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Varieties of Cubes of Opposition

Claudio E. A. Pizzi

Abstract. The objects called cubes of opposition have been presented in
the literature in discordant ways. The aim of the paper is to offer a sur-
vey of such various kinds of cubes and evaluate their relation with an
object, here called “Aristotelian cube”, which consists of two Aristotelian
squares and four squares which are semiaristotelian, i.e. are such that
their vertices are linked by some so-called Aristotelian relation. Two par-
adigm cases of Aristotelian squares are provided by propositions written
in the language of the logic of consequential implication, whose distinc-
tive feature is the validity of two formulas, A → B ⊃ ¬ (A → ¬ B)
and A → B ⊃ ¬ (¬ A → B), expressing two different forms of contra-
riety. Part of section 1 is devoted to define the notions of rotation and
of r-Aristotelian square, i.e. a square resulting from some rotation of an
Aristotelian square. In section 2 this notion is extended to the one of a
r-Aristotelian cube, i.e. of a cube resulting from some rotation of some
square of an Aristotelian cube. This notion is used in the sequel to ana-
lyze various cubes of oppositions which can be found in the literature: (1)
the one used by W. Lenzen to reconstruct Caramuel’s Octagon; (2) the
one used by D. Luzeaux to represent the implicative relation among S5-
modalities; (3) the one introduced by D. Dubois to represent the relations
between quantified propositions containing positive predicates and their
negations; (4) the one called Moretti cube. None of such cubes is strictly
speaking Aristotelian but each of them may be proved to be r-Aristotelian.
Section 5 discusses the assertion that Dubois cube was anticipated in
a paper published by Reichenbach in 1952. Actually Dubois’ construc-
tion was anticipated by the so-called Johnson–Keynes cube, while the
Reichenbach cube, unlike Dubois cube, is an instance of an Aristotelian
cube in the sense defined in this paper. The dominance of such notion is
confirmed by J.F. Nilsson’s cube, representing relations between proposi-
tions with nested quantifiers, and also by a cube introduced by S. Read to
treat quantifiers with existential import. A cube similar to Read’s cube,
introduced by Chatti and Schang, is shown to be r-Aristotelian. In sec-
tion 6 the author remarks that the logic of the formulas occurring in the
cubes of Chatti–Schang and Read have the drawback of not satsfying the
law of Identity. He then proposes a definition of non-standard quantifiers
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which satisfies Identity, are independent of existential assumptions and
such that their interrelations are represented by an Aristotelian cube.
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1. Aristotelian Squares and their Rotations

In the wide literature about the square of opposition many papers in the
last decades have been devoted to a notion which appears to be a natural
generalization of the one of a square of opposition: the notion of a cube of
opposition. Unfortunately in many of these contributions the reader comes
across notions of a cube of opposition which appear to be discordant and prima
facie irreconcilable. It seems then that it is useful to examine such different
notions and to see which relations are devisable between them, in order to
prepare the ground to a possible unified treatment of the whole subject.

In the paper [28] the present author introduced the notion of an Aris-
totelian cube as a particular construction based on a couple of Aristotelian
squares. This presupposes having a clear notion of what an Aristotelian square
is. In the mentioned paper and in other ones by the same author1 this notion
is defined as follows:

An Aristotelian square Γ with respect to a given logic S is a an ordered
set of four propositions <W, X, Y, Z>, with the following properties:

(i) W and X are contraries in S (i.e. in S W logically implies ¬X and X
logically implies ¬W)

(ii) W and Y on the one hand and X and Z on the other hand are contradic-
tories in S (i.e. W ≡ ¬Y and X ≡ ¬Z are S-theorems)

(iii) Y and Z are subcontraries in S (i.e. their disjunction Z ∨ X is a S-
theorem)

(iv) Z is subalternant of W and Y is subalternant of X in S (i.e. W logically
implies Z in S, X logically implies Y in S).

If Z is subalternant of W or W is subalternant of Z in S, W and Z are said to
be connected.

The relations described in (i)–(iv) will be said Aristotelian relations.2 In
Γ =<W, X, Y, Z> the pairs of wffs <W, X>, <X,Y>, <Y, Z>, <Z, W> are
called corner edges or simply edges of Γ. W will be called the origin of Γ and
Γ will be said originated by W.

Let us remark that if Γ is an Aristotelian square all permutations of Γ
are not strictly speaking Aristotelian squares. For instance, if Γ is <W, X, Y,
Z>, its permutation <W,Y, Z, X> is not an Aristotelian square since W e Z

1 See [30–32].
2 For an analogous terminology cf. [12], p.3 ff.
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are not contradictories, as required by the above definition of an Aristotelian
square.

A semiaristotelian square Γ with respect to a given logic S is an ordered
4-tuple Γ = <W, X,Y, Z > such that each one of the edges of Γ consists in an
ordered pair of sentences which have between them some Aristotelian relation.

From the preceding definitions it turns out (1) that every Aristotelian
square is also semiaristotelian, but not vice versa. (2) that, if Γ is Aristotelian,
every permutation of elements of Γ is a semiaristotelian square.

In this section we choose as a reference logic the logic called CI.0 whose
axioms describe the behaviour of kind of implication called consequential im-
plication (here symbolized by the arrow →).3 Being a variant of so-called con-
nexive implication, such a logic has the following properties: Boethius’ Thesis:
A → B ⊃ ¬(A → ¬B); Aristotle’s Thesis: ¬(A → ¬A); Secondary Boethius:
A → B ⊃ ¬ (¬A → B); Contraposition: A → B ⊃ (¬B → ¬A).

The symbols for the relations which we call of cotenability and secondary
cotenability are defined as follows: A/◦B =df ¬(A → ¬B); A \◦B = df¬(¬A
→ B).

From the last two definitions it turns out that A \◦B is equivalent to
¬A/◦¬B and that A/◦B is equivalent to ¬A\◦¬B.

