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1. Introduction

This paper presents a natural deduction system for orthomodular quantum
logic. The main contributions of the system are as follows. First, thanks to
its intrinsic and straightforward appearance, we can understand the meaning
of inference in quantum logic deeply by comparing the system with those for
other logics (e.g. intuitionistic logic or classical logic). Second, we can also
introduce the corresponding quantum λ-calculus, which allows us to further
investigate computational theories based on quantum logic, via the Curry–
Howard isomorphism. Third, we can establish a desirable property regarding
normalization of proofs, or equivalently, termination of computation.

As an earlier study for quantum natural deduction, we need to mention
Delmas-Rigoutsos’s double deduction system [5], which incorporates a concept
of compatibility into a natural deduction system for classical logic. Differently
from this approach, we define a natural deduction system that directly corre-
sponds to GOM, Nishimura’s quantum sequent calculus [13].

Besides GOM, a few systems for quantum sequent calculus have been
proposed by Cutland and Gibbins [3] and Nishimura [14]. Furthermore, an
extended logical system containing quantum logic called basic logic along with
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its sequent calculus has been studied by Sambin et al. [19], Faggian and Sam-
bin [7], and Dalla Chiara and Giuntini [4]. These systems, however, are all inad-
equate for being translated into natural deduction forms due to their complex
treatment of negation (¬) and cut.

It is known that quantum logic has no satisfactory implication operation
(→) as in the case of intuitionistic logic or classical logic. Indeed, Nishimura’s
GOM only adopts conjunction (∧) and negation (¬) as the basic set of opera-
tions. On the other hand, it is almost inevitable to include implication in the
basic set of operations for the purpose of developing a natural deduction system
and the corresponding λ-calculus. To handle such a contradiction, we employ
the Sasaki hook, a kind of quasi-implication, as one of the basic operations of
our system. Although it fails to satisfy the deduction theorem, the Sasaki hook
still enjoys some expected properties of implication such as modus ponens. The
problem of implication in quantum logic is what has been largely addressed
in the literature; for details, the reader is referred to Hardegree [9], Herman
et al. [11], Pavičić [15], Malinowski [12], Pavičić and Megill [16], Roman and
Zuazua [18], Ying [22], Chajda and Halaš [1], Harding [10], Chajda [2], and
Younes and Schmitt [23].

Another problem that we encounter when associating GOM with a nat-
ural deduction system is how to treat assumptions in a deduction process. In
the usual natural deduction system for intuitionistic logic or classical logic,
assumptions that are not used in the application of a rule may be omitted.
That is, for example:

[α]
...
β

α → β

(1)

In this case, it is legitimate that assumptions other than α are not explic-
itly stated even if they exist. The point becomes clear when we express this
situation in the sequent calculus form:

Γ, α � β

Γ � α → β

Here, all (undischarged) assumptions other than α are explicitly written as Γ,
a (possibly empty) set of formulas.

In quantum logic, however, the introduction rule of implication (the
Sasaki hook) is subject to a restriction due to the failure of the deduction
theorem. That is, the introduction rule of implication (1) can only be applied
if there exist no assumptions other than α. Again, we view this as a sequent
calculus form:

α � β

� α → β

Taking this restriction into account, we will use the following convention in
defining and applying rules of our natural deduction system: the assumptions
that are not explicitly stated must not exist. When written in this style, the
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introduction rule of implication (1) in intuitionistic logic or classical logic would
become as follows:

[α],Γ
...
β

α → β

(2)

Let us give an example of a proof diagram. The following proof is legitimate
in intuitionistic or classical logic:

[b : β → γ]

[c : α → β] [a : α]

β

γ
(a)

α → γ
(b)

(β → γ) → (α → γ)
(c)

(α → β) → ((β → γ) → (α → γ))

Here, a, b, and c are labels, which are used to identify assumptions to be
discharged.

However, the proof above is illegitimate in quantum logic, as the rule
labeled by (a) must not be applied due to the existence of assumptions b and
c remaining undischarged at this point:

b : β → γ

c : α → β a : α

β

γ

Indeed, the proposition (α → β) → ((β → γ) → (α → γ)) is not a theorem of
quantum logic. It can therefore be said that quantum logic is non-monotonic
in the sense that adding assumptions might interfere with a deduction process.

A difference in the treatment of assumptions between natural deduc-
tion and sequent calculus has been mentioned in Restall [17]. Monotonicity in
quantum logic has been pointed out in the context of quantum uncertainty in
Engesser et al. [6].

Once a natural deduction system for quantum logic is obtained, the cor-
responding quantum λ-calculus can be introduced via the Curry–Howard iso-
morphism: the proofs of the natural deduction system can be reversibly trans-
lated into the terms of the λ-calculus, respectively. Finally, we will prove the
strong normalization property for the quantum λ-calculus, which claims that
any computation in the quantum λ-calculus eventually terminates.

The quantum λ-calculus introduced in this paper is based on orthomod-
ular quantum logic, while several other systems based on intuitionistic linear
logic have also been studied under the name quantum λ-calculus [20,21]. The
proof of the strong normalization property presented in this paper follows that
of Girard et al. [8].

The organization of this paper is as follows: Sect. 2 provides a formal def-
inition of NQ, a natural deduction system for quantum logic. Section 3 shows
the equivalence between NQ and GOM. Section 4 introduces the corresponding
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quantum λ-calculus together with the Curry–Howard isomorphism from NQ.
Section 5 establishes a rigorous proof of the strong normalization property for
the quantum λ-calculus. The last section draws a conclusion.

2. Formal Definition of NQ

This section provides a formal definition of NQ, a natural deduction system
for quantum logic. To begin with, we construct formulas over a countable set
of propositional variables and a propositional constant ⊥.

Definition 2.1 (Formula). Formulas are inductively defined as follows:
• α is a formula if α is a propositional variable.
• α is a formula if α is ⊥.
• (α ∧ β) is a formula if α and β are formulas.
• (α → β) is a formula if α and β are formulas.
• Only strings obtained by finitely many applications of the above rules are

formulas.
Parentheses are omitted if there is no ambiguity.

We employ ∧ (conjunction) and → (implication) as the basic connectives,
and introduce the following as abbreviations:

• α ∨ β ≡ ¬(¬α ∧ ¬β) (disjunction)
• ¬α ≡ α → ⊥ (negation)

The lower-case Greek letters α, β, γ, δ and those with subscripts like α1, α2, . . .
are used to denote metavariables representing formulas; the upper-case Greek
letters Γ,Δ,Π,Σ and those with subscripts like Γ1,Γ2, . . . are used to denote
metavariables representing finite (possibly empty) sets of formulas. {α} and
{α} ∪ Γ are usually abbreviated to α and α,Γ, respectively. ¬Γ is a shorthand
notation for {¬α | α ∈ Γ}.

Definition 2.2 (Subformula). Let α be a formula. β is said to be a subformula
of α if β is a substring of α and β itself is a formula.

Definition 2.3 (Label). Labels are used to indicate assumptions in a proof. a : α
denotes an assumption where a is a label and α is a formula.

