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Abstract. In this work, we propose a meaningful extension of descrip-
tion logics for non-monotonic reasoning. We introduce ALCH•, a logic
allowing for the representation of and reasoning about both typical class-
membership and typical instances of a relation. We propose a preferential
semantics for ALCH• in terms of partially-ordered DL interpretations
which intuitively captures the notions of typicality we are interested in.
We define a tableau-based algorithm for checking ALCH• knowledge-
base consistency that always terminates and we show that it is sound
and complete w.r.t. our preferential semantics. The general framework
we here propose can serve as the foundation for further exploration of
non-monotonic reasoning in description logics and similarly structured
logics.
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1. Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representa-
tion formalisms with useful computational properties and a variety of appli-
cations in artificial intelligence and in databases. In particular, DLs are well-
suited for representing and reasoning about terminological knowledge and con-
stitute the formal foundations of semantic-web ontologies. Technically, DLs
correspond to decidable fragments of first-order logic and are closely related
to modal logics [47].

This work was the recipient of the first Louis Couturat Logic Prize (France, 2018). It was
then presented at the Universal Logic Contest at UNILOG 2018 in Vichy and subsequently
won the first Universal Logic Prize.
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Notwithstanding their good trade-off between expressive power and com-
putational complexity, DLs remain fundamentally classical formalisms and
therefore are not suitable for modelling and reasoning about aspects that
are ubiquitous in human quotidian reasoning. Examples of these are excep-
tions to general rules, incomplete knowledge, and many others, characteris-
ing the type of reasoning usually known under the broad term defeasible rea-
soning. In this regard, endowing DLs and their associated reasoning services
with the ability to cope with defeasibility is a natural step in their develop-
ment. Indeed, the past 25 years have witnessed many attempts to introduce
defeasible-reasoning capabilities in a DL setting, usually drawing on a well-
established body of research on non-monotonic reasoning (NMR). These com-
prise the so-called preferential approaches [16–18,25–27,29,30,33,34,45,46],
circumscription-based ones [8,9,48], possibilistic approaches [5,44], amongst
others [2,3,7,28,35–37,43,50].

Of particular interest in a non-monotonic context is the ability to express
and reason about a notion of typicality (or normality, or expectations). And,
as already argued in the propositional case [13], being able to do so explicitly
in the language brings in many advantages from the standpoint of knowl-
edge representation. In a DL setting, this need is mainly felt when checking
whether a given individual is a typical instance of a class or whether a pair of
individuals is a typical instance of a given relationship, or some combination
involving both. As an example, consider the following scenario, adapted from
Giordano et al.’s [29]: Typical students do not pay taxes; employed students
typically do; to work for a company typically implies being employed by the
company, and John and IBM are in a typical work contract.

It turns out that this issue has only partially been addressed in the lit-
erature in that explicit notions of typicality for concepts have been intro-
duced [7,29], but of which the use in logical statements has to adhere to
certain syntactic constraints. To the best of our knowledge, a framework for
full-fledged typicality in concepts and, important, also in roles has not been
developed before. This is precisely the problem that the present paper aims at
solving.

The remainder of the paper is organised as follows: in Sect. 2 we provide
the required background on the underlying classical DL we consider in this
work and we fix the notation and terminology we shall follow. In Sect. 3 we
introduce ALCH•, a defeasible DL for reasoning about typicality in class- and
relation-membership, and we show some of its properties. Section 4 is devoted
to the definition of a terminating tableau-based proof procedure for checking
satisfiability of ALCH• knowledge bases. In particular, we show correctness
of our tableau algorithm w.r.t. a notion of preferential satisfiability. Finally,
after a discussion of, and comparison with, related work (Sect. 5), we con-
clude with a summary of our contributions and some directions for further
investigation.
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2. Logical Preliminaries

In this work, we take as point of departure the underlying language of the
description logic ALCH, which is the DL ALC extended with atomic-role hier-
archies.1

The (concept) language of ALCH is built upon a finite set of atomic con-
cept names C, a finite set of role names R and a finite set of individual names I
such that C, R and I are pairwise disjoint. In our scenario example, we can
have for instance C = {Employee,Company,Student, EmpStud,Parent,Tax},
R = {pays, empBy,worksFor}, and I = {john, ibm,mary}, with the respective
obvious intuitions. With A,B, . . . we denote atomic concepts, with r, s, . . .
role names, and with a, b, . . . individual names. Complex concepts are denoted
with C,D, . . . and are built using the constructors ¬ (complement), � (concept
conjunction), � (concept disjunction), ∀ (value restriction) and ∃ (existential
restriction) according to the following grammar rules:

C ::= � | ⊥ | C | (¬C) | (C � C) | (C � C) | ∀r.C | ∃r.C

With L we denote the language of all ALCH concepts, which is under-
stood as the smallest set of symbol sequences generated according to the rules
above. When writing down concepts of L, we shall follow the usual conven-
tion and omit parentheses whenever they are not essential for disambiguation.
Examples of ALCH concepts are Student � Employee and ¬∃pays.Tax.

The semantics of ALCH is the standard set-theoretic Tarskian seman-
tics. An interpretation is a structure I := 〈ΔI , ·I〉, where ΔI is a non-empty
set called the domain, and ·I is an interpretation function mapping concept
names A to subsets AI of ΔI , role names r to binary relations rI over ΔI , and
individual names a to elements of the domain ΔI , i.e., AI ⊆ ΔI , rI ⊆ ΔI×ΔI ,
and aI ∈ ΔI .

Figure 1 depicts an interpretation for our scenario example where ΔI =
{xi | 0 ≤ i ≤ 10}, EmployeeI = {x1, x2, x5, x9}, CompanyI = {x6, x10},
StudentI = {x1, x5, x7, x8}, EmpStudI = {x1, x5}, ParentI = {x1, x2, x3},
TaxI = {x4}, paysI = {(x1, x0), (x5, x4)}, empByI = {(x9, x10)}, worksForI =
{(x5, x6), (x9, x10)}, johnI = x5, ibmI = x6, maryI = x2.

Let I = 〈ΔI , ·I〉 be an interpretation and define rI(x) := {y | (x, y) ∈
rI}, for r ∈ R. We extend the interpretation function ·I to interpret complex
concepts of L as follows:

�I := ΔI , ⊥I := ∅, (¬C)I := ΔI \ CI

(C � D)I := CI ∩ DI , (C � D)I := CI ∪ DI

(∀r.C)I := {x ∈ ΔI | rI(x) ⊆ CI}, (∃r.C)I := {x ∈ ΔI | rI(x) ∩ CI �= ∅}

For the interpretation I in Fig. 1, we have (Parent�Employee)I = {x1, x2}
and (∃pays.Tax)I = {x5}.

1 For the reader conversant with modal logics, roughly, ALCH corresponds to multi-modal
logic K [6] allowing for modalities to be dependently axiomatised.
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Figure 1. A DL interpretation

Given C,D ∈ L, C � D is called a subsumption statement, or general
concept inclusion (GCI), read “C is subsumed by D”. A concrete example of
GCI is EmpStud � Student � Employee. C ≡ D is an abbreviation for both
C � D and D � C. An ALCH TBox T is a finite set of GCIs. Given r, s ∈ R,
a statement of the form r � s is a role inclusion axiom (RIA). An example of
RIA is worksFor � empBy. An ALCH RBox R is a finite set of RIAs. Given
C ∈ L, r ∈ R and a, b ∈ I, an assertional statement (assertion, for short)
is an expression of the form a : C or (a, b) : r. Examples of assertions are
john : EmpStud and (john, ibm) : worksFor. An ALCH ABox A is a finite set of
assertions. We shall denote statements with α, β, . . .. Given T , R and A, with
KB := T ∪R∪A we denote an ALCH knowledge base, a.k.a. an ontology. The
following is an example of a knowledge base:

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

EmpStud � Student � Employee,

Student � ¬∃pays.Tax,
EmpStud � ∃pays.Tax,

EmpStud � Parent � ¬∃pays.Tax,
Employee � ∃worksFor.Company

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

R = {worksFor � empBy}
A = {john : EmpStud, john : Parent, (john, ibm) : worksFor}

An interpretation I satisfies a GCI C � D (denoted I � C � D) if
CI ⊆ DI . (And then I � C ≡ D if CI = DI .) I satisfies a RIA r � s
(denoted I � r � s) if rI ⊆ sI . An interpretation I satisfies an assertion
a : C (respectively, (a, b) : r), denoted I � a : C (respectively, I � (a, b) : r),
if aI ∈ CI (respectively, (aI , bI) ∈ rI).

