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The time-dependent formation of one-dimensional two-photon screening-photovoltaic (PV) grey spatial solitons under
low-amplitude conditions is presented theoretically. The time-dependent propagation equation of two-photon screening-
photovoltaic solitons is obtained by the numerical method. The results indicate that as the time evolves, the intensity width
of grey screening-photovoltaic spatial solitons decreases monotonously to a minimum value towards the steady state. The
higher the ratio of soliton peak intensity to the dark irradiation intensity, the narrower the width of grey solitons within the
propagation time.
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Photorefractive (PR) spatial solitons have attracted much
attention because of their possible applications for optical
switching and routing. To date, there are four types of PR
spatial solitons, i.e., quasi-steady-state solitons[1], screen-
ing solitons[2], photovoltaic (PV) solitons[3-5] and screening-
photorefractive (SP) solitons[6]. All of the above-mentioned
solitons are about the steady-state propagation of the
solitons. In 2003, Chauvet M[7] reported the temporal behav-
ior of the dark PV solitons under open-circuit. Later, the tem-
poral characteristics of bright PV solitons and SP solitons
were investigated by Lu et al[8-10]. At the same time, Castro-
Camus and Magana[11] introduced a new model for PR spatial
solitons, which involved two-photon PR effect. This model
includes a valance band (VB), a conduction band (CB) and
an intermediate allowed level (IL). A gating beam is used for
maintaining a fixed number of excited electrons from the VB,
which are then excited to the CB by the signal beam. Based
on the model of two-photon PR spatial solitons, the screen-
ing solitons[12], PV solitons[13] and SP solitons[14-16] were pre-
dicted one after another. However, the temporal behavior of
two-photon PR solitons has not been fully investigated yet.
In this paper, we present the time-dependent nonlinear wave
equation of the two-photon SP spatial solitons and discuss
the temporal characteristics of the normalized intensity pro-

files and width for grey solitons. The numerical results show
that the width of solitons decreases monotonically to a mini-
mum value towards the steady state. The temporal behaviors
of the screening solitons and PV solitons can also be ob-
tained from our results.

To start, we consider an optical beam that propagates in
a biased two-photon PV-PR crystal along the z-axis and is
permitted to diffract only along the x direction. The crystal
with the optical c-axis along the x direction is illuminated by
the gating beam. Moreover, it is assumed that the optical
beam is linearly polarized along the x direction. As usual, we
express the optical field of the incident beam in terms of slowly
varying envelope , i.e., E=x (x,z)exp(ikz), where k=k0ne =
( 0)ne , ne is the unperturbed extraordinary index of
refraction, and 0 is the free-space wavelength. Under these
conditions the optical beam satisfies the following envelope
evolution equation:
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where zz , ,22 xxx 33 is the electro-optic
coefficient, and Esc = Escx is the space-charge field in the
crystals. Following Refs.[7-10], the space-charge field in Eq.
(1) can be obtained from the time-dependent band-transport
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model. In a non-photovoltaic crystal, the model is represented
by the following set of equations[14]
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where N is the donor density, N + is the ionized density, NA is
the acceptor or trap density, and n is the density of the elec-
trons in the CB;  n1 is the density of the electron in the IL; n01

is the density of traps in the IL; s1 and s2 are photoexcitation
cross sections; 1 and 2 are the thermoionization probabil-
ity constants for the transitions of VB-IL and IL-CB,
respectively; , 1 and 2 are the recombination factors of the
CB-VB, IL-VB, and CB-IL transitions, respectively; D is the
diffusion coefficient;  and e are the electron mobility and
charge, respectively, and  is the photovoltaic constant; 
and r are the vacuum and relative dielectric constants,
respectively; J is the current density; I1 is the intensity of the
gating beam, which can be considered as a constant; I2 is the
intensity of the soliton beam. According to Poynting’s theorem,
I2 can be expressed in terms of , that is I2 = (ne/2 ) | |2,
where = ( )1/2. To establish a time-dependent relation
between the space-charge field and the optical intensity, let
us recall that in typical PR crystals, n, n1<< N +, NA and (n01

