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In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is 

high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, 

the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity 

check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permuta-

tion matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of 

W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the er-

ror-correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excel-

lent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal 

structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the 

new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phe-

nomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decod-

ing. 
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Quasi-cyclic low-density parity-check (QC-LDPC) codes, 
as a class of structured low-density parity-check (LDPC) 
codes[1], have already become the research hotspot in the 
coding field because of its less storage space and the 
lower complexity of the hardware implementation. In 
general, each entry of the parity check matrix H of a 
QC-LDPC code is a circulant. If each entry of H is either 
zero matrix or circulant permutation matrix (CPM), the 
corresponding code is termed as the type-I QC-LDPC 
code[2], and the constructed QC-LDPC codes in most 
references belong to type-I QC-LDPC codes[3-5]. The 
parity check matrix of a type-II QC-LDPC code is the 
combination of zero matrices, CPMs and circulant ma-
trices with weight of 2 (W2CMs)[2]. Compared with a 
type-I QC-LDPC code, a type-II QC-LDPC code gener-
ally has a higher upper bound of the minimum distance[6]. 
The minimum distance is directly related to the er-
ror-correction performance of the code, and the larger 
minimum distance makes the code have the better 
anti-interference performance, as well as the er-

ror-detection and error-correction performance. Type-II 
QC-LDPC codes with the medium/short block lengths 
can also perform better than randomly constructed LDPC 
codes under the sum-product algorithm (SPA) iterative 
decoding[7,8]. However, the existence of the W2CMs in 
parity check matrix inevitably makes the Tanner graph 
more prone to have the girth-4, which affects the con-
vergence speed of iterative decoding to some extent and 
thus degrades the decoding performance. The influence 
of W2CMs in the parity check matrices of type-II 
QC-LDPC codes on the minimum distance upper bound 
and error-correction performance has been showed in 
Ref.[8]. The parity check matrices of type-II QC-LDPC 
codes constructed in Refs.[9] and [10] only include the 
arrays of W2CMs, which are more likely to introduce 
into the short cycle in Tanner graphs, and parity check 
matrices are not full rank. Although the above proposed 
QC-LDPC codes can reduce the storage complexity to a 
certain extent, the problem that its encoding complexity 
is high has not yet solved effectively. The encoding 
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calculation amount of the traditional QC-LDPC code is 
proportional to the square of the code length[11-15], 
namely it is about O(n2). For QC-LDPC codes with lar-
ger block lengths, its larger encoding calculation amount 
can not be underestimated. Therefore, how to reduce the 
encoding complexity of QC-LDPC codes has become a 
research hotspot in the coding field. 

In view of the above problems, the new irregular 
type-II QC-LDPC codes with fast encoding based on 
perfect cyclic difference sets (CDSs) are presented, 

whose parity check matrices consist of zero matrices, 
CPMs and W2CMs. The new type-II QC-LDPC code 
can achieve the fast encoding by directly using the  par-
ity check matrix, and its encoding complexity is linearly 
proportional to the code length, namely it is O(n). In ad-
dition, the specific fast encoding algorithm of type-II 
QC-LDPC codes is also given in this paper. 

Suppose L and p are two positive integers, and the 
structure of parity check matrix H of a type-II QC-LDPC 
code with code length N=Lp is shown as 
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where J≤L, and )(
,
i
ljp  is the times of cyclically shifting 

to the right for each row of the identity matrix for arbi-
trary 0≤j≤J−1 and 0≤l≤L−1 with 

}2,1{i , }1,1,0,{)(
,  pp i
lj . If )(

,
i
ljp =∞, the circulant 

I(∞) represents a p×p zero matrix 0; if 0)(
, i
ljp , the cir-

culant I(0) is a p×p identity matrix Ip; otherwise, the cir-
culant  )(

,
i
ljpI  represents the CPM obtained by shifting 

right each row of a p×p identity matrix by )(
,
i
ljp  places. 