In [27] CI.0 is proved to be definitionally equivalent to the modal logic
KT, so decidable thanks to the well-known decidability procedures of KT.
While �A is definable as T → A (T being an arbitrary tautology) the arrow
is definable in the following way:

(Def →) A → B = �(A ⊃ B)∧ (�A ≡ �B) ∧ (♦ A ≡ ♦B)
Due to Boethius’ Thesis and to Secondary Boethius A → B turns out

to be contrary to both A → ¬B and ¬A → B. The latter form of contrariety
will be called oblique contrariety. As a consequence, we have not one but two
Aristotelian squares of opposition originated by A → B whose wffs contain
only, A, B, ¬and →, as shown in Figs. 1 and 2.

The notion of a rotation of a figure will have a relevant place in what
follows. Rotation is a geometrical operation which may be applied to monodi-
mensional, bidimensional and three-dimensional objects. The simplest form of
rotation of a monodimensional object is provided by the rotation of a seg-
ment around its midpoint. The rotations in which we are interested here are of
course the rotations of bidimensional figures and especially of a square, which
may be or not be an Aristotelian square.

The most simple rotations of a square whose vertices are labelled by
wffs are the rotations around the horizontal axis and the vertical axis. In the
following figures the symbol (∗) marks the wff which originates the square
to which rotation is applied, that will be called conventionally basic square.
Considering the square in Fig. 1 as the basic square, the results of the two
rotations are represented in Figs. 3 and 4.

Please note that the 4-tuple <A/◦B, A/◦¬B, (∗) A → ¬B, A →B >
represented in Fig. 3 is not an Aristotelian square according to the definition

3 Cf. [27,28].
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Figure 1. Square of opposition of consequential conditionals
with standard contrariety

Figure 2. Square of opposition of consequential conditionals
with oblique contrariety

Figure 3. Horizontal rotation of the square of Fig. 1

Figure 4. Vertical rotation of the square of Fig. 1
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of p.1, while <A → ¬B, (∗)A → B, A/◦B, A/◦¬B> represented in Fig. 4 is an
Aristotelian square in the defined sense, but its origin is not coincident with
the origin of the basic square.

In [31] the author introduced the concept of a circular rotation of an
arbitrary square. Such rotations are rotations of the basic square around a
punctiform axis located at the cross of the diagonals.

For every square Γ = <A, B, C, D> there are three not degenerate4

clockwise rotations. The squares obtained from Γ by non degenerate clockwise
rotations will be named cr1: <D, (∗)A, B, C >, cr2: <C, D, (∗)A, B>, cr3: <B,
C, D, (∗)A> (see Fig. 5).

An useful remark is that every circular rotation has two variants which
are its vertical rotation (i.e. with the contraries and subcontraries in inverted
position) and its horizontal rotation. By converse, circular rotation may be
applied to the vertical and horizontal rotation of the basic square. In some
cases, but not in all, the iterated and combined application of the three defined
rotations may yield a square which may be reached by a one-step rotation.

In this connection something should be said about the diagonal rotation,
i.e.the rotation around one of two diagonals of the square. Suffice it to consider
the following figure, which is obtained by rotating the basic square around the
diagonal which connects the vertices A/◦B and A → ¬B.
Let us now look at cr1. If we apply the horizontal rotation to cr1 we obtain
the square of Fig. 6, and an analogous result for the other diagonal may be
reached by applying sequentially two circular rotations to the square of Fig. 6.
To sum up, the diagonal rotation is redundant since it can be replaced by a
sequential combination of horizontal rotations and circular rotations.

Something should be said also about anticlockwise rotations. The anti-
clockwise rotations coincide with the clockwise rotations in reverse order. As
one can see from Fig. 5, for instance, the last clockwise rotation cr3 is coinci-
dent with the one-step anticlockwise rotation, cr2 coincides with the two-step
anticlockwise rotations and so on.

In the light of the preceding considerations and observing that a double
application of vertical (as well as horizontal) rotation takes back to the starting
square, it must be concluded that if a sequence of circular or vertical/horizontal
rotations brings you from some square Qi to some square Qj, there is also some
sequence of circular or vertical/horizontal rotations that bring you back from
Qj to Qi.

The examples of rotations presented up to now concern the rotation of
Aristotelian squares. But rotation may be applied to every kind of square,
intended as an ordered 4-tuple of wffs. If the basic square is a semiaristotelian
square, every rotation of it is obviously a semiaristotelian square since its
elements are connected by some Aristotelian relation.

All the squares which are obtained by one or more rotations of an Aris-
totelian square Qi will be called r-Aristotelian squares.

4 By a degenerate rotation of Γ we intend a rotation, or a sequence of rotations, whose
output is Γ itself.
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Figure 5. Three subsequent circular rotations of the basic
square of Fig. 1

Figure 6. Diagonal rotation of the square of Fig. 1
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Figure 7. Example of a degenerate cube, i.e. of a cube con-
taining two equal squares

We have now to qualify the relations between Aristotelian squares and a
r-Aristotelian square. We agree to say that an Aristotelian square Qi:<A, B,
C, D > is identical to a square Qj:<P, R, S,T> iff A and P, B and R, C and
S, D and T are the same wffs; it is equal to Qjw.r.t. the background logic S
when �S A ≡ P, �S B≡ R, �S C ≡ S, �S D ≡ T; it is equivalent to Qj w.r.t.
S when every member of Qi is S-equivalent to some member of Qj. When two
squares are not identical they are said to be distinct.

From the preceding definitions it turns out that any rotation Qj of a given
Aristotelian square Qi is equivalent to Qi but not equal to Qj.

2. Aristotelian Cubes and r-Aristotelian Cubes

Now let us move on to define an Aristotelian cube. An Aristotelian cube is
an object consisting of six squares: two Aristotelian squares and four semiaris-
totelian squares.

