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1. Introduction

H is a language for formal specification and verification that has emerged out
of a theoretical effort spread over a period of more than 25 years. It has been
provisionally implemented as a prototype running system during 2017–2018
[8] and following this implementation a number of succesful case studies have
been reported [8,40]. H is designed as a two-component system:

• Hspec–the specification language. This is an institution-based language
in the sense that is parameterised over a variety of base logic systems
captured as institutions (in the sense of the institution theory of Goguen
and Burstall [21]). The role of the base logics refer to the specification of
the data part of the system. For the dynamics part, Hspec employs the
essentials of modal logic. This design is based upon the understanding
that the essential ingredients of modal logic (both at the syntactic and at
the semantic level) are independent of the base level logic. The fact that
Hspec is parameterised by base logics gives it unparalleled specification
expressivity and power since the most appropriate logic for the data part
may be chosen. Moreover the list of base logics is open, any new logic
may be added when convenient.

• Hver–a collection of verification tools and methods for specifications de-
veloped with Hspec. At this moment Hver contains only one such method
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which is based on translations to first order logic. However in the future
we plan to extend Hver with other methods and tools.

A web page of H is currently maintained at http://imar.ro/∼diacon/forver/
forver.html.
The H concept, the core of H represented by its scientific foundation, is based
on developing an abstract Kripke semantics within the institution theory of
Goguen and Burstall [21]. This is the core of H, from which the vision of H
had emerged, its development being the result of a sustained mathematical
effort reported in a series of papers from which the most representative are
[14,19,20]. In this way H may be a typical example of a formal method that
has emerged out of initially purely theoretically motivated work.

In this paper we survey the development of H, with emphasis on its most
important aspects. This goes as follows:

1. In the first part, which is also the main part of the survey, we present
the mathematical foundations of H and its basic design. As mentioned
above this consists essentially of the internalisation of Kripke semantics
in abstract institutions. This concept has been developed very gradually
over many years and in our paper we will survey the most important
moments of this development. We believe that presenting the H concept
in this way has several benefits for the reader, including the possibility
to understand the flow of ideas behind the H concept. It may be quite
difficult if we chose to present only the end result of this rather complex
process.

2. The next section is dedicated to the current implementation of H. This is
only a temporary implementation that is based on the Hets system [28].
In long term, our vision for H is to have an independent implementation.

3. In the last section we discuss very briefly some case studies that have
been formally specified and verified with H.

The readership must be familiar with some very basic category theory
concepts, which are now quite commonly used in some areas of formal methods.
Some familiarity with institution theory and modal logic may be also quite
helpful.

On the practical implications of Universal Logic Universal Logic is renown as
a general approach to logic and due to its generality and higher abstraction
level not many fully understand its applicative power. However, people work-
ing in institution theory—a model theoretic branch of Universal Logic—know
well about the crucial role played by institution theory in computing and pro-
gramming, especially in the area of formal specification. For example, it has
been a very effective tool for designing new logic-based specification languages
and for developing the theory of specification uniformly at a general level. In
this respect the case of H is quite special. Unlike any other language that has
benefited from institution theory, H embedds directly abstract institutions in
its definition and this reflects also at the methodological level. The unique
specification and verification power of H is a consequence of this explicit use
of abstract institutions.

http://imar.ro/~diacon/forver/forver.html
http://imar.ro/~diacon/forver/forver.html
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2. The H Concept

The broader scientific context of the H concept is the theory of institutions of
Goguen and Burstall [21]. The narrower context is the development of Kripke
semantics within abstract institutions [14,19,20]. In this section we first give a
very brief presentation of institution theory, and then survey the development
process of the institution-theoretic Kripke semantics.

2.1. Institutions

The model theory oriented axiomatic approach by Goguen and Burstall to the
notion of a logical system [21] that is based on the notion of institution has
started a line of important developments of adequately abstract and general
approaches to the foundations of software specifications and formal system
development (see [35]) as well as a modern version of very abstract model
theory (see [11]). One of the main original motivations for introducing insti-
tution theory was to respond to the explosion in the population of logics in
use in computing almost four decades ago, a situation that continues today
perhaps at an accelerated pace. These days the concept of institution lies at
the foundations of several formal modern specification languages and envi-
ronments such as Maude [7], CASL [3] or CafeOBJ [17], Hets [28] etc. In the
area of formal specification and verification the contribution of the institution-
theoretic approach to modularity and heterogeneity are priceless. Let us recall
the notorious concept of institution:

An institution I =
(
SignI ,SenI ,ModI , |=I )

consists of
• a category SignI whose objects are called signatures,
• a sentence functor SenI : SignI → Set defining for each signature a

set whose elements are called sentences over that signature and
defining for each signature morphism a sentence translation function,