From Eq.(1), it is observed that weight-0 circulant 0, 
weight-1 circulant  )(

,
i
ljpI  and weight-2 circulant 

   )2(
,

)1(
, ljlj pp II  are included in parity check matrix H, 

where )2(
,

)1(
, ljlj pp  . A type-II QC-LDPC code can also be 

expressed by the shift matrix S(H) of parity check matrix 
H, namely 
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It is known that the parity check matrix H of a (J, 
L)-regular type-I QC-LDPC code with J>2 has rank at 
most pJ−(J−1)[2]. Similarly, since the p binary rows 
within each row of circulants in H sum to the all-zero 
rows, that is there are at least p−1 linearly independent 
rows within each row of circulants in H. So it can be 
easily deduced that the parity check matrix H of a (2J, 
2L)-regular type-II QC-LDPC code has rank at most 
pJ−J. Therefore, a (2J, 2L)-regular type-II QC-LDPC 

code has code rate at least 
Lp

pJ

Lp

JJpLp )1(
1

)( 


 . 

However, for most of type-II QC-LDPC codes, the 
weight configurations of circulants in H are non-uniform 
(even while maintaining regularity), which can make a 
wider range of rates for a given J×L array. But if the par-
ity check matrix H of J×L array has full rank pJ, the null 
space of this H is defined as a type-II QC-LDPC code, 
which has code rate of 1−J/L.  

Let )1(
,

)2(
,, ljljlj ppd  , where dj,l is always a positive 

integer, since )2(
,

)1(
, ljlj pp  . It is considered that the value 

dj,l 
is undefined for weight-0 circulants and weight-1 

circulants. Theorem 1 gives the necessary and sufficient 
conditions for a type-II QC-LDPC matrix H to have girth 
at least 6. 

Theorem 1[6]: The corresponding Tanner graph of the 
parity check matrix H given in Eq.(1) has girth at least 6 
if and only if each of the following inequalities holds 
true for all j0 and j1 with 0≤j0≠j1≤J−1, all l0 and l1 with 

0≤l0≠l1≤L−1, all }2,1{ti  with 0≤t≤3, and all values in 
following inequalities are defined. 
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For the Abelian additive group Zv={0,1,2,…,v−1} of 
order v, a k-element subset D={d1, d2,…, dk} of Zv forms 
a (v, k, λ)-cyclic difference set (CDS) if every nonzero 
element of Zv occurs precisely λ times among the differ-
ences (di−dj)modv in terms of elements of D. From the 
definition of CDS, it is known that the relation among 
parameters v, k and λ is λ=k(k−1)/(v−1). If λ=1, then 
v=k2−k+1, such a (v, k, 1)-CDS is called as a perfect CDS, 
and the differences (di−dj)modv

 
is distinct for arbitrary 

two elements di and dj from D in a perfect CDS. For a (v, 
k, 1)-perfect CDS, its difference table, where the row and 
the column indexes are both the arrangement of k ele-
ments from D in an ascending order, can be built. Each 
element in the difference table is the modulo v difference 
between the index values of the corresponding row and 
column. The difference table of a (7, 3, 1)-perfect CDS 
D={1, 2, 4} is shown in Tab.1. It can be seen from the 
Tab.1 that all differences between different elements in a 
perfect CDS are distinct except 0 elements.
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Tab.1 Difference table of the perfect CDS D={1, 2, 4} 
mod 7 

 1 2 4 

1 0 1 3 

2 6 0 2 

4 4 5 0 

 
Theorem 2[16]: For any prime power q=pm, p is a prime 

and m is an arbitrary positive integer, and there exists a 
(q2+q+1, q+1, 1)-perfect CDS for the additive group 
Zq2+q+1.  

The first three conditions of Theorem 1 can be refor-
mulated as 
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At the same time, considering the condition (4) in Theo-
rem 1, we can learn that all the conditions in Theorem 1  
will be met if none of the differences between any two 

different elements 0

00 ,
i

ljp  and 1

11,
i

ljp  in S(H) are iden-

tical, where }2,1{, 10 ii , 0≤j0,j1≤J−1 and 0≤l0,l1≤L−1. It 

should be noted that if j0=j1 and l0=l1, then i0≠i1. Thus, 
combining perfect CDS with the property of different 
differences under modulo p operation, the parity check 
matrices of type-II QC-LDPC codes with girth at least 6 
can be constructed. The specific construction steps are as 
follows. 