We fix a countable set of labels, so that different formulas correspond to
different labels.

Definition 2.4 (Proof of NQ). In NQ, a conclusion α is said to be provable
from a set Γ of assumptions if there exists a proof diagram that derives α
from Γ. Proof diagrams (or simply proofs) of NQ are inductively defined by
the following rules.

• Assumption rule

a : α

or

α
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when the label is omitted, is a (trivial) proof that derives α from α. This
proof is referred to as ASM(a: α/α).

• ⊥-rule
If

Γ...
⊥

is a proof, say P , that derives ⊥ from Γ, then
Γ...
⊥
α

is a proof that derives α from Γ. This proof is referred to as EFQ(P/α).
• ∧El-rule

If
a : α,Γ1...

γ

is a proof that derives γ from {a : α} ∪ Γ1, and if

Γ2...
α ∧ β

is a proof that derives α ∧ β from Γ2, then

[a : α],Γ1...
γ

Γ2...
α ∧ β

(a)γ

is a proof that derives γ from Γ1∪Γ2. Here, [a : α] represents a discharged
assumption. This rule can be replaced by the following simpler one. If

Γ...
α ∧ β

is a proof, say P , that derives α ∧ β from Γ, then
Γ...

α ∧ β

α

is a proof that derives α from Γ. This proof is referred to as ∧El(P/α).
• ∧Er-rule

If
a : β,Γ1...

γ
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is a proof that derives γ from {a : β} ∪ Γ1, and if

Γ2...
α ∧ β

is a proof that derives α ∧ β from Γ2, then

[a : β],Γ1...
γ

Γ2...
α ∧ β

(a)γ

is a proof that derives γ from Γ1 ∪ Γ2. This rule can be replaced by the
following simpler one. If

Γ...
α ∧ β

is a proof, say P , that derives α ∧ β from Γ, then

Γ...
α ∧ β

β

is a proof that derives β from Γ. This proof is referred to as ∧Er(P/β).
• ∧I-rule

If
Γ1...
α

is a proof, say P1, that derives α from Γ1, and if

Γ2...
β

is a proof, say P2, that derives β from Γ2, then

Γ1...
α

Γ2...
β

α ∧ β

is a proof that derives α ∧ β from Γ1 ∪ Γ2. This proof is referred to as
∧I(P1, P2/α ∧ β).

• → E-rule (Modus Ponens)
If

Γ1...
α → β
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is a proof, say P1, that derives α → β from Γ1, and if

Γ2...
α

is a proof, say P2, that derives α from Γ2, then

Γ1...
α → β

Γ2...
α

β

is a proof that derives β from Γ1 ∪ Γ2. This proof is referred to as
→ E(P1, P2/β).

• → I-rule
If

α...
β

is a proof, say P , that derives β from α, then

[a : α]
...
β

α → β

is a proof that derives α → β from no assumptions. This proof is referred
to as → I(P [a : α]/α → β). As noted in Sect. 1, no assumptions other
than a : α are allowed to be made when this rule is applied.

• MT (Modus Tollens)
If

∅...
α → β

is a proof, say P1, that derives α → β from no assumptions, and if

Γ...
β → ⊥

is a proof, say P2, that derives β → ⊥ from Γ, then

∅...
α → β

Γ...
β → ⊥

α → ⊥
is a proof that derives α → ⊥ from Γ. This proof is referred to as
MT(P1, P2/α → ⊥).
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• ¬¬E-rule
If

a : α,Γ1...
γ

is a proof that derives γ from {a : α} ∪ Γ1, and if

Γ2...
(α → ⊥) → ⊥

is a proof that derives (α → ⊥) → ⊥ from Γ2, then

[a : α],Γ1...
γ

Γ2...
(α → ⊥) → ⊥

(a)γ

is a proof that derives γ from Γ1 ∪ Γ2. This rule can be replaced by the
following simpler one. If

Γ...
(α → ⊥) → ⊥

is a proof, say P , that derives (α → ⊥) → ⊥ from Γ, then

Γ...
(α → ⊥) → ⊥

α

is a proof that derives α from Γ. This proof is referred to as ¬¬E(P/α).
• ¬¬I-rule

If

Γ...
α

is a proof, say P , that derives α from Γ, then

Γ...
α

(α → ⊥) → ⊥
is a proof that derives (α → ⊥) → ⊥ from Γ. This proof is referred to as
¬¬I(P/(α → ⊥) → ⊥).
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3. Equivalence Between NQ and GOM

This section shows the equivalence between NQ and Nishimura’s GOM (The-
orems 3.5 and 3.6).

Definition 3.1 (GOM [13]).1

• Axioms

α � α

• Rules
Γ � Δ

(extension)
Π,Γ � Δ,Σ

Γ1 � Δ1, α α,Γ2 � Δ2
(cut)

Γ1,Γ2 � Δ1,Δ2

α,Γ � Δ
(∧l1)

α ∧ β,Γ � Δ

β,Γ � Δ
(∧l2)

α ∧ β,Γ � Δ

Γ � Δ, α Γ � Δ, β
(∧r)

Γ � Δ, α ∧ β

Γ � Δ, α
(¬l)¬α,Γ � Δ

α � Δ
(¬r)¬Δ � ¬α

α,Γ � Δ
(¬¬l)¬¬α,Γ � Δ

Γ � Δ, α
(¬¬r)

Γ � Δ,¬¬α

¬β � ¬α ¬α, β �
(O-modular)¬α � ¬β

In GOM, we regard α → β as a shorthand for ¬(α∧¬(α∧β)) (the Sasaki
hook). Then, the following proposition holds:

Proposition 3.2. O-modular can be replaced by the following MP rule.

Γ � Δ, α → β Γ � Δ, α
(MP)

Γ � Δ, β

Proof. First, the following diagram verifies that O-modular can be derived
from MP:

1We are using slightly different symbols and names than those used in [13].
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¬β � ¬α ¬β � ¬β

¬β � ¬α ∧ ¬β

¬(¬α ∧ ¬β) � ¬¬β

β � β

¬¬β � β

¬(¬α ∧ ¬β) � β ¬α, β �
¬(¬α ∧ ¬β),¬α �

¬α ∧ ¬(¬α ∧ ¬β),¬α � · · · (A)

¬α � ¬α
¬α ∧ ¬(¬α ∧ ¬β) � ¬α (A)

¬α ∧ ¬(¬α ∧ ¬β) �
¬α ∧ ¬(¬α ∧ ¬β) � α

¬α � ¬α → ¬β ¬α � ¬α
(MP)¬α � ¬β

Second, the following diagram verifies that MP can be derived from O-modular:

α � α
α ∧ β � α

α ∧ β � α ∧ β

α ∧ β � ¬¬(α ∧ β)

¬(α ∧ β) � ¬(α ∧ β)
α ∧ ¬(α ∧ β) � ¬(α ∧ β)

¬¬(α ∧ β) � α → β

α ∧ β � α → β

α ∧ β � α ∧ (α → β)
¬¬(α ∧ β) � α ∧ (α → β)