In the interpretation I in Fig. 1, we have I � EmpStud � Student �
Employee, I �� worksFor � empBy, I � john : ∃pays.Tax and I �� (john, ibm) :
empBy.
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We say that an interpretation I is a model of a TBox T (respectively,
of an RBox R and of an ABox A), denoted I � T (respectively, I � R and
I � A) if I � α for every α in T (respectively, in R and in A). We say that I
is a model of a knowledge base KB = T ∪R∪A if I � T , I � R and I � A. A
statement α is (classically) entailed by a knowledge base KB, denoted KB |= α,
if every model of KB satisfies α.2 If KB = ∅, then we have that I � α for all
interpretations I, in which case we say α is a validity and denote with |= α.

For more details on Description Logics, the reader is invited to consult
the Description Logic handbook [1].

3. The Defeasible Description Logic ALCH•

It is not hard to see that the knowledge base example above has no model, i.e.,
it is inconsistent. Indeed, from EmpStud � Student � Employee and Student �
¬∃pays.Tax we can conclude EmpStud � ¬∃pays.Tax. But the knowledge base
explicitly contains EmpStud � ∃pays.Tax, and therefore it entails EmpStud �
⊥, i.e., EmpStudI = ∅ in every interpretation I satisfying the knowledge base.
But since it also contains the statement john : EmpStud, forcing the existence
of at least one element in EmpStudI for every I, there can be no I satisfying
the knowledge base. One of the reasons for this is the inability of ALCH
to distinguish between what is typically (or usually) the case from what is
always the case: we want to specify that students typically do not pay taxes,
whereas employed students typically do. This is essentially the motivation for
the remainder of the paper.

We start by enriching the description logic ALCH with a typicality oper-
ator •, applicable to both concepts and roles, and of which the intuition is to
capture the most typical instances of a class or a relation.

Let C, R and I, as well as the way we denote their respective elements,
be as before. The complex roles of ALCH• are denoted with R,S, . . . and are
defined by the rule:

R ::= R | •R
Complex ALCH• concepts are denoted with C,D, . . . and are built according
to the rules:

C ::= � | ⊥ | C | (¬C) | (•C) | (C � C) | (C � C) | (∀R.C) | (∃R.C)

With L• we denote the language of all ALCH• concepts (including the •-
less ALCH concepts from Sect. 2), which is understood as the smallest set of
symbol sequences generated according to the rules above. When writing down
elements of L•, we shall omit parentheses whenever they are not essential for
disambiguation. Examples of ALCH• concepts are •Student� ¬∃pays.Tax and
∃•worksFor.Company.

The semantics of ALCH• is in terms of DL interpretations enriched with
two partial orders, one on objects and one on pairs of objects:

2 Hence, DL entailment corresponds to global consequence in modal logics [6].
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Figure 2. A bi-ordered interpretation

Definition 1 (Bi-ordered interpretation). An ALCH• bi-ordered interpretation
is a tuple B := 〈ΔB, ·B, <B,�B〉 such that:

– 〈ΔB, ·B〉 is an ALCH interpretation, with AB ⊆ ΔB, for each A ∈ C,
rB ⊆ ΔB × ΔB, for each r ∈ R, and aB ∈ ΔB, for each a ∈ I;

– <B ⊆ ΔB × ΔB;
– �B ⊆ (ΔB × ΔB) × (ΔB × ΔB), and
– Both <B and �B are well-founded strict partial orders.

Given B = 〈ΔB, ·B, <B,�B〉, the intuition of ΔB and ·B is the same as in a
standard DL interpretation. The intuition underlying the orderings <B and �B

is that they play the role of preference relations (or normality orderings),
in a sense similar to that introduced by Shoham [49] with a preference on
worlds in a propositional setting and as investigated by Kraus et al. [38,39]
and others [14,16,29]: the objects (respectively, pairs) x (respectively, (x, y))
that are lower down in the ordering <B (respectively, �B) are deemed as
the most normal (or typical, or expected, or conventional, depending on the
application one is modeling) in the context of a concept (respectively, role)
interpretation.

Figure 2 depicts a bi-ordered interpretation in our scenario example
where ΔB and ·B are as in the interpretation I shown in Fig. 1, and <B=
{(x7, x5), (x8, x5), (x9, x5), (x5, x1), (x7, x1), (x8, x1), (x9, x1), (x9, x2), (x10, x6)}
(represented by the dotted arrows in the picture) and �B={((x5, x4), (x1, x0)),
((x9, x10), (x5, x6))} (depicted in dashed arrows).