(1) Design a J×L weight configuration matrix Awt. Each 
value of ajl 

(1≤j≤J, 1≤l≤L) in Awt represents the weight of 
corresponding circulant in parity check matrix H of type-II 
QC-LDPC codes. In this paper, we decide to construct the 
parity check matrix H with three rows circulants, namely J=3. 
The designed weight configuration matrix Awt is shown as 

.                             (3) 

Obviously, the entry of the first column on the left part 
of Awt separated by dashed line is (x2+y2)mod 3, and the 
entry of remaining columns is [(x2+y2)+w1/w2/w3]mod 3, 
where x and y are the row index and column index of the 
corresponding entry, respectively. Let w1=2 when the 
column index is 3ib (2≤ib≤kb) for the entries in the first 
row, otherwise let w1=0. Then let w2=1 for all entries in 
the second row, and let w3=1 for all entries in the third 
row. The sub-matrix on the right part of Awt separated by 
dashed line in Eq.(3) has the form of quasi-dual diagonal 
structure, which make Awt have full rank. Thus, the cor-
responding parity check matrix H of this Awt also has 
form of quasi-dual diagonal structure and full rank, 
namely rank(H)=pJ. The null space of this full rank H 
defines a code C with the code rate of R=1−J/L. 

(2) Assign the number of elements in each entry of 
S(H) according to Awt in Eq.(3). The value of nonzero 
element in Awt represents the number of elements in each 
entry of S(H), and the value 0 in Awt corresponds to the 
element ∞ in S(H). 

(3) Set the entry including only one element to “0” 
excepting ∞, namely, let all weight-1 circulants in H be 
identity matrices with the same size. 

(4) According to the property of perfect CDS, let 
p=v=k2−k+1, and arrange the elements of a perfect CDS 
in the entries of shift matrix S(H) excepting 0 and ∞, in 
an ascending order from left to right and from top to 
bottom. 

(5) Transform shift matrix S(H) to parity check matrix 
H according to Eq.(1), that’s to say “0" in H is replaced 
by a p×p identity matrix, ∞ in H is replaced by a p×p

zero matrix, and other each element in H is the permuta-
tion of a p×p CPM. The designed 3p×(3+kb)p parity 
check matrix H in this paper has the form of H=[H1 H2], 
where the 3p×kbp H1 is termed as information sub-matrix 
and the 3p×3p H2 is termed as check sub-matrix. The 
quasi-dual diagonal structure of H2 is the base of 
achieving fast encoding. Suppose code vector c=[s1  

s2 … skb  p1  p2  p3], 
where [s1  s2 … sk] is the informa-

tion code vector and [p1  p2  p3] is the check code vector. 
According to the parity check equation HcT=0, it can be 
obtained that 
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Then, Eq.(4) can be expressed by the form of linear 
equations, which is shown as 
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where X1=Φ1+Φ2 and X2=Φ3+Φ4. 
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The vectors of the check code can be obtained by 
elimination method as 

)()( 321
1

21
T
1 qqqIXXp   ,          (7) 

T
111

T
2 pXqp  ,                        (8) 

T
13

T
3 pqp  .                             (9) 

Eqs.(7)—(9) are the fast iterative encoding algorithm 
for the proposed type-II QC-LDPC codes in this paper. If 
the information code vector and the parity check matrix 
are given, we can obtain the code vector c=[s1  s2 … skb  

p1  p2  p3] by Eqs.(7)—(9). 
Encoding complexity analysis is mainly concerned 

with the amount of computation, computational com-
plexity and the required storage for parameters in the 
encoding process. The amount of computation refers to 
the calculation amount of multiplication and addition, 
and the computational complexity refers to the relation 
between the amount of computation and the code length. 
Due to all the sub-matrices in fast iterative encoding al-
gorithm of the proposed type-II QC-LDPC codes in this 
paper are sparse matrices, computing in accordance with 
sparse matrix pattern can greatly reduce the amount of 
computation. Tab.2 shows the exact values of the com-
putation of Eqs.(7)—(9). 
Tab.2 The computation amount of the fast encoding 
algorithm for type-II QC-LDPC codes 