¬¬(α ∧ β) � ¬¬(α ∧ (α → β)) · · · (B)

α � α
α ∧ (α → β) � α

α � α
α,¬(α ∧ β) � α

¬(α ∧ β) � ¬(α ∧ β)
α,¬(α ∧ β) � ¬(α ∧ β)

α,¬(α ∧ β) � α ∧ ¬(α ∧ β)
α → β, α,¬(α ∧ β) �

α ∧ (α → β), α,¬(α ∧ β) �
α ∧ (α → β),¬(α ∧ β) �

¬¬(α ∧ (α → β)),¬(α ∧ β) � · · · (C)

(B) (C)
(O-modular)¬¬(α ∧ (α → β)) � ¬¬(α ∧ β)

β � β

α ∧ β � β

¬¬(α ∧ β) � β

¬¬(α ∧ (α → β)) � β · · · (D)

Γ � Δ, α Γ � Δ, α → β

Γ � Δ, α ∧ (α → β)
Γ � Δ,¬¬(α ∧ (α → β)) (D)

Γ � Δ, β

�
Additionally, we regard ⊥ as a shorthand for α∧¬α. The following propo-

sition assures that α can be an arbitrary formula.



Vol. 16 (2022) Natural Deduction for Quantum Logic 479

Proposition 3.3. In GOM, α ∧ ¬α and β ∧ ¬β are provably equivalent.

Proof. The following diagram verifies that α ∧ ¬α � β ∧ ¬β is provable in
GOM.

α � α

α ∧ ¬α � α

α � α

¬α, α �
α ∧ ¬α, α �

α ∧ ¬α �
α ∧ ¬α � β ∧ ¬β

Similarly, β ∧ ¬β � α ∧ ¬α is provable in GOM. �

Proposition 3.4. In GOM, α → ⊥ and ¬α are provably equivalent.

Proof. First, the following diagram verifies that α → ⊥ � ¬α is provable in
GOM.

α � α

α � α

α � ¬¬α

¬α � ¬α

⊥ � ¬α

α ∧ ⊥ � ¬α

¬¬α � ¬(α ∧ ⊥)

α � ¬(α ∧ ⊥)

α � α ∧ ¬(α ∧ ⊥)

α → ⊥ � ¬α

Second, the following diagram verifies that ¬α � α → ⊥ is provable in GOM.

α � α

α ∧ ¬(α ∧ ⊥) � α

¬α � α → ⊥
�

Theorem 3.5 (Admissibility of the rules of NQ in GOM). The rules of NQ are
provable in GOM.

Proof. Suppose α is provable from Γ in NQ:
Γ...
α

We then show that Γ � α is provable in GOM by induction on n, the number
of rules applied.

• Case n = 1. The only rule applied is Assumption rule, that is,

a : α

Then, α � α is provable in GOM. Indeed,
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α � α

is a proof in GOM.
• Case n > 1. We proceed by case analysis on the last rule applied.

– Case ⊥-rule. By the induction hypothesis, Γ � β ∧¬β is provable in
GOM. Then, Γ � α is provable in GOM. Indeed,

Γ � β ∧ ¬β

β � β

β ∧ ¬β � β

β � β

¬β, β �
β ∧ ¬β, β �

β ∧ ¬β �
Γ �

Γ � α

is a proof in GOM.
– Case ∧El-rule. By the induction hypothesis, α,Γ1 � γ and Γ2 � α∧β

are provable in GOM. Then, Γ1,Γ2 � γ is provable in GOM. Indeed,

Γ2 � α ∧ β
α � α

α ∧ β � α

Γ2 � α α,Γ1 � γ

Γ1,Γ2 � γ

is a proof in GOM.
– Case ∧Er-rule. Similar to Case ∧El-rule.
– Case ∧I-rule. By the induction hypothesis, Γ1 � α and Γ2 � β are

provable in GOM. Then, Γ1,Γ2 � α ∧ β is provable in GOM:

Γ1 � α

Γ1,Γ2 � α

Γ2 � β

Γ1,Γ2 � β

Γ1,Γ2 � α ∧ β

– Case → E-rule. By the induction hypothesis, Γ1 � α → β and Γ2 � α
are provable in GOM. Then, Γ1,Γ2 � β is provable in GOM:

Γ1 � α → β

Γ1,Γ2 � α → β

Γ2 � α

Γ1,Γ2 � α
(MP)

Γ1,Γ2 � β

– Case → I-rule. By the induction hypothesis, α � β is provable in
GOM. Then, � α → β is provable in GOM:

α � α
α ∧ ¬(α ∧ β) � α

α � α α � β

α � α ∧ β

¬(α ∧ β), α �
α ∧ ¬(α ∧ β), α �

α ∧ ¬(α ∧ β) �
� α → β

– Case MT. By the induction hypothesis, � α → β and Γ � ¬β are
provable in GOM. Then, Γ � ¬α is provable in GOM:
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Γ � ¬β

� α → β

α � α → β α � α
(MP)

α � β

¬β � ¬α

Γ � ¬α

– Case ¬¬I-rule. By the induction hypothesis, α,Γ � γ is provable in
GOM. Then, ¬¬α,Γ � γ is provable in GOM:

α,Γ � γ

¬¬α,Γ � γ

– Case ¬¬E-rule. By the induction hypothesis, Γ � α is provable in
GOM. Then, Γ � ¬¬α is provable in GOM:

Γ � α
Γ � ¬¬α

�

Theorem 3.6 (Admissibility of the axioms and rules of GOM in NQ). The
axioms and the rules of GOM are provable in NQ.

Proof. We say that a sequent Γ � Δ is normal if Δ consists of at most one
formula. Then, the following holds (Theorem 2.5.a in [13]): If Γ � Δ is prov-
able in GOM, then there exists a proof of Γ � Δ′ for some Δ′ ⊆ Δ and all the
sequents occurring in that proof are normal. Using this theorem, we may only
consider normal sequents. Suppose Γ � Δ is normal and provable in GOM.
Then, letting α be {

the single formula in Δ if Δ �≡ ∅
⊥ if Δ ≡ ∅

we show that α is provable from Γ in NQ:

Γ...
α

by induction on n, the number of rules applied.

• Case n = 0. The proof is of the form:

α � α

Then, α is provable from {α} in NQ:

a : α

where a is arbitrarily chosen.
• Case n > 0. We proceed by case analysis on the last rule applied.

– Case extension. First, we consider the case where the succedent is
weakened:

Γ �
Γ � α
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By the induction hypothesis, ⊥ is provable from Γ in NQ:

Γ...
⊥

Then, α is provable from Γ in NQ:

Γ...
⊥
α

Second, we consider the case where the antecedent is weakened:
Γ � Δ

Π,Γ � Δ

where Π �≡ ∅. By the induction hypothesis, γ is provable from Γ in
NQ:

Γ...
γ

where γ is either the single formula in Δ, or ⊥. Let Π ≡ {δ1, δ2, . . . ,
δn}. By applying ∧I-rule and ∧El-rule alternately:

δ1 δ2
δ1 ∧ δ2

δ1 δ3
δ1 ∧ δ3

δ1...
we finally observe that δ1 is provable from Π in NQ:

Π...
δ1

Then, γ is provable from Γ ∪ Π in NQ:

Γ...
γ

Π...
δ1

γ ∧ δ1
γ

We omit the other cases where both/neither the succedent and/nor
the antecedent are weakened.