Definition 2 (Semantics of L•). A bi-ordered interpretation B = 〈ΔB, ·B, <B,
�B〉 interprets the classical constructors in the usual way, i.e., �B := ΔB,
⊥B := ∅, (¬C)B := ΔB \ CB, (C � D)B := CB ∩ DB, (C � D)B := CB ∪ DB,
(∀R.C)B := {x | RB(x) ⊆ CB} and (∃R.C)B := {x | RB(x) ∩ CB �= ∅}.
Typicality-based concepts and roles are interpreted as follows:

– (•C)B := min<B CB

– (•R)B := min�B RB
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Hence, under our semantics, to be a typical representative of a class
(respectively, relationship) amounts to being amongst the most preferred ele-
ments in that class (respectively, relation).

Given the bi-ordered interpretation B in Fig. 2, we have for example
(•Student)B = {x7, x8}, (•EmpStud)B = {x5}, (•(EmpStud�Parent))B = {x1},
and (•worksFor)B = {(x9, x10)}.

The definitions of GCIs, RIAs, TBox, RBox, ABox and knowledge bases
are extended to ALCH• in the expected way: given C,D ∈ L•, C � D is
a GCI; an ALCH• TBox T is a finite set of GCIs; given (possibly complex)
roles R and S, R � S is a RIA; an ALCH• RBox R is a finite set of RIAs; given
C ∈ L•, R a role and a, b ∈ I, a : C and (a, b) : R are assertions; moreover,
from now on we shall also allow for assertions of the form (a, b) : ¬R. An
ALCH• ABox A is a finite set of assertions. Again, statements are denoted
by α, β, . . .. With KB = T ∪ R ∪ A we denote an ALCH• knowledge base, of
which the following is an example:

T =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

EmpStud � Student � Employee,

•Student � ¬∃pays.Tax,
•EmpStud � ∃pays.Tax � ¬•Employee,

EmpStud � •Parent � ¬∃pays.Tax,
•Employee � ∃•worksFor.Company

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

R = {•worksFor � empBy}

A =

{
john : •EmpStud, mary : Parent � Employee,

ibm : Company, (john, ibm) : ¬•worksFor

}

Definition 3 (Satisfaction). Let B = 〈ΔB, ·B, <B,�B〉, C,D ∈ L•, R a role,
and a, b ∈ I. The satisfaction relation � is defined as follows:

– B � C � D if CB ⊆ DB;
– B � R � S if RB ⊆ SB;
– B � a : C if aB ∈ CB;
– B � (a, b) : R if (aB, bB) ∈ RB;
– B � (a, b) : ¬R if (aB, bB) /∈ RB.

If B � α, then we say B satisfies α. B satisfies an ALCH• knowledge base KB,
written B � KB, if B � α for every α ∈ KB, in which case we say B is a model
of KB. We say C ∈ L• is satisfiable w.r.t. KB if there is a model B of KB s.t.
CB �= ∅.

It can easily be verified that the bi-ordered interpretation B in Fig. 2
satisfies the ALCH• knowledge base KB above.

Given a bi-ordered interpretation B, it is worth observing that:

B � a : •C iff B � b : ¬C for all b s.t. bB <B aB (1)

B � (a, b) : •R iff B � (c, d) : ¬R for all (c, d) s.t. (cB, dB) �B (aB, bB)
(2)
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It is easy to see that the addition of the orderings preserves the truth of
all classical (i.e., •-less) statements holding in the remaining structure:

Lemma 1. Let B = 〈ΔB, ·B, <B,�B〉, and define IB := 〈ΔB, ·B〉. For every
C,D ∈ L, every r, s ∈ R and every a, b ∈ I:

– B � C � D iff IB � C � D;
– B � r � s iff IB � r � s;
– B � a : C iff IB � a : C;
– B � (a, b) : r iff IB � (a, b) : r.

Furthermore, it is not hard to check that our typicality operators are
idempotent :

Lemma 2. Let B = 〈ΔB, ·B, <B,�B〉. For every C ∈ L• and every role R:
– B � ••C ≡ •C;
– B � ••R ≡ •R.