More rigorously, an Aristotelian cube in S is a set K ={Q1 . . . Q6} such
that

(i) each Qi (1 ≤ i ≤ 6) in K is a semiaristotelian square in S and
(ii) two of the squares in K are Aristotelian squares in S
(iii) each edge of each square in K is coincident with the edge of some other

square in K.
When an Aristotelian cube contains two squares which are equal w.r.t. to the
background logic S it will be called a degenerate Aristotelian cube in S.5 The
is an example of a degenerate Aristotelian cube in CI.0, given that there are
two squares consisting of three identical wffs in the same position and of two
homologous wffs A → ¬B e B → ¬A which are are equivalent in CI.0 cube in
Fig. 7.

We will agree to qualify the faces of the cube as anterior, posterior, top,
bottom, left, right from the viewpoint of an observer which looks at the cube

5In the special case in which the two Aristotelian squares are identical the cube contains a
reduplication of the same Aristotelian square, and such square could conventionally be iden-
tified with such degenerate cube. The well-known Blanchè’s hexagon may also be identified
with a special kind of a degenerate cube (see [30], p. 205).
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in frontal position.6 When two squares have no edge in common they are
said to be opposite squares, otherwise they are said adjacent squares. As a
consequence of what has been said, two Aristotelian squares in the same non-
degenerate cube cannot have common edges. Suppose in fact that <A, B> is
such a common edge. Then at the opposite side of the diagonals starting from
A and B we should have wffs C, D such that � A ≡ ¬C and� B ≡ ¬D, so two
squares in the same cube would turn out be equal, contrary to the hypothesis
that the cube is non-degenerate. It follows from this also that two Aristotelian
squares in a cube cannot be adjacent but are always opposite squares.7

If Q1 and Q2 are two opposite Aristotelian squares in an Aristotelian cube
K, K could also be represented as the ordered couple < <Q1, Q2 >, {Q3, Q4,
Q5, Q6 }>. Q1 and Q2 may be the top and bottom squares, the left and right
squares, the anterior and posterior squares. As for the remaining squares, each
one of them has a common edge with Q1 and Q2, so their position is univocally
determined by Q1 and Q2.

Special cases of Aristotelian cubes are what we call connected cubes: in
such cubes the homologous vertices of the two opposite Aristotelian squares
have a relation of subalternance.

Beyond the six squares which constitute the cube we can identify also the
squares which may be called cross-sectional squares, i.e. the squares in which
two edges are the diagonals of two opposite squares. Since there are three
pairs of opposite squares and each one of them has two diagonals, in total
there are six cross-sectional squares. If a cube is an Aristotelian cube this does
not imply that its cross-sectional square are Aristotelian squares. However,
it may happen that a non-Aristotelian cube may have cross-sectional squares
that are Aristotelian squares. This point will be illustrated in the next section.

A question of some interest is the following. How should we consider a
cube where the two basic squares are one the rotation of the other, so they
are equivalent, even if not equal squares? We cannot say that this cube is a
degenerate cube, since the two squares are not equal. We agree to call it a self-
generated cube, given that it contains two copies of the same wffs which are
however located in different positions inside the square to which they belong.
The following is an example of a self-generated cube since the posterior face
is the rotation cr3 (i.e. the third circular rotation) of the anterior face. Note
that all the other squares of the cube are semiaristotelian (Fig. 8).

6 It is well known, considering the so-called Necker’s cube, that by a Gestalt phenomenon
the anterior face may be seen as posterior and viceversa. This is a psychological, not a logical
ambiguity, due to the fact the figures representing a cube are 2-dimensional representation
of a 3-dimensional object. Anyway, to avoid confusion, in the drawing the difference is
graphically marked by the difference between dotted lines and continuous lines. The posterior
face is conventionally identified by being drawn with dotted lines, while the anterior face is
drawn with continuous lines.
7 In [1] Béziau proves that there is no cube of opposition such that each side of it is a square
of opposition. In [28] Pizzi proves an akin result reported also in the present text: it is
impossible that there exists more than two Aristotelian squares in the same non-degenerate
cube.
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Figure 8. Example of a self-generated cube, i.e. of a cube
containing two equivalent squares

In what follows we will call r-Aristotelian cube every cube which is derived
from an Aristotelian cube by one or more rotations of some of its Aristotelian
or semiaristotelian squares. A r-Aristotelian cube may be an Aristotelian cube,
but generally it is not such.

If a cube K’ is such that each one of its squares is equivalent to some
of the squares of a cube K”, K’ and K” will be said equivalent cubes. Notice
that this definition implies that if a cube K’ is a r-Aristotelian cube resulting
from the rotation of some square in an Aristotelian cube K”, K’ and K” are
equivalent cubes.

The notion of a r-Aristotelian cube should not be confused with the notion
of a rotation of a cube. A cube can be rotated around some edge of its squares
or by a concomitant circular rotation of two opposite squares, but this has
no impact on the internal interrelations of its squares. In what follows we will
neglect the rotations of a cube, being irrelevant in this context that a square
which appears frontal in some representation may, for instance, appears top
or bottom in some different representation of the same cube.

3. Lenzen–Caramuel’s Cube and Luzeaux Cube

Let us now examine various kinds of Aristotelian cubes which can be found in
the literature and that appear to be different from what we have defined as an
Aristotelian cube.

It would be useful—but it will not be made here—to summarize an his-
torical reconstruction of the idea of generalizing Aristotle’squares to more com-
plex figures. An interesting example is so-called Buridan’s Octagon.8 When an
Octagon contains two squares of oppositions it may represented as a cube, i.e.
as a 3-dimensional objects. An Octagon representable as a cube may be found

8 See S. Read’s analysis in [33].
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Figure 9. The Lenzen-Caramuel cube

in Johnson’s [18] Part 1, p. 142. Other octagons also representable as cubes
are the Moretti–Pellisier–Octagon and the Bèziau Octagon.9

In various papers written by Prof. Wolfgang Lenzen one can find what he
calls “cube of opposition” (see [20,21]). In [20] Lenzen reconstructs the octagon
of oppositions introduced in 1654 by the Spanish philosopher and theologian
Juan Caramuel. Lenzen represents the octagon as a cube having the same
structure of a cube he introduced in another paper to represent Leibniz’s theory
of oppositions. The arrows represent subalternance (i.e. logical implication)
while the non directed lines connect pairs of contradictory propositions (See
Fig. 9).