– Case cut. By the induction hypothesis, α is provable from Γ1 in
NQ:

Γ1...
α
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and γ is provable from {α} ∪ Γ2 in NQ:

α,Γ2...
γ

Then, γ is provable from Γ1 ∪ Γ2 in NQ:
Γ1...
α,Γ2...

γ

– Case ∧l1. By the induction hypothesis, γ is provable from {α} ∪ Γ
in NQ:

α,Γ...
γ

Then, γ is provable from Γ ∪ {α ∧ β} in NQ:

[a : α],Γ
...
γ α ∧ β

(a)γ

– Case ∧l2. Similar to Case ∧l1.
– Case ∧r. By the induction hypothesis, α is provable from Γ in NQ:

Γ...
α

and β is provable from Γ in NQ:
Γ...
β

Then, α ∧ β is provable from Γ in NQ:
Γ...
α

Γ...
β

α ∧ β

– Case ¬l. By the induction hypothesis, α is provable from Γ in NQ:
Γ...
α

Then, ⊥ is provable from {α → ⊥} ∪ Γ in NQ:

α → ⊥
Γ...
α

⊥
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– Case ¬r. By the induction hypothesis, γ is provable from {α} in
NQ:

α...
γ

Then, α → ⊥ is provable from {γ → ⊥} in NQ:

[a : α]
...
γ

(a)
α → γ γ → ⊥

α → ⊥
– Case ¬¬l. By the induction hypothesis, γ is provable from {α} ∪ Γ

in NQ:

α,Γ...
γ

Then, γ is provable from {(α → ⊥) → ⊥} ∪ Γ in NQ:

[a : α],Γ
...
γ (α → ⊥) → ⊥

(a)
γ

– Case ¬¬r. By the induction hypothesis, α is provable from Γ in NQ:

Γ...
α

Then, (α → ⊥) → ⊥ is provable from Γ in NQ:

Γ...
α

(α → ⊥) → ⊥
– Case O-modular. By Proposition 3.2, O-modular can be replaced by

MP. By the induction hypothesis, α → β is provable from Γ in NQ:

Γ...
α → β

and α is provable from Γ in NQ:

Γ...
α
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Then, β is provable from Γ in NQ:

Γ...
α → β

Γ...
α

β

�

4. Quantum λ-Calculus

This section introduces the corresponding quantum λ-calculus together with
the Curry–Howard isomorphism from NQ: the proofs of NQ can be expressed as
the typed λ-terms, and vice versa (Theorem 4.7). To begin with, we construct
types over a countable set of type variables and a type constant ⊥.

Definition 4.1 (Type). Types of λ-terms are inductively defined as follows:
• α is a type of rank 0 if α is a type variable.
• α is a type of rank 0 if α is ⊥.
• (α × β) is a type of rank m + n + 1 if α and β are types of rank m and

n, respectively.
• (α → β) is a type of rank m + n + 1 if α and β are types of rank m and

n, respectively.
• Only strings obtained by finitely many applications of the above rules are

types.

Parentheses are omitted if there is no ambiguity. The rank of α is written
as rank(α).

Next, we construct λ-terms over a countable set of term variables.

Definition 4.2 (Typed Variable). For a term variable x and a type α, x : α is
said to be a typed variable.

Definition 4.3 (Environment). A finite (possibly empty) set of typed variable
is said to be an environment, and is denoted by the upper-case Greek letters
Γ,Δ,Π,Σ and those with subscripts like Γ1,Γ2, . . . .

Definition 4.4 (Typed λ-Term). Typed λ-terms (or simply λ-terms), are induc-
tively defined as follows:

• x : α is a λ-term under Γ if x : α ∈ Γ.
• ε(M) : α is a λ-term under Γ if M : ⊥ is a λ-term under Γ (α is an

arbitrary type).
• π1(M) : α and π2(M) : β are λ-terms under Γ if M : α × β is a λ-term

under Γ.
• 〈M,N〉 : α×β is a λ-term under Γ1∪Γ2 if M : α is a λ-term under Γ1 and

N : β is a λ-term under Γ2, where the set of typed free variables occurring
in M and N are consistent, that is, different types are not assigned to
the same variables.
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• (λx.M) : α → β is a λ-term under Γ if M : β is a λ-term under {x : α},
where the set of typed free variables occurring in M and {x : α} are
consistent.

• (MN) : β is a λ-term under Γ1 ∪ Γ2 if M : α → β is a λ-term under Γ1

and N : α is a λ-term under Γ2.
• τ(M,N) : α → ⊥ is a λ-term under Γ if M : α → β is a λ-term under ∅

and N : β → ⊥ is a λ-term under Γ.
• η(M) : α is a λ-term under Γ if M : (α → ⊥) → ⊥ is a λ-term under Γ.
• θ(M) : (α → ⊥) → ⊥ is a λ-term under Γ if M : α is a λ-term under Γ.
• Only strings obtained by finitely many applications of the above rules are

λ-terms.

Parentheses are omitted if there is no ambiguity; types and environments
may be omitted if there is no need to specify them.

Definition 4.5 (Subterm). Let M be a λ-term. N is said to be a subterm of M
if N is a substring of M and N itself is a λ-term.

Theorem 4.6 (Curry–Howard isomorphism between the formulas and the
types). There exists an isomorphism between the formulas of NQ and the types
of the quantum λ-calculus.

Proof. Let PropVar be the set of all propositional variables, and let TypeVar
be the set of all type variables. Recall that both sets are countable. Then,
there exists an isomorphism Φ : PropVar → TypeVar and its reverse map
Φ−1 : TypeVar → PropVar. Let Form be the set of all formulas, and
let Type be the set of all types. Then, Φ and Φ−1 can be extended to an
isomorphism between Form and Type as follows:

• Φ(⊥) := ⊥
• Φ(α ∧ β) := Φ(α) × Φ(β)
• Φ(α → β) := Φ(α) → Φ(β)
• Φ−1(⊥) := ⊥
• Φ−1(α × β) := Φ−1(α) ∧ Φ−1(β)
• Φ−1(α → β) := Φ−1(α) → Φ−1(β) �

Theorem 4.7 (Curry–Howard isomorphism between the proofs and the terms).
There exists an isomorphism between the proofs of NQ and the λ-terms of the
quantum λ-calculus.