• a model functor ModI : (SignI)op → CAT defining for each signature
Σ the category ModI(Σ) of Σ-models and Σ-model homomorphisms,
and for each signature morphism ϕ the reduct functor ModI(ϕ),

• for every signature Σ, a binary Σ-satisfaction relation |=I
Σ⊆ |ModI(Σ)|

× SenI(Σ),
such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the Satisfaction
Condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I

Σ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).
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The literature (e.g. [11,35]) shows myriads of logical systems from com-
puting or from mathematical logic captured as institutions. In fact, an infor-
mal thesis underlying institution theory is that any ‘logic’ may be captured
by the above definition. While this should be taken with a grain of salt, it
certainly applies to any logical system based on satisfaction between sentences
and models of any kind. In concrete institutions, typically the signatures are
structured collections of symbols, the sentences are inductively defined from
atoms by using sentence building operators, the sentence translations (along
signature morphisms) rename symbols, the models interpret the symbols of
the signatures as sets and functions, the reducts “forget” interpretations of
some symbols, and the satisfaction is defined inductively on the structure of
the sentences in Tarski’s style [39].

Here we refrain from presenting examples of logical systems captured as
institutions since the institution theory literature abounds of such examples.
Instead let us just point out that the process of defining particular logical
systems as institutions is not necessarily a trivial one since one may have to
reconsider and give a serious fresh thought to concepts such as signature mor-
phisms, variables, quantifiers, etc. This rethinking of various concepts may
have to do very much with the intended applications, such as formal specifica-
tion. For example, from the specification perspective the concept of signature
morphism has to be much more general than what is usually employed in
conventional logic, in order for the mathematics to work the variables require
a kind of qualifications that are inspired from the practice of specification
languages, etc. Some of these issues have been discussed in extenso in [13].

2.2. Kripke Semantics in Institutions

The semantics for modal logics, known as Kripke semantics was introduced in
[24]. The origin of the development of Kripke semantics in institutions—often
refereed to as ‘modalization of institutions’—lies in some research undertaken
within the group of the late Professor Joseph Goguen at Oxford in the early
nineties regarding institutions for modal logics. First there was the realisation
of the fact that the model amalgamation properties in modal logic institutions
are a direct consequence of the respective properties in the base logics, such
as propositional or first order logic. From there it followed the idea that each
modal logic institution has an underlying simpler base institution and that
the Kripke models may be defined uniformly on the basis of the models in a
base institution. However it took over a decade to see the first paper on this
published [20], mainly due to a rather complicated refereeing process.

In [20]—which may be considered the seminal paper for the H concept—
we have introduced the first version of Kripke semantics in abstract institutions
first by considering a “base” institution I and then by building a “modal”
institution HI on top of I. This construction has several components:

1. An extension of the syntax of I. While the signatures stay the same,
new sentences are built from the sentences of I by iteration of sentences
building operators such as the usual Boolean operators, quantifiers, and
modalities.
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2. Kripke models built from the models of I.
3. The definition of a modal satisfaction relation between the Kripke models

and the new sentences.
Now let us review these three components of the construction of HI one by
one.

2.2.1. The Syntax of HI. For any signature Σ, the set SenHI(Σ) of the Σ-
sentences of the “modal” institution HI is the least set closed under the fol-
lowing operations:

• SenI(Σ) ⊆ SenHI(Σ);
• ρ � ρ′ ∈ SenHI(Σ) for any ρ, ρ′ ∈ SenHI(Σ) and any � ∈ {∨,∧,⇒},
• ¬ρ ∈ SenHI(Σ), for any ρ ∈ SenHI(Σ),
• [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) ∈ SenHI(Σ),

for any λ ∈ Λn+1, ρi ∈ SenHI(Σ), i ∈ {1, . . . , n};
• (∀χ)ρ, (∃χ)ρ ∈ SenHI(Σ), for any ρ ∈ SenHI(Σ′) and χ : Σ → Σ′ ∈ D;

Some explanations are necessary:
• The first condition says that each sentence of the base institution becomes

automatically a sentence of the “modal”institution.
• The second and the third conditions do the Boolean connectors on the

sentences of the “modal” institution. Note that the sentences of the base
institution may also involve Boolean connectors, in this case it is impor-
tant to distinguish between the Boolean connectors at the base level and
at the modal level since in general their effects may be differ.

• The fourth condition introduces modalities as sentences building opera-
tors. Here Λn means the set of modalities of arity n, which may be thought
just as relation symbols. For now the modalities are not considered part
of the signatures, they are rather fixed.