 
The calculation amount of 

multiplication 

The calculation amount of 

addition 

P1 3Rn/p 3Rn+2p2−p 

P2 Rn+p Rn 

P3 Rn Rn 

 
It is clear from Tab.2 that the computational complex-

ity of calculating parity check code vector P is O(n), 
namely, computational complexity is linearly propor-
tional to code length, because this encoding algorithm of 
LDPC codes has the advantages of sparse matrix and 
iteration. However, the traditional encoding algorithm of 
QC-LDPC codes is indirectly achieved by parity check 
matrix H, that is, the parity check matrix H is trans-
formed into the generating matrix G firstly, then encod-
ing is achieved by generating matrix G. And the compu-
tational complexity is O(n2), namely it is linearly propor-
tional to the square of the code length. Thus, compared 
with the traditional encoding algorithm used by Refs.[4] 
and [9], the fast encoding algorithm in this paper can 
greatly reduce the computational complexity of encoding 
when the code length is large. In terms of the storage, 
since the quasi-cyclic extension method is adopted for 
the design of the presented type-II QC-LDPC codes in 

this paper, and the parity check matrix H can be deter-
mined by the corresponding shift matrix S(H), the stor-
age amount is less because the elements in the shift ma-
trix S(H) are only stored. So it is concluded that the fast 
encoding algorithm in this paper can effectively reduce 
the encoding complexity. 

Two examples are given to illustrate and analyze the 
performance of the proposed regular type-II 
CDS-QC-LDPC codes. Binary phase shift keying (BPSK) 
modulation over an AWGN channel is assumed. The SPA 
is used for decoding, and the maximum iteration times of 
is set as 50. Regular type-II QC-LDPC codes[9] con-
structed by the construction method based on CDS and 
type-I QC-LDPC codes[4] constructed by the construction 
method based on arithmetic progression sequence (APS) 
are included for comparison. 

Example 1: Considering a (183, 14, 1)-perpect CDS 
D={1, 2, 4, 25, 42, 53, 58, 67, 71, 97, 103, 150, 165, 
177}, and let p=v=183, kb=3, then a 3×6 weight configu-
ration matrix Awt is obtained by Eq.(3), which is shown 
as  

.          (10) 

According to the (183, 14, 1)-perfect CDS and con-
figuration matrix Awt in Eq.(10), we can obtain a shift ma-
trix S(H), and the null space of parity check matrix H ob-
tained by extending this S(H) defines a type-II irregular 
QC-LDPC(1 098, 549) code with the code rate of 0.5. The 
simulation results are shown in Fig.1. It is easily seen from 
Fig.1 that at the bit error rate (BER) of 10-6, the net coding 
gain (NCG) of the proposed type-II irregular QC-LDPC 
(1 098, 549) code with the code rate of 0.5 in this paper is 
respectively improved by 0.42 dB and 0.68 dB than those 
of the type-II regular CDS QC-LDPC(1 092, 546) code in 
Ref.[9] and the type-I APS-QC-LDPC (1 096, 548) code 
in Ref.[4]. In addition, BER of the proposed type-II ir-
regular QC-LDPC(1 098, 549) code can reach 10-7 at the 
signal-to-noise ratio (SNR) of 2.8 dB, which shows that 
the proposed code has excellent decoding convergence 
properties, and there is no occurrence of the error floor at 
BER down to 10-7. 

 

Fig.1 The comparison of the error correction perform-
ance among the type-II irregular CDS QC-LDPC(1 098, 
549) code and other codes with the code rate of 0.5
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Example2: Considering a (553, 24, 1)-perfect CDS 

D={1, 2, 4, 18, 37, 43, 65, 94, 132, 150, 162, 194, 205, 
215, 220, 228, 265, 274, 314, 401, 449, 453, 473, 480}, 
and let p=v=553, kb=6, then a 3×9 weight configuration 
matrix Awt is obtained according to Eq.(3), which is 
shown as 


















101122121

112200202

012022122

wtA .       (11) 