Proof. Let Label be the set of all labels. Recall that this set is also countable.
Then, there exists an isomorphism Ψ : Label → TypeVar and its reverse
map Ψ−1 : TypeVar → Label. Let Proof be the set of all proofs, and let
Term be the set of all λ-terms. Then, Ψ and Ψ−1 can be extended to an
isomorphism between Proof and Term as follows:

• Ψ(ASM(a : α/α)) = Ψ(a) : Φ(α)
• Ψ(EFQ(P/α)) = ε(Ψ(P )) : Φ(α)
• Ψ(∧El(P/α)) = π1(Ψ(P )) : Φ(α)
• Ψ(∧Er(P/β)) = π2(Ψ(P )) : Φ(β)
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• Ψ(∧I(P1, P2/α ∧ β)) = 〈Ψ(P1),Ψ(P2)〉 : Φ(α) × Φ(β)
• Ψ(→ E(P1, P2/β)) = (Ψ(P1)Ψ(P2)) : Φ(β)
• Ψ(→ I(P [a : α]/α → β)) = λΨ(a).Ψ(P ) : Φ(α) → Φ(β)
• Ψ(MT(P1, P2/α → ⊥)) = τ(Ψ(P1),Ψ(P2)) : Φ(α) → ⊥
• Ψ(¬¬E(P/α)) = η(Ψ(P )) : Φ(α)
• Ψ(¬¬I(P/α → ⊥)) = θ(Ψ(P )) : (Φ(α) → ⊥) → ⊥
• Ψ−1(x : α) = ASM(Ψ−1(x) : Φ−1(α)/Φ−1(α))
• Ψ−1(ε(M : ⊥) : α) = EFQ(Ψ−1(M : ⊥)/Φ−1(α))
• Ψ−1(π1(M : α × β) : α) = ∧El(Ψ−1(M : α × β)/Φ−1(α))
• Ψ−1(π2(M : α × β) : β) = ∧Er(Ψ−1(M : α × β)/Φ−1(β))
• Ψ−1(〈M : α,N : β〉 : α × β) = ∧I(Ψ−1(M : α),Ψ−1(N : β)/Φ−1(α) ∧

Φ−1(β))
• Ψ−1(((M : α → β)(N : β)) : β) = → E(Ψ−1(M : α → β),Ψ−1(N :

α)/Φ−1(β))
• Ψ−1(λx.(M : β) : α → β) = → I(Ψ−1(M : β)[Ψ−1(x) : Φ−1(α)]/Φ−1(α)

→ Φ−1(β))
• Ψ−1(τ((M : α → ⊥), (N : β → ⊥)) : α → ⊥) = MT(Ψ−1(M : α →

β),Ψ−1(N : β → ⊥)/Φ−1(α) → ⊥)
• Ψ−1(η(M : (α → ⊥) → ⊥)) : α) = ¬¬E(Ψ−1(M : (α → ⊥) →

⊥)/Φ−1(α))
• Ψ−1(θ(M : α) : (α → ⊥) → ⊥)=¬¬I(Ψ−1(M : α)/(Φ−1(α) → ⊥) →

⊥) �

Definition 4.8 (Conversion). A λ-term M is said to be converted if a subterm
of M is substituted with another λ-term in the following way:

• π1(〈N : α,L : β〉) is substituted with N : α.
In NQ, a section of a proof:

Γ1...
α

Γ2...
β

α ∧ β

α

is converted to
Γ1...
α

• π2(〈N : α,L : β〉) is substituted with L : β.
In NQ, a section of a proof:

Γ1...
α

Γ2...
β

α ∧ β

β
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is converted to
Γ2...
β

• (λx : α.N : β)(L : α) is converted to (N [x := L : α]) : β. Here, N [x := L]
represents the substitution instance of N where all the free occurrences
of x are substituted with L. The bound variables are assumed to have
been renamed consistently, in order to avoid capturing free variables.

In NQ, a section of a proof:

[a : α]
...
β

α → β

Γ...
α

β

is converted to
Γ...
α...
β

• η(θ(M : α)) is converted to M : α.
In NQ, a section of a proof:

Γ...
α

(α → ⊥) → ⊥
α

is converted to
Γ...
α

Henceforth, we write M ⇒ M ′ to mean that M is converted to M ′ in one
step. Note that converting a λ-term can be seen as executing a computation,
while converting a proof can be seen as removing a detour in it. A conversion
sequence M0 ⇒ M1 ⇒ · · · ⇒ Mn of λ-terms (or P0 ⇒ P1 ⇒ · · · ⇒ Pn of
proofs) is denoted by M0 ⇒∗ Mn (P0 ⇒∗ Pn). Here, n ≥ 0, that is, ⇒∗

includes the possibility that no conversion is performed.

Definition 4.9 (Normal form). A λ-term (or a proof) is said to be in its normal
form if it cannot be further converted. A λ-term is said to be normalizable if
there exists a conversion sequence that starts with itself and ends with its
normal form.
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5. Strong Normalization

This section establishes a rigorous proof of the strong normalization property
for the quantum λ-calculus (Theorem 5.2).

Definition 5.1 (Strongly normalizing). A λ-term is said to be strongly normal-
izing if there exists no infinite conversion sequence that starts with itself.

Theorem 5.2 (Strong normalization). The λ-terms of the quantum λ-calculus
are strongly normalizing.

To prove this theorem, we need some preliminaries. Let Term be the set
of all λ-terms, and let SNTerm be the set of all strongly normalizing λ-terms.
For M ∈ SNTerm, the maximum length of a conversion sequence that starts
with M is written as |M |.
Definition 5.3 (REDα). For each type α, a set REDα of λ-terms is inductively
defined as follows:

• Case rank(α) = 0. REDα is SNTerm. In particular, RED⊥ is SNTerm.
• Case rank(α) > 0.

– Case α ≡ β×γ. REDβ×γ is the set of all those λ-terms M that sat-
isfy the following condition: π1(M) ∈ REDβ and π2(M) ∈ REDγ .

– Case α ≡ β → γ. REDβ→γ is the set of all those λ-terms M that
satisfy the following conditions:
(a) MN ∈ REDγ for any N ∈ REDβ .
(b) η(M) ∈ REDδ if β ≡ δ → γ.

Proposition 5.4. For each type α, REDα satisfies the following conditions:
(C1) REDα ⊆ SNTerm.
(C2) If M ∈ REDα and M ⇒∗ M ′, then M ′ ∈ REDα.
(C3) If M is of the form other than N ×L (product), λx.N (λ-abstraction), or

θ(N) (double-negation), and if M ′ ∈ REDα for any M ′ with M ⇒ M ′,
then M ∈ REDα.

Note that (C3) implies the following: if M is of the form other than
product, λ-abstraction, or double-negation, and if M is in its normal form,
then M ∈ REDα for any α.

Proof. By induction on rank(α).
• Case rank(α) = 0. By definition, REDα is SNTerm.

(C1) Immediate.
(C2) Suppose M ∈ SNTerm and M ⇒∗ M ′. Then, it is immediate that

M ′ ∈ SNTerm.
(C3) Suppose M ⇒ M ′ and M ′ ∈ REDα (= SNTerm). Letting m :=

max{|M ′| | M ⇒ M ′}, we have |M | = m+1. Hence M ∈ SNTerm.
• Case rank(α) > 0. We proceed by case analysis on the form of α.

