of instances is big-
ger, such as KRvsKP data set, the training time of ours is 
close to that of LibSVM. Especially when the number of 
instances is larger, the speed of ours is significantly 
faster than that of LibSVM, such as when classifying the 
ring data set. It’s also very clear in Fig.4 that the speed of 
our method is significantly better than that of classic 
ISVM. 

When we compare the SV numbers of different meth-
ods in Fig.5, we find the SV number of our method is 
obviously smaller than that of LibSVM and ISVM, 
which means our method has a better efficiency during 
the training phase. 

As a result, our method can achieve good accuracy: 
though it’s not very fast on little scale data sets, it still 
has a remarkable speed close to the classic 
non-incremental SVM on bigger scale data sets. When 
compared with the classic incremental SVM method, the 
performance of our method is much better. 

Secondly, we compare the results of our method and 
two recent online learning methods in Tab.3: 
McpIncSVM and LASVM. Our method and 
mcpIncSVM are tested using Matlab R2014a under 
Windows OS, while LASVM is tested using C++ under 
Ubuntu OS. Though the implementations are in different 
operating systems and programming environments, the 
efficiency of different methods still can be analyzed ac-
cording to the number of SVs. In Tab.3, we don’t list the 
accuracy results and SV numbers when using 
mcpIncSVM method to test the coil and credit data set 
because it will cost hundreds of hours before getting the 
results. The speed of mcpIncSVM method is much 
slower than that of ours.
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Tab.3 Comparison with online methods 

Data set  Breast   Car Messidor KrvsKp Spambase Ring Coil Credit 

Size  683×9 1 728×6 1 151×9 3 196×36 4 061×57 7 400×20 9 822×58 30 000×23

 Proposed  96.48   88.88  70.45 95.65 92.33   96.22 93.64  91.37 

Accuracy mcpIncSVM  91.95   93.63  73.58 95.77 92.15   89.82   -   - 

(%) LASVM  92.39   95.53  64.89 98.53 82.85   89.78 93.69  80.53 

 Proposed   0.18    0.58   2.13  1.81  5.27    2.78  8.92 344.89 

Training mcpIncSVM   1.68    2.81   6.92  3.98 15.84 6 736.81   -   - 

time (s) LASVM   0.02    0.01   0.09 10.64  4.56    5.79 29.39 446.59 

 Proposed    29    117   339  314  454      335  554  5 211 

SVs mcpIncSVM   372   4 260   679  380  918   5 773   -   - 

 LASVM   354    611   791 1 760 3 352   5 413 7 941 17 425 

 
It is shown in Tab.3 that our method has better accu-

racy, less training time and smaller SV numbers on 
large-scale data sets such as ring, coil and credit data sets. 
Though the accuracy is lower than other two methods on 
other data sets, it is very similar to them. It’s very ex-
pressive that the speed of ours is significantly faster than 
that of mcpIncSVM for all the data sets. Our method is 
implemented using Matlab under Windows OS. LASVM 
is implemented using C++ under Ubuntu OS, which usu-
ally has a better programming efficiency. However, 
when testing on the data set with very large samples, for 
example, the coil data set with 9 822 samples and credit 
data set with 30 000 samples, our method can use a 
smaller number of SVs but achieve better classification 
accuracy and much faster speed than LASVM. 

In this work, we consider that it is unnecessary to up-
date the current SVM model every time when finding a 
new sample violating the KKT conditions. We collect the 
violating samples and only update the current SVM 
model according to the collected samples when finding 
the current arriving sample is wrongly predicted. Thus, 
the current SVM will not be so frequently updated and 
the accuracy is guaranteed together with efficiency. It is 
tested in different scale data sets that our method can 
achieve good accuracy and high speed. Most important 
of all, our method has the ability of beginning with only 
two samples and updating the current model according to 
the expert label with good performance. 
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