An intuitive variant of this cube could be expressed in the language of
temporal modalities. In other words the variant would be one in which the
propositions make reference not to the object of error but to the time of error.
DQ1 would then become “Everyone always errs”, DQ2 “Someone always errs”
and so on.10 Anyway, if we use first order language to formalize the propositions
of the above cube, the wffs of the right square, for instance, result as follows:

(DQ 1) ∀x∀y E(x, y) (Everyone errs in everything)
(DQ 2) ∃x∀y E(x, y) (Someone errs in everything)
(DQ 3) ∀x∃y E(x, y) (Everyone errs in something)
(DQ 4) ∃x∃y E(x,y) (Someone errs in something).

In what follows, for sake of simplicity, every square will be identified by the
ordered 4-tuple of numbers occurring in the names of its vertices: <7, 3, 1,
5> for instance will denote the anterior square. It is easy to realize that all

9For a survey of such Octagons see the site https://logicalgeometry.org/diagrams/two

dimensional. In the case of what is called here Buridan’s Octagon (not found in Read’s
paper) the two squares constituting the cube are < ♦p ∧ ♦¬p,�¬p,�p ∨ �¬p,♦p > and
<p ∧ ¬�p,¬♦p,¬p ∨ �p,♦p >.
10 The modal octagon due to Buridan and reproduced at p. 17 of [33] contains the same
propositions but with alethic modalities in place of temporal modalities. The analogy be-
tween Caramuel’s cube and Buridan’s octagon is highligted by Lenzen at p. 23 of his paper.

https://logicalgeometry.org/diagrams/two_dimensional
https://logicalgeometry.org/diagrams/two_dimensional
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Figure 10. An Aristotelian cube equivalent to the Lenzen-
Caramuel cube of Fig. 9

the faces of the cube are semiaristotelian squares, but none is an Aristotelian
square. Even the cross-section squares are not Aristotelian squares.

A first remark about Lenzen–Caramuel cube is that interchanging, in the
top square, the diagonal <8, 3> with the edge <8, 4> and interchanging, in the
bottom square, the diagonal <6, 1> with the edge <6, 2>, and consequently
changing the direction of the involved arrows, the result is the cube of Fig. 10.

Looking at the top square <8, 3, 4, 7> and to the bottom square <6,1,
2, 5>, one can see that the uninterrupted diagonal lines connect contradictory
statement, while the lines with a circlet connect contrary or subcontrary state-
ments. Thus <8, 3, 4, 7> and <6, 1, 2, 5> are Aristotelian squares, while the
other squares are semiaristotelian. The cross section squares <8, 4, 2, 6> and
<7, 3, 1, 5> are the two squares that in Lenzen original cube were in anterior
and posterior position.

The cube of Fig. 10 is then an Aristotelian cube, and with a one-step
rotation of the cube the top square may be moved in frontal position so to
give an Aristotelian cube in standard configuration.

Now we may observe that in place of performing an interchange among
diagonals and edges there is a more direct way to describe the relevant trans-
formation. We may say in fact that, given the cube of Fig. 9, the cube of
Fig. 10 is the result of applying the vertical rotation to the (semiaristotelian)
right square <3, 4, 2, 1>, which after rotation becomes <4, 3, 1, 2> i.e. the
right square of the cube of Fig. 10. Reversing the procedure, i.e. applying to
cube of Fig. 10 the vertical rotation of the right face, we obtain the Lenzen–
Caramuel cube of Fig. 9. Such cube is then a r-Aristotelian cube, given that
it is derived by rotation of a square in an Aristotelian cube, and is equivalent
to it. Furthermore note that the cube of Fig. 10 is a connected cube, since
the homologous vertices of the two Aristotelian squares are connected by a
relation of logical implication.
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Figure 11. A cube representing the logical relatons among
the first-degree modal propositions in S5

Lenzens’ cube in Fig. 9 is based on relations of logical implication and
contradiction. It is to be noted however that logical cubes have been fre-
quently used in logic to visualize simply relations of logical implication among
formulas—relations which may subsist or not subsist w.r.t. the background
logic. The cube of Fig. 11 may be found in Luzeaux et al. [22] (p.175) and is
intended to exhibit the logical relations among the first-degree modal propo-
sitions in the modal logic S5.

The authors remark that the four vertices that are at the origin of the
implicative arrows are reciprocally contraries and form a tethraedon. Another
tethraedon is formed by subcontrary formulas. Furthermore, it is to be noted
that �A contradicts ¬�A, which is located in a vertex which is at the maxi-
mum distance from it.11 Idem for A ∨�¬ A with respect to its contradictory
¬A ∧ ♦A. Note that the two cross-section squares < �A, A ∧¬�A, ¬�A,
�A ∨ ¬A> and < ♦A ∧ ¬A, �¬A, A ∨ �¬A, ♦A> on the contrary are
Aristotelian. The cube is not obviously an Aristotelian cube since none of its
squares is Aristotelian.

But the horizontal rotation of one of its squares, the right square <A ∨
�¬A, A ∧ ¬�A, �¬A, ¬�A> yields a r- Aristotelian cube. In fact, inverting
¬�A with A ∧¬�A and �¬A with A ∨�¬A, as a result we have at the
top and at the bottom two squares which are respectively Aristotelian and r-
Aristotelian. At the top we have in fact the classical square < �A, �¬A, ¬�A,
♦A > and at the bottom < �A ∨ ¬A, A ∨�¬A, (∗)A ∧¬�A, ♦A ∧¬A>. To
obtain an Aristotelian cube we have simply to apply a double anticlockwise
rotation to the bottom square, so to move A∧¬�A at the origin of the square
in order to obtain a standard Aristotelian square. It is trivial to check that all
other squares are semiaristotelian.