– Case α ≡ β × γ.
(C1) Suppose M ∈ REDβ×γ . We will show M ∈ SNTerm. From

the assumption that M ∈ REDβ×γ , it follows that π1(M) ∈
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REDβ . Then, by the induction hypothesis (C1), we have
π1(M) ∈ SNTerm. Applying π1 to a conversion sequence that
starts with M , say M ⇒ M1 ⇒ M2 ⇒ . . . , we get the se-
quence π1(M) ⇒ π1(M1) ⇒ π1(M2) ⇒ . . . , which means that
|M | ≤ |π1(M)|. Hence, we have M ∈ SNTerm.

(C2) Suppose that M ∈ REDβ×γ and M ⇒∗ M ′. We will show
M ′ ∈ REDβ×γ . From the assumption that M ∈ REDβ×γ ,
it follows that π1(M) ∈ REDβ and π2(M) ∈ REDγ . More-
over, from the assumption that M ⇒∗ M ′, it follows that
π1(M) ⇒∗ π1(M ′) and π2(M) ⇒∗ π2(M ′). Then, by the in-
duction hypothesis (C2), we have that π1(M ′) ∈ REDβ and
π2(M ′) ∈ REDγ . Hence, by the definition of REDβ×γ , we
have M ′ ∈ REDβ×γ .

(C3) Suppose that M is of the form other than product, λ-abstrac-
tion, or double-negation, and suppose M ′ ∈ REDα for any M ′

with M ⇒ M ′. We will show M ∈ REDβ×γ . Since M is of
the form other than product, the possible one-step conversion
from π1(M) is of the form π1(M) ⇒ π1(M ′) with M ⇒ M ′.
From the assumption that M ′ ∈ REDβ×γ , it follows that
π1(M ′) ∈ REDβ . Then, by the induction hypothesis (C3),
we have π1(M) ∈ REDβ . Similarly, π2(M) ∈ REDγ . Hence,
by the definition of REDβ×γ , we have M ∈ REDβ×γ .

– Case α ≡ β → γ.
(C1) Suppose M ∈ REDβ→γ . We will show M ∈ SNterm. From

the assumption that M ∈ REDβ→γ , it follows that:
(a) MN ∈ REDγ for any N ∈ REDβ .
(b) η(M) ∈ REDδ if β ≡ δ → γ.

Let x : β be a typed variable. Note that x is in its normal
form. Then, by the induction hypothesis (C3), we have x ∈
REDβ . Hence, by (a), we have Mx ∈ REDγ . Then, by the
induction hypothesis (C1), we have Mx ∈ SNTerm. Applying
a conversion sequence that starts with M , say M ⇒ M1 ⇒
M2 ⇒ . . . , to x, we get the sequence Mx ⇒ M1x ⇒ M2x ⇒
. . . , which means that |M | ≤ |Mx|. Hence, we have M ∈
SNTerm.

(C2) Suppose that M ∈ REDβ→γ and M ⇒∗ M ′. We will show
M ′ ∈ REDβ→γ . To show this, we need to verify:
(a) M ′N ∈ REDγ for any N ∈ REDβ .
(b) η(M ′) ∈ REDδ if β ≡ δ → γ.

For (a): From the assumption that M ∈ REDβ→γ , it follows
that MN ∈ REDγ for any N ∈ REDβ . Moreover, from the as-
sumption that M ⇒∗ M ′, it follows that MN ⇒∗ M ′N . Then,
by the induction hypothesis (C2), we have M ′N ∈ REDγ .
For (b): Let β ≡ δ → γ. From the assumption that M ∈
REDβ→γ , it follows that η(M) ∈ REDδ. Moreover, from the
assumption that M ⇒∗ M ′, it follows that η(M) ⇒∗ η(M ′).
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Then, by the induction hypothesis (C2), we have η(M ′) ∈
REDδ.

(C3) Suppose that M is of the form other than product, λ-abstrac-
tion, or double-negation, and suppose M ′ ∈ REDβ→γ for any
M ′ with M ⇒ M ′. We will show M ∈ REDβ→γ . To show
this, we need to verify:
(a) MN ∈ REDγ for any N ∈ REDβ .
(b) η(M) ∈ REDδ if β ≡ δ → γ.

For (a): Suppose N ∈ REDβ . Note that by the induction
hypothesis (C1), we have N ∈ SNTerm. Then, we can show
MN ∈ REDγ by induction on |N |:

∗ Case |N | = 0. Suppose MN ⇒ L. Since N is in its normal
form, the possible form of L is L ≡ M ′N with M ⇒ M ′.
From the assumption that M ′ ∈ REDβ→γ , it follows that
M ′N ∈ REDγ . Then, by the induction hypothesis (C3),
we have MN ∈ REDγ .

∗ Case |N | > 0. Suppose MN ⇒ L. Since M is of the form
other than λ-abstraction, the possible forms of L are the
following:

· Case L ≡ M ′N with M ⇒ M ′. Then, we have
MN ∈ REDγ as described above.

· Case L ≡ MN ′ with N ⇒ N ′. By the hypothesis
(C2) of the induction on rank(α), we have N ′ ∈
REDβ . Note that |N ′| = |N | − 1 < |N |. Then,
by the hypothesis of the induction on |N |, we have
MN ′ ∈ REDγ .

Thus, by the hypothesis (C3) of the induction on rank(α),
we have MN ∈ REDγ .

For (b): Let β ≡ δ → γ. Since M is of the form other than
double-negation, the possible one-step conversion that starts
with η(M) is of the form η(M) ⇒ η(M ′) with M ⇒ M ′.
From the assumption that M ′ ∈ REDβ→γ , it follows that
η(M ′) ∈ REDδ. Then, by the induction hypothesis (C3), we
have η(M) ∈ REDδ. �

Proposition 5.5. The followings hold:

1. If M ∈ RED⊥, then ε(M) ∈ REDα for any α.
2. If M ∈ REDα and N ∈ REDβ, then 〈M,N〉 ∈ REDα×β.
3. If M [x := N ] ∈ REDβ for any N ∈ REDα, then λx.M ∈ REDα→β.
4. If M ∈ REDα→β and N ∈ REDβ→⊥, then τ(M,N) ∈ REDα→⊥.
5. If M ∈ REDα, then θ(M) ∈ RED(α→⊥)→⊥.

Proof. 1. Suppose M ∈ RED⊥ (= SNTerm). We will show ε(M) ∈ REDα

by induction on rank(α).
• Case rank(α) = 0. From the assumption that M ∈ SNTerm, it

follows that any conversion sequence that starts with M is finite.
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Then, any sequence starts with ε(M) is also finite. Hence, we have
ε(M) ∈ SNTerm = REDα.

• Case rank(α) > 0. We will show ε(M) ∈ REDα by induction on
|M |.

– Case |M | = 0. Note that M is in its normal form, and so is
ε(M). Hence, by (C3), we have ε(M) ∈ REDα.