• Quantifiers are considered in the institution-theoretic manner, via desig-
nated signature morphisms (see for example [11] for details). Conven-
tional concrete quantifiers would correspond to those signature mor-
phisms that are in fact extensions of signatures with variables. So, not
each signature morphism may be used in quantifiers, those that are des-
ignated for such use form a so-called quantification space which is the
D from the last condition above. This concept represents an axiomatic
approach to quantifiers that considers coherence properties with respect
to translations along signature morphisms; it has been defined first in
[12] and given this name in [14].

• Like with the Boolean connectors we have to carefully distinguish between
quantifiers the level of HI and those that come with the sentences of the
base institution as their effects may differ.

• The general institution-theoretic feature of the quantifiers, namely that
they support higher-order quantification (up to what the concrete concept
of signature supports) applies also here. So, depending on how we chose D
we may have first order, or second order, or even higher order quantifiers.
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2.2.2. Kripke Models. The models of HI are Kripke models defined on the
basis of the models of the base institution I:

Given a signature Σ, a Kripke model (M,W ) consists of
• a set |W | – called the set of the “possible worlds”;
• for each λ ∈ Λn, a relation Wλ ⊆ |W |n; and
• a mapping M : |W | → |ModI(Σ)|.

So, for each w ∈ W , Mw is a model of the base institution I. Moreover,
W = (|W |, (Wλ)λ∈Λ) is called the Kripke frame of (M,W ).

However in order for the quantifications to work properly, usually the
models Mw have to share something. For example in the concrete case of
first order modal logic it is quite common to require that the first order logic
models Mw that are part of a Kripke model share their underlying sets and
the interpretations of the variables. At the level of the abstract institutions
this condition has been expressed in a general way in [20] as

βΣ(Mw) = βΣ(Mv) for all w, v ∈ |W |.

where βΣ : Mod(Σ) → Dom(Σ) is a functor satisfying some rather mild tech-
nical conditions (we omit them here).1

2.2.3. The “modal” Satisfaction. The satisfaction relation that relate the syn-
tax of the “modal institution” HI to its semantics is defined by following the
usual institution theoretic definitions and in Tarski’s style by recursion on the
structure of the sentences, the recursion base being the satisfaction in the base
institution I. For each Kripke model (M,W ) and each w ∈ |W | we define a
“local” satisfaction relation as follows:

• (M,W ) |=w ρ iff Mw |=I ρ; when ρ ∈ SenI(Σ),
• (M,W ) |=w ρ ∧ ρ′ iff (M,W ) |=w ρ and (M,W ) |=w ρ′, and similarly for

the other Boolean connectors;
• (M,W ) |=w [λ](ξ1, . . . , ξn) iff for any (w,w1, . . . , wn) ∈ Wλ we have that

(M,W ) |=wi ρi for some 1 ≤ i ≤ n.
• (M,W ) |=w 〈λ〉(ξ1, . . . , ξn) iff there exists (w,w1, . . . , wn) ∈ Wλ such

that and (M,W ) |=wi ξi for any 1 ≤ i ≤ n.
• (M,W ) |=w (∀χ)ρ iff (M ′,W ′) |=w ρ for any (M ′,W ′) such that

Mod(χ)(M ′,W ′) = (M,W ),
• (M,W ) |=w (∃χ)ρ iff (M ′,W ′) |=w ρ for some (M ′,W ′) such that
Mod(χ)(M ′,W ′) = (M,W ).

Under these definition in [20] it has been proved that HI is an institution where
the satisfaction (M,W ) |= ρ is defined on the basis of the “local” satisfaction

1In examples Dom : Signop → CAT is always a functor that is “weaker” than Mod in the
sense that it interprets less structure.



Vol. 14 (2020) Introducing H 265

by (M,W ) |=w ρ for all w ∈ |W |. Moreover, the adequacy of this construction
has been tested against some deep model theoretic results including a very
general “modal” ultraproducts theorem and its compactness consequences.
Although in [20] we have not used multi-modalities (i.e. the relations from Λ)
but instead used the more familiar � and ♦, this difference is insignificant,
being just a matter of form.

Note that HI in fact represents a class of institutions rather than a
single institution because of the several parameters involved in its construction.
Besides the base institution I of course, we also have the modalities Λ, the
quantification space D and the sharing functor β. From this perspective a
notation such as HI(Λ,D, β) appears as more appropriate, however this is
rather heavy so we usually stick to the simpler version when the involved
parameters are clear.