According to the (553, 24, 1)-perfect CDS and con-
figuration matrix Awt in Eq.(11), we can obtain a shift 
matrix S(H), and the null space of parity check matrix H 
obtained by extending this S(H) defines a type-II irregu-
lar QC-LDPC(4 977, 3 318) code with the code rate of 
0.67. The simulation results are shown in Fig.2. Fig.2 
shows that compared with the type-II regular CDS 
QC-LDPC(5 226, 3 486) code in Ref.[9] and the type-I 
APS-QC-LDPC (4 980, 33 208) code in Ref.[4], the 
NCG of type-II irregular QC-LDPC (4 977, 3 318) code 
with the code rate of 0.67 proposed in this paper is im-
proved by 0.38 dB and 0.28 dB at BER of 10-6, respec-
tively. Furthermore, there is no error floor phenomenon 
when BER is close to 10-7. 

 

 

Fig.2 The comparison of the error correction perform-
ance between the Type-II irregular CDS QC-LDPC 
(4 977,3 318) code and other codes with the code rate of 
0.67 

 
The new irregular type-II QC-LDPC codes with the 

fast encoding based on perfect CDS are proposed in this 
paper. The Tanner graphs of these type-II QC-LDPC 
codes have no girth-4, and they can achieve the fast en-
coding by directly using the parity check matrices with 
the quasi-dual diagonal structure, so it has the lower en-
coding complexity. Simulation results show that the new  

 

type-II QC-LDPC codes have the more excellent er-
ror-correction performance and no occurrence of the  
error floor at BER of 10-7. Under the same conditions, the 
new irregular type-II CDS-QC-LDPC codes can perform 
better in comparison with the type-II irregular 
CDS-QC-LDPC code in Ref.[9] and type-I APS-QC- 
LDPC code in Ref.[4].  

 
References 

[1]  Juane Li, Ke-ke Liu, Shu Lin and Khaled Abdel-Ghaffar, 
IEEE Transactions on Communications 62, 2626 
(2014). 

[2]  R Smarandache and P O Vontobel, On Regular 
Quasi-Cyclic LDPC Codes from Binomials, IEEE 
International Symposium on Information Theory, 274 
(2004). 

[3]  Zhang G H, Sun R and Wang X M, IEEE Communica-
tions Letters 17, 369 (2013). 

[4]  Zhang Y and Da X, Electronics Letters 51, 1257 (2015). 
[5]  Wang J, Zhang G, Zhou Q, Yang Y and Sun R, Explicit 

Constructions for Type-1 QC-LDPC Codes with Girth 
at Least Ten, IEEE Information Theory Workshop, 436 
(2014). 

[6]  Lally K, Explicit Construction of Type-II QC-LDPC 
Codes with Girth at Least 6, IEEE International Sym-
posium on Information Theory, 2371 (2007). 

[7]  O'Sullivan M E, IEEE Transactions on Information 
Theory 52, 718 (2006). 

[8]  Smarandache R and Vontobel P O, IEEE Transactions 
on Information Theory 58, 585 (2012). 

[9]  Zhang L, Li B and Cheng L, Chinese Journal of Elec-
tronics 24, 146 (2015). 

[10]  Zhang G H, Electronics Letters 52, 367 (2016). 
[11]  Richardson T J and Urbanke R L, IEEE Transactions on 

Information Theory 47, 638 (2001). 
[12]  Johnson S J and Weller S R, IEEE Transactions on 

Communications 56, 1201 (2008). 
[13]  Yuan Jian-guo, Zhou Guang-xiang, Gao Wen-chun, 

Wang Yong, Lin Jin-zhao and Pang Yu, Optoelectronics 
Letters 12, 61 (2016). 

[14]  Peng L, Zhu G and Wu X, Acta Electronica Sinica 35, 
950 (2007). (in Chinese) 

[15]  YUAN Jian-guo, Liang Meng-qi, Wang Yong, Lin 
Jin-zhao and Pang Yu, Optoelectronics Letters 12, 208 
(2016). 

[16]  Esmaeili M and Javedankherad M, IEEE Transactions 
on Communications 60, 3579 (2012). 

 

0362 