– Case |M | > 0. Suppose ε(M) ⇒ L. The possible form of L is
L ≡ ε(M ′) with M ⇒ M ′. From the assumption that M ∈
RED⊥ and (C2) , we have M ′ ∈ RED⊥. Note that |M ′| =
|M |−1 < |M |. Then, by the hypothesis of the induction on |M |,
we have L ∈ REDα. Hence, by (C3), we have ε(M) ∈ REDα.

2. Suppose that M ∈ REDα and N ∈ REDβ . We will show π1(〈M,N〉) ∈
REDα by induction on |M | + |N |.

• Case |M | + |N | = 0. Suppose π1(〈M,N〉) ⇒ L. Since M and N are
in their normal forms, the possible form of L is L ≡ M . From the
assumption that M ∈ REDα, we have L ∈ REDα. Hence, by (C3),
we have π1(〈M,N〉) ∈ REDα.

• Case |M | + |N | > 0. Suppose π1(〈M,N〉) ⇒ L. The possible forms
of L are the following:

– Case L ≡ π1(〈M ′, N〉) with M ⇒ M ′. From the assumption
that M ∈ REDα and (C2), it follows that M ′ ∈ REDα. Note
that |M ′| = |M | − 1 < |M |. Then, by the hypothesis of the
induction on |M | + |N |, we have L ∈ REDα.

– Case L ≡ π1(〈M,N ′〉) with N ⇒ N ′. From the assumption
that N ∈ REDβ and (C2), it follows that N ′ ∈ REDβ . Note
that |N ′| = |N | − 1 < |N |. Then, by the hypothesis of the
induction on |M | + |N |, we have L ∈ REDα.

– Case L ≡ M . From the assumption that M ∈ REDα, it follows
that L ∈ REDα.

Hence, by (C3), we have π1(〈M,N〉) ∈ REDα.
Similarly, π2(〈M,N〉) ∈ REDβ . Hence, we have 〈M,N〉 ∈ REDα×β .

3. Suppose M [x := N ] ∈ REDβ for any N ∈ REDα. We will show λx.M ∈
REDα→β . To show this, we need to verify:
(a) (λx.M)N ∈ REDβ for any N ∈ REDα.
(b) η(λx.M) ∈ REDγ if α ≡ γ → β.

For (a): Suppose N ∈ REDα. We will show (λx.M)N ∈ REDβ by
induction on |M | + |N |.

• Case |M |+ |N | = 0. Suppose (λx.M)N ⇒ L. Since M and N are in
their normal forms, the possible form of L is L ≡ M [x := N ]. From
the assumption that M [x := N ] ∈ REDβ for any N ∈ REDα, and
the assumption that N ∈ REDα, it follows that L ∈ REDβ . Hence,
by (C3), we have (λx.M)N ∈ REDβ .

• Case |M | + |N | > 0. Suppose (λx.M)N ⇒ L. The possible forms of
L are the following:

– Case L ≡ (λx.M ′)N with M ⇒ M ′. From the assumption that
M [x := N ] ∈ REDβ for any N ∈ REDα, and the fact that
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x ∈ REDα, it follows that M ≡ M [x := x] ∈ REDβ . Then, by
(C2), we have M ′ ∈ REDβ . Note that |M ′| = |M | − 1 < |M |.
Then, by the hypothesis of the induction on |M |+|N |, we have
L ∈ REDβ .

– Case L ≡ (λx.M)N ′ with N ⇒ N ′. From the assumption that
N ∈ REDα and (C2), it follows that N ′ ∈ REDα. Note that
|N ′| = |N |−1 < |N |. Then, by the hypothesis of the induction
on |M | + |N |, we have L ∈ REDβ .

– Case L ≡ M [x := N ]. From the assumption that M [x :=
N ] ∈ REDβ for any N ∈ REDα and the assumption that
N ∈ REDα, it follows that L ∈ REDβ .

Hence, by (C3), we have (λx.M)N ∈ REDβ .
For (b): Let α ≡ γ → β. We will show η(λx.M) ∈ REDγ by induction
on |M |.

– Case |M | = 0. Note that M is in its normal form, and so is η(λx.M).
Hence, by (C3), we have η(λx.M) ∈ REDγ .

– Case |M | > 0. Suppose η(λx.M) ⇒ L. The possible form of L is L ≡
η(λx.M ′) with M ⇒ M ′. Note that |M ′| = |M |−1 < |M |. Then, by
the hypothesis of the induction on |M |, we have η(λx.M ′) ∈ REDγ .
Hence, by (C3), we have η(λx.M) ∈ REDγ .

4. Suppose that M ∈ REDα→β and N ∈ REDβ→⊥. We will show τ(M,N)
∈ REDα→⊥ by induction on |M | + |N |.

• Case |M | + |N | = 0. Since M and N are in their normal forms, so
is τ(M,N). Then, by (C3), we have τ(M,N) ∈ REDα→⊥.

• Case |M | + |N | > 0. Suppose τ(M,N) ⇒ L. The possible forms of
L are the following:

– Case L ≡ τ(M ′, N) with M ⇒ M ′. From the assumption that
M ∈ REDα→β and (C2), it follows that M ′ ∈ REDα→β . Note
that |M ′| = |M | − 1 < |M |. Then, by the hypothesis of the
induction on |M | + |N |, we have L ∈ REDα→⊥.

– Case L ≡ τ(M,N ′) with N ⇒ N ′. From the assumption that
N ∈ REDβ→⊥ and (C2), it follows that N ′ ∈ REDβ→⊥.
Note that |N ′| = |N | − 1 < |N |. Then, by the hypothesis of
the induction on |M | + |N |, we have L ∈ REDα→⊥.

Hence, by (C3), we have τ(M,N) ∈ REDα→⊥.
5. Suppose M ∈ REDα. We will show θ(M) ∈ RED(α→⊥)→⊥. To show

this, we need to verify:
(a) θ(M)N ∈ RED⊥ for any N ∈ REDα→⊥.
(b) η(θ(M)) ∈ REDα.

For (a) : Suppose N ∈ REDα→⊥. We will show θ(M)N ∈ RED⊥ by
induction on |M | + |N |.

• Case |M | + |N | = 0. Since M and N are in their normal forms, so
is θ(M)N . Then, by (C3), we have θ(M)N ∈ RED⊥.

• Case |M | + |N | > 0. Suppose θ(M)N ⇒ L. The possible forms of L
are the following:
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– Case L ≡ θ(M ′)N with M ⇒ M ′. From the assumption that
M ∈ REDα and (C2), it follows that M ′ ∈ REDα. Note that
|M ′| = |M |−1 < |M |. Then, by the hypothesis of the induction
on |M | + |N |, we have L ∈ RED⊥.

– Case L ≡ θ(M)N ′ with N ⇒ N ′. From the assumption that
N ∈ REDα→⊥ and (C2), it follows that N ′ ∈ REDα→⊥.
Note that |N ′| = |N | − 1 < |N |. Then, by the hypothesis of
the induction on |M | + |N |, we have L ∈ RED⊥.