One of the consequences of Lemma 2 is that we can assume w.l.o.g. that
typicality for roles does not occur nested in the knowledge base, a hypothe-
sis that will turn out useful in Sect. 4. (In principle, we can make the same
assumption about concepts, but, besides being unnecessary here, its argument
is more intricate [13] and requires the addition of new concept names to the
signature.)

Proposition 1. Let B be a bi-ordered interpretation and let C,D ∈ L•. Then
1. B � •(•C � •D) ≡ •C � •D;
2. B � •C � •D � •(C � D);
3. If B �� •C � •D � ⊥, then B � •(C � D) � •C � •D.

Proof. (1) The left-to-right inclusion follows from RefT below (cf. Proposi-
tion 5). For the right-to-left one, let x ∈ (•C � •D)B. Then x ∈ (•C)B and
x ∈ (•D)B, i.e., x ∈ min<B CB and x ∈ min<B DB. Assume x /∈ (•(•C�•D))B.
In this case, there is y ∈ (•C � •D)B s.t. y <B x. Then we have y ∈ CB and
y ∈ DB, and since y <B x, we get a contradiction.
(2) Let x ∈ (•C � •D)B. Then x ∈ (•C)B and x ∈ (•D)B, i.e., x ∈ min<B CB

and x ∈ min<B DB. Assume x /∈ (•(C �D))B. Therefore there is y ∈ (C �D)B

s.t. y <B x, and this leads to a contradiction.
(3) Let x ∈ (•(C�D))B, i.e., x ∈ min<B(C�D)B, and assume either x /∈ (•C)B

or x /∈ (•D)B. If x /∈ (•C)B, then, since <B is well-founded, we know there is
y ∈ min<B CB s.t. y <B x. We claim y /∈ (•D)B; for if it were the case, then
we would get y ∈ (C � D)B and y <B x, leading us to a contradiction. Hence
(•C)B ∩ (•D)B = ∅, and therefore B � •C � •D � ⊥. If x /∈ (•D)B, we reach
the same conclusion through an analogous argument. �

Obviously, the concepts ¬•C and •¬C do not mean the same, at least
not in general. As a result, in the concept ¬•A, negation cannot be pushed
further inwards. This has as consequence that there can be no negated normal
form (NNF) in the usual sense for L•.

As expected, typicality operators are non-monotonic:
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Proposition 2. Let C,D ∈ L• and R,S be roles. It is not the case that, for
every bi-ordered interpretation B:

– If B � C � D, then B � •C � •D, and
– If B � R � S, then B � •R � •S.

Proof. Let C = {A1, A2} and R = {r1, r2}, and let B = 〈ΔB, ·B, <B,�B〉, with
ΔB = {x1, x2, x3}, AB

1 = {x1}, AB
2 = ΔB, rB

1 = {(x1, x2)}, rB
2 = {(x2, x3)},

<B= {(x3, x1)} and �B= {((x2, x3), (x1, x2))}. Then B � A1 � A2 and B �
r1 � r2, but B �� •A1 � •A2 and B �� •r1 � •r2 �

On the other hand, non-typicality, formalised as the composite operator
¬•, turns out to be monotonic:

Proposition 3. Let B be a bi-ordered interpretation and let C,D ∈ L•. If B �
C � D, then B � ¬•C � ¬•D.

Proof. Assume B � C � D and let x ∈ (¬•C)B. Then, x /∈ (•C)B, and then
there must be y s.t. y ∈ CB and y <B x. Now assume x ∈ (•D)B. This
and y <B x imply y /∈ DB, which contradicts the assumption B � C � D.
Hence x /∈ (•D)B, and therefore x ∈ (¬•D)B. Since x is arbitrary, we have
B � ¬•C � ¬•D. �

The following is an immediate consequence of our semantic definitions:

Proposition 4. For every B, C and R:

– If there is D s.t. B � C � •D, then B � C � •C;
– If there is S s.t. B � R � •S, then B � R � •R.

Another consequence of our preferential semantics, but also of the fact
we assume a semantic framework as general as possible, is the fact that, as
can easily be verified, there are bi-ordered interpretations B such that:

– B � •C � D but neither B � •∃R.C � ∃R.D nor B � ∃•R.C � ∃R.D;
– B � •R � S but B �� •∃R.C � ∃S.D;
– Either B �� •∃R.C � ∃•R.C or B �� ∃•R.C � •∃R.C, or both.