The usual modal logic institutions arise immediately as examples of HI.
For instance modal propositional logic arises when considering propositional
logic as base institution (eventually stripped of the Boolean connectors) and
with D being trivial, while first order modal logic arises when considering
atomic first order logic as the base institution (i.e. first order logic stripped
off the Boolean connectors and off the quantifiers) and D consisting of the
extensions of the signatures with appropriate variables. However the potential
of the construction of HI goes much beyond that of known examples of modal
logics because it frees modal logic from its conventional base. For example,
at the base level it is possible to have partial functions with various kinds of
sharing (an interesting one from an [19] would consider the sharing only of
the definition domains of the partial functions). A more intriguing example
is given by the possibility to iterate this construction for a number of times,
obtaining hierarchical modal logics.

The construction of the “modal institution” of [20] is quite emblematic
for all other developments in the area and constitutes the very basis for Hspec
as both the syntax and the semantics of Hspec are based on this construction,
but subject to some further additions that will be presented below.

2.3. Adding Nominals

An important development in the area of institution-theoretic Kripke seman-
tics is the extension of the theory of [20] with the ingredients of the so-called
“hybrid logic”. Hybrid logics [4] are a brand of modal logics that provides
appropriate syntax for the Kripke semantics in a simple and very natural way
through the so-called nominals. Historically, hybrid logic was introduced in
[33] and further developed in works such as [2,6,32] etc. The name “hybrid
logics” was coined by Blackburn, but we consider this an uninspired choice
leading to confusions because of at least two reasons. On the one hand this
name does not suggest in any way the reality, namely that “hybrid logics” is a
sub-brand of the modal logics. In fact the difference between the two is rather
minor because technically it boils down only to a simple syntactic addition,
whilst they share the same semantics. On the other hand the term “hybrid”
has a clear meaning in ordinary language, which is difficult to relate to the
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corresponding brand of logics. In spite of all these considerations, the termi-
nology “hybrid logics” is already established in the literature, and even the
name H owes to it.

The presence of nominals brings in several advantages from the point of
view of formal specification and verification, such as the possibility of explicit
reference to specific states of the model and a better more uniform proof the-
ory. All these specification benefits have called for an extension of the original
theory of [20], a first attempt in this direction being [26]. That had been tech-
nically a rather straightforward enterprise, which is briefly presented below.

2.3.1. Upgrading the Signatures. At the level of the signatures of HI we add
the nominals, so after this addition a signature consists of a pair (Nom,Σ)
where Nom is a set (of nominal symbols) and Σ is a signature of the base
institution I. This had been a good moment to include also the modalities
Λ in the signatures, a move that is specification oriented. When specifying
dynamics of systems it is necessary to have user defined modalities. Therefore
a signature in HI is now a triple (Nom,Λ,Σ).

2.3.2. Upgrading the Sentences. The collection of the sentence building oper-
ators gets expanded with:

• Nom ⊆ SenHI(Nom,Λ,Σ);
• @iρ ∈ SenHI(Nom,Λ,Σ) for any ρ ∈ SenHI(Nom,Λ,Σ) and i ∈ Nom;

Then there is the issue of upgrading the quantification by allowing quantifi-
cations over the nominals. For this we have to consider D as a quantification
space for the upgraded signatures, but one which does not have any effect on
the modalities. Thus the quantification building operators get upgraded to:

• (∀χ)ρ, (∃χ)ρ ∈ SenHI(Nom,Λ,Σ), for any ρ ∈ SenHI(Nom′,Λ,Σ′) and
χ : (Nom,Λ,Σ) → (Nom′,Λ,Σ′) ∈ D;

2.3.3. Upgrading the Semantics. The upgrade of the concept of Kripke models
is very simple, just interpret the new syntactic entities by extending W with
interpretations for the nominals. So for each i ∈ Nom we have a designated
element Wi ∈ |W |.
2.3.4. Upgrading the Satisfaction Relation. This upgrade adds the semantics
of the new building operators as follows:

• (M,W ) |=w i iff Wi = w; when i ∈ Nom,
• (M,W ) |=w @jρ iff (M,W ) |=Wj ρ.

We can see that the upgrade of the construction of HI from [20] in the direc-
tion of nominals is technically very straightforward. This is one of the reasons
the paper [26] may be considered as only a minor contribution to the general
development of the H concept. But there are other more serious reasons for
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this evaluation. Due to being a conference paper—and therefore being quite
rushed and suffering from severe space limitations—the authors had to scrap
some crucial features of the original construction from [20], such as the shar-
ing at the level of the Kripke models. One of the dramatic consequences of
this simplification—called the “free hybridisation”—was that the quantifica-
tion became nonfunctional, thus reducing a lot the specification power of the
formalism. However these shortcomings have been corrected in the journal pa-
per [14], which may be considered as the first paper addressing the extension
of [20] with nominals in a proper way.