4. Dubois Cube, Johnson–Keynes Cube and Moretti Cube

In various papers authored by D. Dubois in cooperation with other researc-
hers12 we can find the following figure, written in the language of first-order

11 There is a correspondence between strength of the logical opposition and geometrical
distance, as noticed by Demey and Smessaert [9].
12 See [15–17].
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Figure 12. The Dubois cube written in first-order language

logic. The letters A, E, O, I stand for the traditional names Universal Affir-
mative, Universal Negative, Particular Affirmative, Particular Negative. The
minor letters a, e, o, i stand for wffs which are obtained from the wffs de-
noted by the corresponding capital letters by prefixing a negation sign to their
atomic subformulas (Fig. 12).

Assuming as a premise that (i) some P and some not-P exist (∃xPx and
∃x ¬Px) and (ii) some Q and some not-Q exist (∃xQx and ∃x ¬Qx) the
thick non-directed segments connect contraries, the double thick non-directed
segments connect subcontraries, the diagonal dotted non-directed segments
connect contradictories, the vertical arrows connect subalternants. (Warning:
the arrow occurring in the figure has not the same meaning of the arrow
intoduced as symbol of consequential implication in the first section but stands
for the traditional horseshoe ⊃, i.e. the symbol for material conditional).

As Dubois remarks, the anterior and posterior faces are Aristotelian
squares. But unfortunately this is not an Aristotelian cube in the sense defined
in §3 since the remaining faces are not semiaristotelian squares. In particolar
the wff ∀x (¬Px ⊃ ¬Qx) has no Aristotelian relation with ∀x (Px ⊃ Qx), even
if it is equivalent to its contrapostive ∀x (Qx ⊃ Px).

In one of papers written by Dubois et al. an analogous cube is formulated
in set-theoretical language, i.e. in a language that describes the interrelations
between the sets designed by the predicate variables (Fig. 13).

Making a further translation, the cube written in set-theoretical language
might be translated in the language of propositional modal logic assigning to
the variables sets of possible worlds (propositions) and translating complemen-
tation into negation, intersection and union in conjunction and disjunction
respectively, set-inclusion into so-called strict implication symbolized by � q.
The assertion that a set P is not-empy may be translated in the statement
asserting that the proposition that p is possible (♦p), its meaning being that
p is true in at least one possible world. For sake of simplicity one may assume
that the background modal logic is S5 (which as well-known, is translationally
equivalent to the fragment of first order logic containing monadic predicates).
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Figure 13. The Dubois cube written in set-theoretical language

Figure 14. A modal translation of the cube of Fig. 12 and
Fig. 13

Under the presuppostion that ♦p and ♦¬p are true and that ♦q and
♦¬q are also true, the cube of Fig. 14 may be seen as a translation, mutatis
mutandis, of the preceding ones.

Just as before, the two anterior and posterior faces are two Aristotelian
squares, but the other squares cannot be said semiaristotelian: so this is not an
Aristotelian cube, even if its cross-sectional squares are Aristotelian. However
we can show that it is an r-Aristotelian cube since it may be transformed into
an Aristotlian cube and vice versa with some rotation: more specifically, with
the vertical rotation of the posterior square (Fig. 15).

The anterior square is, as before, the classical square for the implication,
while the posterior square < ¬p � q, ¬p � ¬q, ¬(¬p � q), ¬(¬p � ¬q) > is also
Aristotelian. The reader will note that the two kinds of contrariety described
in §2 as a property of consequential implication allow for the construction of an
analogous cube. The lateral squares are semiaristotelian but they are anyway
interesting squares. In fact, given that ♦¬p is among the presuppositions and
that thanks to ¬p � −q it implies ♦¬q, ¬p � q is the oblique contrary of p
� q (to understand this point it is enough to consider that ¬p � q ∧ p � q
implies �q, i.e. the negation of the presupposition ♦¬q), while ¬p � ¬q is
oblique contrary of p � ¬q (by the same argument their conjunction implies
�¬q, which is the negation of the presupposition ♦q). The reader may check
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Figure 15. An Aristotelian cube equivalent to the one of Fig. 14

Figure 16. An Aristotelian cube equivalent to the Dubois
cube of Fig. 12

that the top and the bottom squares are also semiaristotelian. ( ♦(p ∧ q) and
♦(¬p ∧ q) are subcontraries in the light of ♦p, ♦¬p, ♦q, ♦¬q).

Applying the same operation, i.e. vertical rotation of the posterior square,
to the Dubois Cube of Fig. 12, such cube after this trasformation will have
the shape of the cube in Fig. 16, i.e. the shape of a perfect Aristotelian cube
in the sense defined at p. 7. Dubois cube is then a r-Aristotelian cube.

It is of some interest to observe that in the literature one can find other
cubes which have a kinship with some the ones listed in this section. A first
reference is the so-called Johnson–Keynes cube which is reproduced in Boffa
[2], p. 190 and has its source in Neville’s Keynes [19] (See Fig. 17). But also,
as already said, an octagon of implications and oppositions reconstruable as a
3- dimensional cube was introduced in Johnson 1921, part I, p. 142.13

13It is remarkable that Johnson introduced also a distinction between the Universal Affirma-
tive An without existence presuppositions and the Universal Affirmative Af with existence
presuppositions. Af logically implies An but not viceversa. This gives origin to a pair of
Aristotelian squares, so the diagram presented by Johnson at p. 136 of Part I of [18] lends
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Figure 17. The Johnson-Keynes cube

Figure 18. The Moretti cube

We have to remark that this cube is structurally similar to Dubois cube
of Fig. 12. Boffa comments that in order to consider the cross-section squares
AeiO and aEIo as Aristotelian squares (they are not such) the additional con-
dition (A ∨ a) ⊃ (¬E ∧¬e) should be satisfied.