Since they are elementary non-monotonic operators, our typicality oper-
ators can be used to define further non-monotonic constructs. An interesting
example is the notion of defeasible subsumption of the forms C �∼D [16,18,26],
for C,D ∈ L•, and R �∼ S [19,21], for R,S roles, and that we can see as abbre-
viations for, respectively, the L•-GCI •C � D and the L•-RIA •R � S. (Note
that both versions of �∼ are defined for full ALCH• and that • may also
occur on the RHS of such statements.) That this characterisation of defeasible
subsumption is appropriate from the NMR point of view is witnessed by the
following result:

Proposition 5. For every bi-ordered interpretation B, every C,D,E ∈ L•, and
every role R,S, T , the following properties hold:
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(RefT ) B � C �∼ C (RefR) B � R �∼ R

(LLE)
B � C ≡ D, B � C �∼ E

B � D �∼ E
(And)

B � C �∼ D, B � C �∼ E

B � C �∼ D � E

(Or)
B � C �∼ E, B � D �∼ E

B � C � D �∼ E
(RWT )

B � C �∼ D, B � D � E

B � C �∼ E

(RWR)
B � R �∼ S, B � S � T

B � R �∼ T
(CM)

B � C �∼ D, B � C �∼ E

B � C � D �∼ E

Proof. (RefT ): Let x ∈ ΔB be such that x ∈ min<B CB. Then clearly x ∈ CB

and therefore B � C �∼ C.
(RefR): Analogous to (RefT ) above.
(LLE): Assume that B � C �∼E and B � C ≡ D. Then min<B CB ⊆ EB. Since
B � C ≡ D, we have CB = DB, and therefore min<B CB = min<B DB. Hence
min<B DB ⊆ EB, and therefore B � D �∼ E.
(And): Assume we have both B � C �∼D and B � C �∼E, i.e., min<B CB ⊆ DB

and min<B CB ⊆ EB, and then min<B CB ⊆ DB ∩ EB, from which follows
min<B CB ⊆ (D � E)B. Hence B � C �∼ D � E.
(Or): Assume we have both B � C�∼E and B � D�∼E. Let x ∈ min<B(C�D)B.
Then x is minimal in CB ∪ DB, and therefore either x ∈ min<B CB or x ∈
min<B DB. In either case x ∈ EB. Hence B � C � D �∼ E.
(RWT ): Assume we have both B � C�∼D and B � D � E, i.e., min<B CB ⊆ DB

and DB ⊆ EB. Hence min<B CB ⊆ EB and therefore B � C �∼ E.
(RWR): Analogous to (RWT ) above.
(CM): Assume we have both B � C�∼D and B � C�∼E. Then min<B CB ⊆ DB

and min<B CB ⊆ EB. Let x ∈ min<B(C � D)B. We show that x ∈ min<B CB.
Suppose this is not the case. Since <B is well-founded, there must be x′ ∈
min<B CB s.t. x′ <B x. Because B � C �∼ D, x′ ∈ DB, and then x′ ∈ CB ∩ DB,
i.e., x′ ∈ (C � D)B. From this and x′ <B x it follows that x is not minimal
in (C � D)B, which is a contradiction. Hence x ∈ min<B CB. From this and
min<B CB ⊆ EB, it follows that x ∈ EB. Hence B � C � D �∼ E. �

That is, defining �∼ for both concepts and roles in terms of •, thereby giv-
ing it a semantics in terms of our bi-ordered interpretations, delivers a notion
of defeasible subsumption satisfying the (ALCH• versions of the) KLM prop-
erties for preferential consequence relations [38]. These properties are usually
seen as formalising the minimal requirements that any appropriate notion of
defeasible consequence (of which �∼ is an instance) is supposed to satisfy. They
have been discussed at length in the literature on non-monotonic reasoning for
both the propositional and the DL cases [16,18,31,32,38,39] and therefore we
shall not repeat so here.

Let KB be an ALCH• knowledge base and α a statement. We say KB
entails α, denoted KB |= α, if B � α for every B such that B � KB. In the
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case KB = ∅, we say α is preferentially valid and denote it as |= α. Assuming
the example ALCH• knowledge base above we have KB |= john : ¬∃pays.Tax.