2.4. More General Constraints

In [14] an ultimate very general axiomatic approach to the constraints on
Kripke models had been proposed. This approach captures a wide variety of
constraints, such as various sharing constraints or constraints on the shape of
the Kripke frames (such as reflexivity, transitivity, etc.). It is for instance more
general and more accommodating than the sharing constraints defined in [20].
Let us recall from [14]:

A constrained HI-model functor is a sub-functor ModC ⊆ ModHI such that it
reflects weak amalgamation for the designated pushout squares corresponding
to the quantification space DI at the level of the base institution I (that is
obtained by “forgetting” the nominals part from DHI). The models in ModC

are called constrained HI-models.

We omit here detailed explanations concerning the technical condition on weak
amalgamation as the interested reader may consult [14] or [19]. Informally, the
meaning of the reflection (of weak amalgamation) condition is that in the case
of the designated pushout squares used in quantifications the amalgamation
of constrained models yields a constrained model. The role of this condition,
which is rather mild in the applications, is to ensure that the constrained mod-
els support smoothly the quantifications. At the end we get a ‘sub-institution’
of HI with constrained Kripke models that is denoted HIC .

2.5. Hspec and HIC

The definition of Hspec sticks closely to the construction of HIC , being just a
realisation of this construction as a specification language. The following ideas
underlie the definition of Hspec:

• The syntax of Hspec comes on two layers. The “upper” layer follows the
definition of the signatures and of the sentences of HIC , which become
Hspec declarations. The “lower” layer follows the definition of the signa-
tures and of the sentences of the base institution I, which is the most
important parameter the respective specification. In principle there is al-
most absolute freedom about the “lower” layer, in practice however we
have to commit to something concrete, usually to something that already
exists in the realm of current specification languages. For example CASL
[3] may be used in many situations because its underlying institution is a
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rather complex one which includes many logical features, such as Boolean
connectors, first order quantifications, partial functions, etc.

• The semantics of a Hspec specification is the class of the constrained HIC

models (Kripke models) that satisfy the axioms declared in the respective
specification.

• In Hspec, currently the constraints on the Kripke models are specified
in two ways. Either by “rigidity” declarations for the syntactic entities
(sorts, operations, relations, etc.) that are meant to be interpreted uni-
formly across the base institution models in a Kripke model, or else by
specific axioms in other cases (such as various properties of the Kripke
frame, but not only). The constraint axioms do not appear in the specifi-
cations as they are part of the definition of all Kripke models and there-
fore are common to all specifications; they are declared when defining the
respective logic/institution.

Let us see how these ideas are realised in the case of a concrete example
of a Hspec specification. The following Hspec specification is that of a reconfig-
urable calculator for natural numbers with a binary operation that in one state
is sum and in the other one is multiplication, an example which is discussed
in [25].

spe c Nat =

l o g i c : RigidCASL

r i g i d s o r t Nat

r i g i d op 0 : Nat

r i g i d op suc : Nat −> Nat

op X : Nat ∗ Nat −> Nat

end

spec Calc =

l o g i c :

HRigidCASLC

data :

Nat

c o n f i g u r a t i o n :

nomina l s mult , sum

moda l i t y s h i f t : 2

. mult \/ sum

. @ sum : <s h i f t> mult /\ [ s h i f t ] mult

. @ mult : <s h i f t> sum /\ [ s h i f t ] sum

. @ mult : not sum

. @ sum : f o r a l l m : Nat . X(m, 0) = m

. @ sum : f o r a l l m, n : Nat . X(m, suc (n ) ) = suc (X(m, n ) )

. @ mult :

f o r a l l H m : Nat . f o r a l l H n : Nat

. e x i s t sH x : Nat . e x i s t sH y : Nat

. X(m, n) = x /\ X(m, suc (n ) ) = y /\ <s h i f t> X(x , m) = y

end
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The first specification, at the level of the base institution, declares the
data of the natural numbers together with the binary operation that will
change modes that can be either interpreted as addition or as multiplication.
This uses the CASL logic (essentially first order logic with partial functions).
Rigidity constraints are also specified at this stage in order to prepare for the
Kripke models in which the base models share their underlying sets and some
of the operations. The rigidity declarations do not have any semantic effect at
the level of the data (Nat), however they will have an effect at the level of the
hybridisation. This latter aspect, although does not introduce any error, is a
little “unclean”. It is not a kind of implementation shortcut, it rather comes
from a small gap in the theory. Currently, when building a hybridisation HIC ,
the signatures of the base institution are preserved. Since rigidity of sorts and
operations are in fact declarations at the level of the base institution signa-
tures, they have to be there already in order to specify sharing constraints in
the hybridisation. A possible solution to this is to go more abstract about the
signatures of HIC by specifying them abstractly together with a projection
functor to the signatures of I (the base institution) that may be subject to
some axioms, in the style of how frame and nominals extractions are defined
in [15].