A different construction, represented in Fig. 18, is what Boffa et al. ([2],
p. 189) call Moretti cube. The meaning of the letters is the same as before,
but one can note that the two squares <A, E, O, I> and <i, o, e, (∗)a> (one
Aristotelian and the other r-Aristotelian) are cross-section squares of the cube
and not opposite faces. Applying the horizontal rotation to the square <i, o,
e, (∗)a> we obtain two cross-section squares which are perfect Aristotelian
squares.

itself to be reconstructed as an Aristotelian cube. For a recent development of this idea see
Chatti–Schang [3] and the last section of this paper.
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Moretti cube has some kinship not with Dubois cube but with Lenzen-
Caramuel’s cube of Fig. 9, in the sense that performing a vertical rotation
of the right side of the cube of Fig. 18, i.e. <o, E, O, e>, we obtain <A, E,
O, I> as anterior square of the cube and <i, o, e, a> as posterior square, i.e.
two squares which are respectively Aristotelian and r-Aristotelian. The further
horizontal rotation of <i, o, e, a> transforms this square into the Aristotelian
square <a, e, o, i>. So Moretti cube is transformed by a double rotation into
the Johnson–Keynes cube.

5. Reichenbach’s Cube as a Supposed Predecessor of Dubois
Cube

Given the strong analogies between some of the above discussed cubes, it is of
interest to read the remarks that Dubois et al. wrote as a comment to the cube
of Fig. 1214:“This cube, rediscovered in [20], is rarely mentioned; it apparently
appeared for the first time in Reichenbach’s modern study of syllogisms [36]
in the middle of last century.”

The item [20] mentioned in this quotation is listed in the bibliography of
the present paper as [14], while [36] is here listed as [35]. When the authors
of the quotation speak of having “rediscovered” the cube strangely they make
no reference to the Johnson–Keynes cube, which is structurally identical to
their own, but make a reference to an historically more recent Reichenbach’s
paper by saying that “apparently” their cube appeared for the first time in this
work.15 Let us see, however, what Reichenbach actually stated in the paper
that in their bibliography Dubois et al. list as [36] and that in the bibliography
at the end of this paper is listed as [35].

Reichenbach writes SAP to say “all the S are P” and SIP to say “some
S is P”. In his construction he also takes for granted that the sets referred to
by the predicates S and P are non-empty. The letters AEIO and aeio are to
be read as illustrated in the preceding pages. In Reichenbach’s paper we find
the image of Fig. 19.

In order to understand the relations among the wffs belonging to this cube
it is important to spell out the restrictions which Reichenbach formulates at p.
4 of his paper: the cube holds “on the condition that none of the four classes
S, P, not-S, not-P, is empty and no two of them are identical”(p. 4).

By opposite propositions Reichenbach means that “not both are true.
(Condition: classes are not identical)”. For instance, two converse propositions
such as “All men are mortal” and “All mortal are men” are not joinly true due
to the fact that the two classes have not the same members. By subopposite
propositions he means that “not both are false”. (Condition: the first class
of one expression must not be identical with the second class of the other

14[17], p. 170.
15An anonymous referee remarked that this wrong information was already noticed also in
the paper [11].
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Figure 19. The Reichenbach cube

expression)”. The background logic which a neopositivist like Reichebach took
for granted was obviously FOL (First Order Logic)

It is straightforward to note that the anterior and the posterior faces are
two Aristotelian squares, and that the others are semiaristotelian squares. So
Reichenbach’s cube is an Aristotelian Cube exactly in the sense which has
been defined at the beginning of the present paper, and the reader will also
note that it is analogous to the cube of Fig. 16. The problem is, as already
noted, that Reichenbach’s cube is not the Dubois cube but a cube which is
obtained from it by rotation of one of its faces.16

A plausible conclusion which may be drawn from the preceding remarks
is that the primary notion of a cube of opposition is Reichenbach’s one, which
is essentially coincident with the one proposed in the present paper (save for
a detail which will be evidenced in the last section), while the others notions
are secondary since the cubes they define may be derived from Reichenbach’s
one by means of some kind of rotation. Of course, since any rotation can be

16Reichenbach distinguished, as is standardly made, between contrary propositions A and
B (in proper and oblique sense) and opposite propositions A and B on the basis of the
different presuppositions which grant their truth: non-vacuity of the sets [A] and [B ] and
their complements for the former and non-identity of A and B for the latter. In case we
want to simplify terminology and unify all such relations under the name of relations of
contrariety, we would have six presuppositions for contrariety instead of five. In such a case,
in order to make a comparison with the cubes treated in the preceding and following sections,
the terminology and the presuppositions should be suitably extended to the kinds of cubes
taken into consideration for comparison. In order to avoid unnecessary complications, in the
present papers the only presuppositions which are judged to be interesting for the central
topic are the presuppositions of existence (see next section). Furthermore, the relation of
opposition defined by Reichenbach is not an “Aristotelian relation” as defined at p. 2, so it
cannot be used to define a semiaristotelian square and indirectly to define an Aristotelian
cube.
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Figure 20. The Nilsson’s cube

performed in two directions, one could reverse the proposed order of priority
and maintain, for instance, that Dubois cube may be considered primary and
Reichenbach’s cube secondary. The problem is however that in Dubois cube of
Fig. 12 the faces that are not Aristotelian are not even semiaristotelian. The
figure which appears in Johnson’s [18] at page 142 is construed just to stress
that the vertices a and A, e and E i and I, o and O are logically independent
(or, as Johnson say, complementary), while it seems to be a positive quality
of a cube that the vertices connecting the edges of any square inside it should
have between them some Aristotelian relation.