n1)<< N +[10-12]. Simultaneously, we make the hypothesis that
the steady-state regime is reached for Eqs.(2) and (3). In such
conditions, from Eqs.(2) and (3) we have
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Substituting Eq.(8) into Eq.(2) we get
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In this case, from Eqs.(5)-(7) we have
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where )](/)[/( A2Ar0d NNNeT , )/( 1112 Is ,
22d2 / sI  is dark irradiance, and eNE /Ap  is photo-

voltaic field.
The integral of Eq.(11) leads to

Substitute Eq.(13) into Eq.(1), and adopt the following
dimensionless coordinates and variables: s=x/x0, )/( 2

0kxz ,
and 21

ed20 )2( nIU , where x0 is an arbitrary spatial
width. Under these conditions, the following time-dependent
dynamical evolution equation can be obtained:
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where C1 is integration constant. In the steady state and
x , we have JxJ )(  and 0sc )( ExE .  From

these conditions, we can obtain )
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Eq. (12) we get
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Substituting Eq.(9) into Eq.(10) we get
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that is ,12U Eq.(14) can be simplified as
and
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For grey solitons, the wave power density attains a con-
stant value I2  at infinity, resulting in a finite . To obtain
the solutions, U is expressed in the following form[2]
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where Q is a real constant to be determined, and the normal-
ized amplitude y(s) is an even function of s and it satisfies the
condition .1)(sy All the derivatives of y are zero at
infinity. Moreover, we assume that msy )0(2  is the
grayness of the solitons and )0(y . Substituting Eq.(16) into
Eq.(15), the following equation is obtained
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Using the boundary conditions at infinity, we can deduce
from Eq.(17) that
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Eq.(17) can be integrated and we get

~ 106, = 1.67 10 4. The dark irradiance I2d can be
modulated by using incoherent uniform illumination[3], so that

 can be adjusted. Here, we take = 104. Fig.1 shows the
soliton normalized intensity profiles when  = 0.01, = -22.2,

= -11.1, and m = 0.5. Fig.2 is the full width of half maximum
(FWHM) of intensity for m = 0.5 under different . It can be
shown that the FWHM decreases monotonically to a mini-
mum value towards the steady state for a low-amplitude
regime. The higher the value of is, the narrower the width
of grey solitons is within propagation time.

Fig.1 Normalized intensity profiles of grey solitons under
different values
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Using the boundary conditions y2 (0) = m and )0(y =0, we
have

                                                                                         .  (15)

From Eq.(19) we can obtain the normalized field profile
y(s) of grey solitons by numerical integration. To illustrate
our results, we take the following parameters[14]: ,2.2en

,Wm101 26
1I  And then we can obtain = -22.2, = -11.1,
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Fig.3 is the FWHM of grey solitons as a function of  for
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Fig.3  FWHM of intensity for screening-photovoltaic grey
spatial solitons versus  under different m values

Fig.4 depicts the temporal behavior of closed-circuit PV
grey solitons at = -22.2, =0, and m = 0.5. Fig.5 depicts the
temporal behavior of screening grey solitons at = 0, = -11.1,
and m = 0.5. Those figures show that the temporal behaviors
of screening grey solitons and PV grey solitons are similar to

Fig.5 FWHM of intensity for screening grey spatial soli-
tons versus  under  = 0.001, 0.01 and 0.1

Fig.4 FWHM of intensity for photovoltaic grey spatial soli-
tons versus  under  = 0.001, 0.01 and 0.1

In conclusion, the time-dependent propagation equation
in biased two-photon PV-PR crystals is obtained. We have
demonstrated the temporal behavior of grey SP spatial soli-
tons in low-amplitude regime. We find that the FWHM de-
creases monotonically to a minimum value towards the steady
state. Within the same propagation time, the bigger the value
of  or the smaller the value of m is, the narrower the inten-
sity width of the grey solitons is. Moreover, the temporal
behaviors of grey screening solitons and grey PV solitons
can also be obtained from our theory.
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