The second specification is at the level of a hybridisation, which in this
case is HRigidCASLC (rigid sorts, rigid total functions and the domain of each
rigid partial function are interpreted uniformly). Its definition does not appear
in this specification as it resides in a library, being a predefined entity of Hspec.
However in this particular example we do not use any partial functions. The
data Nat is imported and nominals and the modality are declared. In the case
of the modality note its arity 2. This is the part that declares the respective
HIC signature. Then follows a series of axioms mainly regarding the dynamics
of the system. For example, the first axiom says that the Kripke frames have
at most two elements. Note the two levels of quantifiers, forall is at the level
of the base institution while forallH and existsH are quantifiers at the level
of the hybridised institution. Because the base is a kind of fully fledged kind of
first order logic, its hybridisation HIC differs substantially from the classical
first order hybrid logics.

Regarding the syntax of the Hspec specifications, the current parser of
Hspec allows for two different styles of syntax:

1. One more faithful to the mathematical foundations, like in the example,
and

2. another one that is more “engineering oriented”.
For example in the latter one, the application of a modality [m] e is written
After m, always e.

Now a short note on the structured specifications in Hspec. It is not neces-
sary to discuss them in detail here as they just follow the institution-theoretic
approach (e.g. [16,18,35]). The fundamental technical results supporting struc-
tured specifications in Hspec are the existence of pushouts of signature mor-
phisms and model amalgamation in HIC , results that follow rather easily from
the definitions.
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2.6. Encoding into First-Order Logic

The current version of Hver contains only one method and tool that is based
upon a mathematical result that constitutes the main achievement in [19].
That result represents an extension of the traditional translation of modal
logic to first order logic [41] (for the hybrid variant [5]) to encodings of abstract
hybridised institutions into first order logic.

That encoding uses the mathematical notion of comorphism [22,27,29,
37,38], which is an important concept of institution theory. From the perspec-
tive of the mathematical structure, comorphisms are just ‘homomorphisms
of institutions’. So they are mappings between institutions that preserve the
mathematical structure of institutions.

An institution comorphism (Φ, α, β) : I → I ′ consists of
1. a functor Φ : Sign → Sign ′,
2. a natural transformation α : Sen ⇒ Φ;Sen ′, and
3. a natural transformation β : Φop;Mod ′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(e) iff βΣ(M ′) |=Σ e

for each signature Σ ∈ |Sign|, for each Φ(Σ)-model M ′, and each Σ-sentence
e.

While the α represents the translation of the syntax, the β represents the
translation of the semantics. The satisfaction condition ensures the mutual
coherence between these translations.

Although comorphisms generally express an embedding relationship be-
tween institutions, they can also be used for ‘encoding’ a ‘more complex’ insti-
tution I into a ‘simpler’ one I ′. In such encodings the structural complexity
cost is shifted to the mapping Φ on the signatures, thus Φ maps signatures of
I to theories of I ′ rather than signatures. This is why in the literature these
are sometimes [22,29] called ‘theoroidal’ comorphisms. A theory in I is just a
specification in I, i.e. a signature Σ plus a set E of Σ-sentences. Technically
speaking a ‘theoroidal’ comorphism is in fact an ordinary comorphism when
we replace the institution I ′ with the institution of its theories I ′th. This is
achieved through a general construction that can be applied to absolutely any
institution, in which the signatures of I ′th are the theories of I. The details of
this construction may be found in may places in the literature, such as in [11]
(but under the name of the institution of ‘presentations’).

Due to the generality of the construction of HIC , including its parame-
ters D and the constraint sub-functor on models, the definition of the general
encoding of HIC into first order logic is technically rather complex. There-
fore we omit it here (for the details the interested reader has to refer to [19])
and instead we present briefly its main idea. The basis of the construction of
the comorphism HIC → FOLth (where FOL is the institution of first order
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logic in its many sorted form) is a given encoding from the base institution to
FOL, i.e. a comorphism I → FOLth. This is considered abstractly, so it may
vary, and in this way it constitutes the main parameter of this construction. In
practice these comorphisms may be well established translations. Then under
some technical conditions—mainly about quantifiers and model constraints—
that are commonly satisfied in the applications, the comorphism I → FOLth

is “lifted” to a comorphism HIC → FOLth.