Hence, by (C3), we have θ(M)N ∈ RED⊥.
For (b): We will show η(θ(M)) ∈ REDα by induction on |M |.

• Case |M | = 0. Suppose η(θ(M)) ⇒ L. Since M is in its normal
form, the possible form of L is L ≡ M . From the assumption that
M ∈ REDα, it follows that L ∈ REDα. Hence, by (C3), we have
η(θ(M)) ∈ REDα.

• Case |M | > 0. Suppose η(θ(M)) ⇒ L. The possible forms of L are
the following:

– Case L ≡ M . From the assumption that M ∈ REDα, it follows
that L ∈ REDα.

– Case L ≡ η(θ(M ′)) with M ⇒ M ′. From the assumption that
M ∈ REDα and (C2), it follows that M ′ ∈ REDα. Note that
|M ′| = |M |−1 < |M |. Then, by the hypothesis of the induction
on |M |, we have L ∈ REDα.

Hence, by (C3), we have η(θ(M)) ∈ REDα. �

Proof of Theorem 5.2. Let M : α be a λ-term. We will show M ∈ REDα.
Then, by (C1), we will have M ∈ SNTerm. More generally, the following
holds: If M has no free variables other than x1 : α1, . . . , xn : αn, and if
M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈ REDαn

, then M [x1 := M1, . . . , xn :=
Mn] ∈ REDα. We will show this by induction on the construction of M .

• Case M ≡ xi. Immediate.
• Case M ≡ ε(N). Let N : ⊥ be a λ-term. Suppose that N has no

free variables other than x1 : α1, . . . , xn : αn, and suppose M1 : α1 ∈
REDα1 , . . . ,Mn : αn ∈ REDαn

. By the induction hypothesis, we have
N [x1 := M1, . . . , xn := Mn] ∈ RED⊥. Then, by 1 of Proposition 5.5,
we have (ε(N))[x1 := M1, . . . , xn := Mn] ≡ ε(N [x1 := M1, . . . , xn :=
Mn]) ∈ REDα.

• Case M ≡ π1(N). Let N : α × β be a λ-term. Suppose that N has
no free variables other than x1 : α1, · · · , xn : αn, and suppose M1 :
α1 ∈ REDα1 , . . . ,Mn : αn ∈ REDαn

. By the induction hypothesis, we
have N [x1 := M1, . . . , xn := Mn] ∈ REDα×β . Then, by the definition
of REDα×β , we have (π1(N))[x1 := M1, . . . , xn := Mn] ≡ π1(N [x1 :=
M1, . . . , xn := Mn]) ∈ REDα.

• Case M ≡ π2(N). Similar to Case π1(N).
• Case M ≡ 〈N,L〉. Let N : β and L : γ be λ-terms. Accordingly, α ≡ β×γ.

Suppose that N and L have no free variables other than x1 : α1, . . . , xn :
αn, and suppose M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈ REDαn

. By the
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induction hypothesis, we have N [x1 := M1, . . . , xn := Mn] ∈ REDβ

and L[x1 := M1, . . . , xn := Mn] ∈ REDγ . Then, by 2 of Proposition
5.5, we have 〈N,L〉[x1 := M1, . . . , xn := Mn] ≡ 〈N [x1 := M1, . . . , xn :=
Mn], L[x1 := M1, . . . , xn := Mn]〉 ∈ REDα.

• Case M ≡ NL. Let N : β and L : γ be λ-terms. Accordingly, β ≡
γ → α. Suppose that N and L have no free variables other than x1 :
α1, . . . , xn : αn, and suppose M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈ REDαn

.
By the induction hypothesis, we have N [x1 := M1, . . . , xn := Mn] ∈
REDβ and L[x1 := M1, . . . , xn := Mn] ∈ REDγ . Then, by the defini-
tion of REDγ→α, we have (NL)[x1 := M1, . . . , xn := Mn] ≡ N [x1 :=
M1, . . . , xn := Mn](L[x1 := M1, . . . , xn := Mn]) ∈ REDα.

• Case M ≡ λy.N . Let y : β be a typed variable and let N : γ be a λ-term.
Accordingly, α ≡ β → γ. Suppose that N has no free variables other than
x1 : α1, . . . , xn : αn, y : β, and suppose M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈
REDαn

, L : β ∈ REDβ . By the induction hypothesis, we have N [x1 :=
M1, · · · , xn := Mn, y := L] ∈ REDγ . Then, by 3 of Proposition 5.5,
we have (λy.N)[x1 := M1, . . . , xn := Mn] ≡ λy.(N [x1 := M1, . . . , xn :=
Mn]) ∈ REDα.

• Case M ≡ τ(N,L). Let N : β → γ and L : γ → ⊥ be λ-terms. Accord-
ingly, α ≡ β → ⊥. Supose that N and L have no free variables other
than x1 : α1, . . . , xn : αn, and suppose M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈
REDαn

. By the induction hypothesis, we have N [x1 := M1, . . . , xn :=
Mn] ∈ REDβ→γ and L[x1 := M1, . . . , xn := Mn] ∈ REDγ→⊥. Then,
by 4 of Proposition 5.5, we have τ(N,L)[x1 := M1, . . . , xn := Mn] ≡
τ(N [x1 := M1, . . . , xn := Mn], L[x1 := M1, . . . , xn := Mn]) ∈ REDα.

• Case M ≡ η(N). Let N : (α → ⊥) → ⊥ be a λ-term. Suppose that
N has no free variables other than x1 : α1, · · · , xn : αn, and suppose
M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈ REDαn

. By the induction hypothesis,
we have N [x1 := M1, . . . , xn := Mn] ∈ RED(α→⊥)→⊥. Then, by the
definition of RED(α→⊥)→⊥, we have (η(N))[x1 := M1, . . . , xn := Mn] ≡
η(N [x1 := M1, . . . , xn := Mn]) ∈ REDα.

• Case M ≡ θ(N). Let N : β be a λ-term. Accordingly, α ≡ (β → ⊥) → ⊥.
Suppose that N has no free variables other than x1 : α1, . . . , xn : αn, and
suppose M1 : α1 ∈ REDα1 , . . . ,Mn : αn ∈ REDαn

. By the induction
hypothesis, we have N [x1 := M1, . . . , xn := Mn] ∈ REDβ . Then, by 5 of
Proposition 5.5, we have (θ(N))[x1 := M1, . . . , xn := Mn] ≡ θ(N [x1 :=
M1, . . . , xn := Mn]) ∈ REDα. �

6. Conclusion

In this paper, we have presented a natural deduction system for orthomodular
quantum logic and the corresponding λ-calculus.

Proof theory and computational theory for quantum logic have not been
thoroughly studied so far. One of the reasons for this is that quantum logic
lacks a satisfactory implication operation. By treating the Sasaki hook as a
quasi-implication and adopting it as a basic operation, we have obtained a
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straightforward formalization of natural deduction for quantum logic and the
corresponding λ-calculus. We hope that both systems will contribute to the
study of proof theory and computational theory for orthomodular quantum
logic.
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