The assunption that the notion of a cube defined here should be con-
sidered primary receives support by the recent paper by Nilsson (see [25]), in
which the author tries to provide a more general notion of a cube written in
first order language, taking FOL as a background logic. Nilsson’s key idea is
the one of building a cube written a language containing both monadic and
dyadic predicates and nested quantifiers. In the cube of Fig. 20 the non-dotted
diagonals symbolize the contradictory propositions.

Here it is straighforward to realize that the anterior face and the posterior
face consist of two Aristotelian squares, while the other squares are semiaris-
totelian squares. Nilsson’s cube is then a cube in the sense defined at the
beginning of the present paper. It also turns out that it is a connected cube,
in the sense that the homologous vertices of the two Aristotelian squares are
related by implication relations.

The symbols used by Nilsson in his diagram are explained so:

∀∀)∀x(Cx ⊃ ∀y (Dy ⊃ Rxy)) every CRs every D

∀∃) ∀x(Cx ⊃ ∃y (Dy ∧ Rxy)) every CRs some D

∃∀)∃x (Cx ∧ ∀y(Dy ⊃ Rxy)) some CRs every D

∃∃)∃x (Cx ∧ ∃y (Dy ∧ Rxy)) some CRs some D

∀∀¬) ∀x (Cx ⊃ ∀y (Dy ⊃ ¬Rxy)) every Cnot Rs (every) any D

¬∃∃) ¬∃x (Cx ∧ ∃y(Dy ∧ Rxy)) not some CRs some D

∀∃¬) ∀x(Cx ⊃ ∃y (Dy ∧ ¬Rxy)) every Cnot Rs some D
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¬∃∀) ¬∃x (Cx ∧ ∀y(Dy ⊃ Rxy)) not some CRs every D
∃∀¬) ∃x (Cx ∧ ∀y(Dy ⊃ ¬Rxy)) some C not Rs (some) any D
¬∀∃) ¬∀x (Cx ⊃ ∃y(Dy ∧ Rxy)) not every CRs some D
∃∃¬) ∃x (Cx ∧ ∃y(Dy ∧ ¬Rxy)) some Cnot Rs some D
¬∀∀) ¬∀x (Cx ⊃ ∀y(Dy ⊃ Rxy)) not every CRs every D
An interesting special case of this kind of cube is the one in which R is

the identity predicate (=). This gives the following set of eight subject-copula-
predicate propositions:

{
every
some

}
C

{
is
is not

} {
every
some

}
D

The reader can then check that the anterior Aristotelian square boils
down to the standard square of non-nested quantified statement whose prefixes
are ∀, ∀ ¬, ∃, ∃¬, while the four remaining unorthodox cases form the posterior
square.

6. The Problem of Existential Import in the Costruction of
Cubes of Opposition

To conclude this survey, it is important to recall that the logical relations
established among the propositions belonging to the cubes analyzed in the
preceding pages (Lenzen, Dubois, Reichenbach, Johnson–Keynes, Nilsson) are
not unconditionally valid but depend on a set of existential propositions which
are assumed to be true. In the case of strict implication the presuppositions
concern of course the existence of possible worlds with certain properties, so
they consist of possibility statements. The presence of these restrictions in a
sense casts a shadow about the presentability of all such relations by means
of squares and cubes. It is difficult to disagree with Chatti and Schang when
in [3], p. 101 write: “The problem of existential import might be seen as a
challenge to the theory of oppositions expressed by the traditional square of
oppositions”. Their paper actually tries to give an answer to the problem by in-
troducing a non-standard formalization of the propositions normally occurring
in traditional syllogistic.

(1) Every S is P: ∃xSx ∧∀x(Sx ⊃ Px ) Aimp!
(2) Every S is not-P: ∃xSx ∧∀x(Sx ⊃ ¬Px) Eimp!
(3) Some S is P: ∃x (Sx ∧ Px) Iimp!
(4) Some S is not-P: ∃x (Sx ∧ ¬Px) Oimp!
(5) No S is not-P: ∀x(Sx ⊃ Px) Aimp?
(6) No S is P: ∀x (Sx ⊃ ¬Px) Eimp?
(7) Not every S is not-P: ¬∃x Sx ∧∀ x (Sx ⊃ ¬Px)] Iimp?
(8) Not every S is P: ¬(∃x Sx ∧∀x (Sx ⊃ Px)) Oimp?

Using the denominations introduced in the third column above, the relations
between the mentioned propositions may be represented by the following cube,
introduced at p. 122 of the paper under discussion.
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Figure 21. The Chatti-Schang cube

Taking FOL as a background logic as the authors do, the reader can check
that the cross-sectional squares <Aimp! Oimp! Oimp? A imp?> and <Eimp!
Iimp! Iimp? Eimp?> are Aristotelian squares. Thanks to the vertical rotation
of the left square, as already made with the Lenzen–Caramuel cube at page 10,
we obtain a cube with has <Aimp! Oimp! Oimp? A imp?> as anterior square
and <Eimp! Iimp! Iimp? Eimp?> as posterior square. Both are Aristotelian
squares and since all the other squares are semiaristotelian, the result of the
operation is a perfect Aristotelian cube. To sum up, the above cube is a r-
Aristotelian cube which has the important merit of presenting interrelations
which do not depend on premises of existential form.

Contrary to the cube of Fig. 21, the cube presented by Read [34] (see
Fig. 22) and quoted by Chatti and Schang in their paper, has the shape of
what is called here an Aristotelian cube: in fact the opposite faces <A, A*,
I*, I> and <E, E*, O*, O> where the starred letters denote propositions
with negative predicates, are Aristotelian squares, while the other squares are
semiaristotelian.17 The affirmative propositions have existential import, the
negative lack it. A, A*, E*, E correspond to the propositions above named as
Aimp!, Eimp!, Aimp? E imp? respectively. Every affirmative proposition has
then two contraries, as in the cube of Fig. 22.