2.6.1. How Hver Works in Principle. Suppose that we have a specification
in Hspec, which corresponds to a theory (Δ, E) in some HIC . Suppose that
we have a property e that we have to check; this means that we have to prove
that E |=Σ e (which means that any model of E also satisfies e). In order to
establish E |= e we have to perform the following steps:

1. We translate E and e by using the comorphism HIC → FOLth; this
yields Ẽ and ẽ in FOL. Usually Ẽ includes both the syntactic translation
α(E) of E and the sentences of the theory Φ(Δ). Obviously in the case
of ẽ it is not necessary to include the latter sentences, so ẽ = α(e).

2. If we had a theorem prover for FOL then this step would not be necessary.
But unfortunately, at least up to my knowledge, all major first order logic
theorem provers work with the unsorted version of first order logic. So
we translate again both Ẽ and ẽ along a well known comorphism that
encodes many sorted first order logic into unsorted first order logic (the
details of this comorphism may be found for example in [11]). We thus
arrive at Ē and ē.

3. Now we employ a first order theorem prover and attempt to prove that
Ē |= ē.

4. If we are successful with the previous task then we may conclude that
E |= e. However this move backwards is not straightforward. It holds as
a consequence of an important property of comorphisms, namely that of
conservativity :

An institution comorphism (Φ, α, β) : I → I ′ is conservative when
for each Σ-model M in I, there exists a Φ(Σ)-model
M in I such that M = βΣ(M).

In [19] we have shown that under some technical conditions that are usu-
ally satisfied in the applications, the conservativity of the comorphism
HIC → FOLth is inherited from the conservativity of the base comor-
phism I → FOLth. In order to complete the argument we still need that
the encoding of FOL to unsorted first order logic is conservative, which
indeed is.

In practice all the translations and the proofs are performed automatically
using tools. We will see more about this later on.
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3. The Current H Implementation

3.1. ForVer and Hets

In the year 2017 the author of this paper won funding for the project proposal
Formal Verification of Reconfigurable Systems (acronym: ForVer) under a new
funding scheme of a Romanian government agency for funding of research that
was dedicated to experimental-demonstrative projects. That competition was
highly competitive, with a succes rate of about 5%, and the reviewers of the
project proposals were selected from the international scientific community.
The goal of ForVer was to realise the long term vision of H and of the science
behind it as a running prototype. Then the project hired Mihai Codescu for
programming the prototype.2

The basic plan for this implementation of H was to rely on Hets [28].
Hets is a tool for heterogeneous multi-logic specification and modeling of soft-
ware systems and ontology development. In both these fields, there are a large
number of logics and languages in use, each better suited for a different task or
providing a better support for a different aspect of a complex system. Instead
of trying to integrate the features of all these logics into a single formalism,
the paradigm of heterogenous multi-logic specification is to integrate all logics
by the means of a so-called Grothendieck construction over a graph of logics
and their translations (captured as institutions and institution comorphisms,
respectively). Thus, for each logic we can make use of its dedicated syntax(es)
and proof tools. The specifier has the freedom to choose the logic that suits
best the problem to be solved, offers best tool support and according to the
degree of familiarity with a certain specification language. Hets provides an
implementation of this paradigm. Because of the multi-logic feature of H and
also because of Hver is based logic encodings (translations), Hets appeared as
suitable for a smooth implementation of a first prototype for H.

3.1.1. Grothendieck Institutions. As mentioned above the foundation of Hets
are the so-called Grothendieck institutions, which represents the ultimate the-
oretical answer to the problem of heterogeneous multi-logic specification. In-
stead of presenting the rather intricate technicalities of this concept let us
review how it was developed. This theory has been initially developed gradu-
ally within the context of the CafeOBJ [17], which was the first heterogeneous
specification language. A first attempt to address this heterogeneity institu-
tion theoretically was in [9]. Then the late Professor Martin Hofmann, while
writing a review for this publication, suggested a construction on institutions
similar to the famous construction by Alexandre Grothendieck on categories
[23] originating from algebraic geometry. In the year 2000 this suggestion was
realised in [10], but that was based on the original concept of homomorphism
of institutions, the institution morphisms of [21], which is somehow dual to
the concept of institution comorphisms that was discussed above. A few years

2“Programming” here is meant is a broader sense that includes the design of the architecture
of the implementation and the writing of the code.
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later it was realised [30] that some crucial proporties of Grothendieck institu-
tions may be obtained more smoothly by the same construction but based on
institution comorphisms rather than institution morphisms. The Hets system
is based on the later version of Grothendieck institutions.