The following result will come in handy in the definition of a tableau
system in Sect. 4, as it shows that all reasoning problems for ALCH• can be
reduced to knowledge base satisfiability. Its proof is analogous to that of its
classical counterpart in the DL literature and we shall omit it here:

Lemma 3. Let KB be an ALCH• knowledge base and let a be an individual
name not occurring in KB. For every C,D ∈ L•, KB |= C � D iff KB |=
C�¬D � ⊥ iff KB∪{a : C�¬D} |= ⊥. Moreover, for every b, c ∈ I, KB |= b : C
iff KB ∪ {b : ¬C} |= ⊥, and KB |= (b, c) : R iff KB ∪ {(b, c) : ¬R} |= ⊥.

4. Tableaux for Preferential Reasoning in ALCH•

In this section, we define a tableau-based algorithm for deciding consistency
of an ALCH• knowledge base. Our main purpose is to show the existence of
a proof procedure for ALCH• that is sound and complete w.r.t. our preferen-
tial semantics and therefore we shall not concern ourselves with optimisation
matters. (Our terminology and presentation follow those by Baader et al. [4]
in the classical case.)

We start by observing that, for every bi-ordered interpretation B and
every C,D ∈ L•, B � C � D if and only if B � � � ¬C � D. In that respect,
we can assume w.l.o.g. that all GCIs in a TBox are of the form � � E, for
some E ∈ L•. As we shall see, this assumption will simplify matters when
handling the information in a TBox in the tableau rules.

Note also that we can assume w.l.o.g. that the ABox is not empty, for if
it is, one can add to it the vacuous assertion a : �, for some new individual
name a. It is easy to see that the resulting (non-empty) ABox is preferentially
equivalent to the original one.

Next, we define a few notions that will be useful in the remainder of the
present section.

Definition 4 (Subconcepts). Let C ∈ L•. The set of subconcepts of C, denoted
sub(C) is inductively defined as follows:

– If C = A ∈ C ∪ {�,⊥}, then sub(C) = {A};
– If C = C1 � C2 or C = C1 � C2, then sub(C) = {C} ∪ sub(C1) ∪ sub(C2);
– If C = ¬D or C = •D or C = ∃r.D or C = ∀r.D, then sub(C) =

{C} ∪ sub(D).
Given a knowledge base KB = T ∪ R ∪ A, the set of subconcepts of KB is
defined as sub(KB) := sub(T ) ∪ sub(A), where

sub(T ) :=
⋃

C�D∈T
(sub(C) ∪ sub(D)), sub(A) :=

⋃

a:C∈A
sub(C)

Definition 5 (a-concepts). Let A be an ABox and let a be an individual
name appearing in A. With conA(a) := {C | a : C ∈ A} we denote the
set of concepts that a is an instance of w.r.t. A.
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Figure 3. Classical expansion rules for the ALCH• tableau

We are now ready for the definition of the expansion rules for ALCH•-
concepts. The classical expansion rules are shown in Fig. 3, whereas the rules
handling typicality-based constructs are shown in Fig. 4. (See below for the
details on what it means for an individual to be blocked, as tested by the ∃+-,
∀−-, and •−

C -rules.)
The rules in Fig. 3 are as in the classical case, except for the fact that

concepts and roles in the scope of classical operators may contain the typicality
operator •.

In the ALCH• expansion rules we make use of two additional structures,
namely < and � (see the rules in Fig. 4). Their respective purpose is to
build the skeleton of a preference relation on individual names and on pairs of
individuals appearing in the ABox. In the unravelling of the complete clash-free
ABox (see below), if there is any, < and � are used to define the preference
relations in the constructed bi-ordered interpretation (see proof of Lemma 5 in
“Appendix A”). We shall use b < . . . < a (respectively, (c, d) � . . . � (a, b))
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Figure 4. •-based expansion rules for the ALCH• tableau

to denote the existence of a path from b to a (respectively, from (c, d) to (a, b))
in < (respectively, �).

Definition 6 (r-ancestor). Let A be an ABox, a, b ∈ I, and r ∈ R. If (a, b) :
r ∈ A, we say b is an r-successor of a and a is an r-predecessor of b. We call
r-ancestor (respectively, r-descendant) the transitive closure of r-predecessor
(respectively, r-successor).

Definition 7 (<-descendant). Let A be an ABox, a, b ∈ I, and < as above. If
(a, b) ∈ <, we say b is a <-successor of a and a is a <-predecessor of b. We call
<-descendant (respectively, <-ancestor) the transitive closure of <-successor
(respectively, <-predecessor).

An individual is called root if it has neither an r-ancestor nor a <-
descendant.