There is however a problem which is not discussed by Chatti, Schang
and Read, and concerns the logical properties of the propositions formalized
in the proposed way. Without opening a wider discussion, let us simply remark
that the assertion of Identity Id : “Every P is P”, according to the authors’
proposal, is formalized as ∃xPx ∧ ∀x (Px ⊃ Px). This means that if Id is a
logical truth also ∃xPx should be such, but ∃xPx is a non-theorem in FOL.
An analogous criticism applies to other formulas of this list.

17The difference between the two cubes is highlighted by Chatti and Schang at p. 24 of their
paper.
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Figure 22. The Read cube

Obviously if the quantificational logic assumed as a background logic is
not FOL the preceding considerations may be inappliable. De Kerk, Vignero,
Demey in [4], for instance, introduce a logic named SYL which is FOL extended
with ∃xPx. This move restores the basic Aristotelian square of quantified for-
mulas by removing the main presupposition of existence, but a drawback of
SYL is that it imposes a restriction on Uniform Substitution in order to prevent
the derivation of the contradiction ∃x(Px ∧ ¬Px).

An open problem is then to define some non-standard notion a quantifer
which is such as (i) to avoid the dependency on existence presuppositions (ii)
to grant the unrestricted validity of Identity (iii) to keep FOL as a background
logic.

A suggestion in the proposed direction comes from the remark that no
presupposition is necessary for the logic of consequential implication outlined
at the beginning of the present paper. We recall that in such logic A → B
implies ¬(A → ¬B) ( so that A → B and A → ¬B are contraries) without the
presupposition that A is possibile. A merit of consequential implication and
of its close relative, connexive implicative, is that it allows the costruction of
squares and cubes without the dependency on some extra presupposition.

This has a consequence on the construction of first order squares and
cubes. In order to remove the dependency of universally quantified statements
on such presuppostions as ∃xPx, ∃xPx,∃x ¬Px ∃xQx and ∃x ¬Qx one could
introduce a definition of the special quantifiers modelled on the definition of
consequential implication in terms of monadic modal statements mentioned at
p. 3 of the present paper. In [29] Pizzi suggests not one but two definitions
of non standard quantifiers of different strength in the framework of FOL.
We recall here the definition of the stronger universal quantifier which is the
following:

(Def∀→) α(x) ∀→β(x) =df ∀x(α(x) ⊃ β(x)) ∧ (∀xα(x) ≡ ∀xβ(x)) ∧
(∃xα(x) ≡ ∃xβ(x))

The symbol α(x) ∃/◦ β(x) is defined as ¬(α(x) ∀→¬β(x).
An obvious consequence of (Def∀→) is that the Identity α(x) ∀→α(x) is

preserved as a logical property of the defined operator. The property of ∀→are
then coincident, mutatis mutandis (i.e. replacing modal operators with the
homologous quantifiers) with the ones of the implication symbolized by the
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Figure 23. An Aristotelian cube of opposition independent
from existential assumptions

arrow → (see page 3). In particular ∀→ satisfies both Boethius’ Thesis and
Secondary Boethius. Consequently the Aristotelian cube for ∀→ will have the
shape of Fig. 23.

As the reader may check, this cube has the same structure of Reichen-
bach’s cube of Fig. 19, with the remarkable difference that none of the repre-
sented relations depends on any non-logically true assumption.

7. Conclusion

In the present paper squares and cubes of opposition are not treated as geo-
metrical objects but as logical objects, more precisely as sets of propositions
endowed with specific logical properties. This should be clear from the fact that
such properties depend on the properties of some logic which is assumed as a
background logic and in some cases on presuppositions which are not logical
truths w.r.t. the given background logic (in the first place existence presup-
positions). In [31] the present author proposed to highlight graphically such
presuppositions by locating them at the cross of the diagonals of the square.
Furthermore—to mention the main point—he proposed to call “Subaristotelian
square” any square which turns out to be Aristotelian thanks to the essential
use of such non logical presuppositions. According to this restrictive notion
of an Aristotelian square (so implicitly of an Aristotelian cube) most of the
squares and cubes examined in the present paper should not properly be con-
sidered Aristotelian. It is however remarkable that a lot of the recent inquiries
mentioned in the preceding pages are oriented toward the removal of the de-
pendency on non-logical presuppositions. This means trying to avoid treating
with the so-called Subaristotelian squares and favoring Aristotelian squares in
proper sense. As the reader will notice, this progress has been realized by vari-
ous authors along two different lines: (i) embodying the needed presuppositions
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in the definition of some non standard operator with the required properties
(ii) modifying the set of axioms of the background systems normally used for
this kind of analysis.

After this premise, there is no denying that all the notions used in this
paper, beginning from the very notions of a square and of a cube, are primar-
ily geometrical notions whose interest goes beyond their ability of providing
didactically useful visualizations. In the last decades an important progress
in mathematics has been provided by two fields of inquiry known as “Logical
Geometry”18 and “Oppositional Geometry”.19 In both paradigms Aristotelian
squares and cubes turn out to be special cases of multidimensional struc-
tures which are studied for their intrinsic geometrical qualities. In Logical
Geometry much interesting work has been devoted to the study of morphisms
between such structures, while one of the founders of Oppositional Geome-
try, A. Moretti, has successfully worked on a geometrical representation of
oppositions occurring in extra-logical contexs (linguistics, formal ontology, AI,
philosophy and humanities). There is no doubt that the strictly logical ap-
proach followed in the present paper may receive a positive impact from the
actual developments of Logical and Oppositional Geometry. Conversely, how-
ever, it may be that the logical inquiry is able to offer non trivial suggestions
to researchers in the mathematical field: an example could be given the notion
of r-Aristotelian cube, which in this paper is introduced as a key concept for
a comprehensive understanding of the notion of a cube of opposition.20
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