3.2. The Hets Implementation of H

Note that this is an open implementation that supports further enhancements.
Here we only review very briefly its main components, the details of the im-
plementation being outside the scope of the paper. For the interested readers,
a more detailed description of this implementation may be found in [8].

1. Syntactic support for the declarations of the parameters of the hybridis-
ation process. The considered parameters of the hybridisation are:

• The base institution. This is specified by using its internal Hets
name, based on a Hets qualification mechanism it is possible to
select also a sub-institution of an institution already implemented
in Hets.

• The quantifier symbols. These may be nominal symbols or classes
of symbols that are specific to the quantifications in the base insti-
tutions (such as constants, rigid constants, total constants).

• The constraints on the Kripke models. These are specified through
a fixed grammar that cover two different kinds of constraints: on
the Kripke frames and on the interpretations of symbols in the local
models.

2. Generic method for generating new instances of the Hets class Logic.
3. Support for structured specifications. The core specification structuring

operators of Hspec consist of unions and specification translations alongs
signature morphisms (which are symbols renaming). Other structuring
mechanisms, such as imports for example, are derived on the basis of
these. These are supported on the basis of a correspondence between the
structured Hspec specifications and DOL [31], the structuring language
supported in Hets.

4. Support for Hver. There is a special declarative syntax for this that takes
as parameters the base theoroidal comorphism (from the base institution
I to FOL) and the name of the respective hybridised logic HIC and
a generic method analyses these definitions and generates corresponding
Haskell code. The compilation of this code makes the new encoding avail-
able for the verification process, where the translation Ē |= ē of a goal
E |= e is passed to one of the first order logic theorem provers of choice,
such as SPASS [42], Vampire [34], E [36].

4. H at Work

A number of succesful case studies with H have been already reported. In this
section we present very briefly a couple of them.
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4.1. A Steam Boiler Control

The problem of this case study is a very notorious benchmark in formal meth-
ods [1]. The case study with H, developed by Mihai Codescu and Ionutţ Ţuţu,
has been reported only in the ForVer project documents. The H code is avail-
able at https://ontohub.org/forver/Sbcs.dol.

The H specification of the boiler control system illustrates almost all
of features of H. The base institution I is many-sorted first order logic, the
hybridised institution HIC has quantifications over nominals and rigid con-
stants, and the constraints are given by the sharing of the domains and of the
interpretations of rigid symbols.

The properties that have been verified include changes of modes when an
event takes place and that in all states of the system the expected functionality
takes place. In the H formalisation, the system has five modes (nominals) and
nine events (modalities).

4.2. A Bike-Sharing System Design

This case study has been reported in [40] and the H code is available at
https://ontohub.org/forver/BSS.dol.

It is based on a double hybridisation (hybridisation iterated twice) the
base level for the first level hybridisation being the (atomic fragment) of propo-
sitional logic.

• The first level hybridisation has quantifications over nominals and one
constraint, namely that the interpretation of one of the modalities (‘par-
ent’) is a forest (a set of disjoint trees).

• The second level of hybridisation admits quantifications over first level
nominals (called “actors”) as well as quantifications over second level
nominals (called “configurations”). There is a sharing constraint: the first
level Kripke models in a second level Kripke model share the same un-
derlying set of “actors”.

Since at the verification stage this modelling leads to some timeout problems
(due to a huge number of sentences obtained by the encoding in FOL), the
first level of the hybridisation has been encoded in an institution of relations.

The first order theorem prover employed by this case study is SPASS.

5. H in the Future

There are several directions that we see with respect to the future evolution
of H.

• When conditions allow there should be a new implementation of H that is
independent of Hets. The reasons for this are manifold. For example Hets
is a rather big system and H relates only to a small part of Hets. Such
big systems are prone to errors that may easily affect the functionality of
H. Moreover H maintainers have little control on the evolution of Hets.

https://ontohub.org/forver/Sbcs.dol
https://ontohub.org/forver/BSS.dol
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• Hver should be enhanced with more tools and methods. For example a
direct tool based on proof systems at the level of hybridised institutions
(so not by translation) would be an welcome enhancement of Hver.

• Adding new base institutions and constraints to the current Hets imple-
mentation of H.

• Some slight upgrades of the foundations may be necessary in order to
accomodate certain specification methodologies. For instance, we have
already discussed the issue of rigidity declarations at the level of the
base institutions which may be solved by considering ‘projection’ functors
from the categories of the signatures of the hybridised institutions to the
categories of the signatures of the base institution.

• More larger case studies should be developed with the aim to finally have
H as an industrial tool.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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