The following definition is used to ensure termination:

Definition 8 (Blocking). Let A be an ABox, a, b ∈ I, and < as above. We say
that a is blocked by b in A if (1) b is either an r-ancestor or a <-descendant
of a, and (2) conA(a) ⊆ conA(b). We say a is blocked in A if itself or some of
its r-ancestors or <-descendants is blocked by some individual name.

Rules •+C and •+r in Fig. 4 take care of positive typical instances of,
respectively, concepts and roles. First, they make sure that typical instances
of concepts and roles are indeed instances thereof. Second, they ensure Prop-
erties (1) and (2) above (cf. paragraph following Definition 3).

Rule •−
C handles non-typical instances of a concept. There are two possible

reasons for an object not to be a typical member of a class C: either it is not



310 I. Varzinczak Log. Univers.

in C, or it is, but there is another instance of C that is more preferred than
it. This is captured by the or-like branch in the rule. Moreover, we need to
check whether the node is not blocked to prevent the creation of an infinitely
descending chain of increasingly more preferred objects. (This is needed to
ensure termination of the algorithm and also that the preference relation on
objects created when unraveling an open tableau is well-founded—cf. proof of
Lemma 5 in “Appendix A”.)

Finally, the •−
r -rule handles the non-typical instantiations of roles and its

rationale is analogous to that of the •−
C -rule above.

Definition 9 (Complete and clash-free ABox). Let A be an ABox. We say A
contains a clash if there is a ∈ I and C ∈ L• such that {a : C, a : ¬C} ⊆ A
or there are a, b ∈ I and a role R such that {(a, b) : R, (a, b) : ¬R} ⊆ A. We
say A is clash-free if it does not contain a clash. A is complete if it contains a
clash or if none of the expansion rules in Figs. 3 and 4 is applicable to A.

Let ndexp(·) denote a function taking as input a clash-free ABox A, a
nondeterministic rule ρ from Figs. 3 and 4, and an assertion α ∈ A such that
ρ is applicable to α in A. In our case, the nondeterministic rules are the �+-,
�−- and •−

C -rules. The function returns a set ndexp(A, ρ, α) containing each of
the possible ABoxes resulting from the application of ρ to α in A.

The tableau-based procedure for checking consistency of an ALCH•

knowledge base KB = T ∪ R ∪ A is given in Algorithm 1 below. It uses
Function Expand to apply the rules in Figs. 3 and 4 to A w.r.t. T and R.

Algorithm 1: Consistent(KB)
Input: An ALCH• knowledge base KB = T ∪ R ∪ A

1 if Expand(KB) �= ∅ then
2 return “Consistent”

3 else
4 return “Inconsistent”

Lemma 4 (Termination). For every ALCH• knowledge base KB, Consistent(KB)
terminates.

The proof of Lemma 4 is very similar to that showing termination of the
classical ALC tableau for checking consistency of general knowledge bases [4,
Lemma 4.10] and we shall omit it here.
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Function Expand(KB)
Input: An ALCH• knowledge base KB = T ∪ R ∪ A

1 while A is not complete do
2 Select a rule ρ that is applicable to A;
3 if ρ is a nondeterministic rule then
4 Select an assertion α ∈ A to which ρ is applicable;
5 if there is A′ ∈ ndexp(A, ρ, α) with Expand(T ∪ R ∪ A′) �= ∅

then
6 return Expand(T ∪ R ∪ A′)

7 else
8 return ∅

9 else
10 Apply ρ to A

11 if A contains a clash then
12 return ∅
13 else
14 return 〈A, <,�〉

We can now state the main result of the present section.

Theorem 1. Algorithm 1 is sound and complete w.r.t. preferential consistency
of ALCH• knowledge bases.

Proof. The result follows from Lemmas 5 and 6 in “Appendix A”. �

Corollary 1. Our tableau-based algorithm is a decision procedure for satisfia-
bility of ALCH• knowledge bases.

For an example of application of our tableau method, let T = {•A �
∀•r.¬B}, R = {•r � s} and A = {a : •A, a : ¬•¬•B, b : •A � B, (a, b) :
•r, (a, b) : ¬•s}. The first step is the preprocessing of T with the replacement
of its GCI by � � ¬•A � ∀•r.¬B. Figure 5 depicts the (partial) expansion of
this knowledge base through the application of the tableau rules for ALCH•.
In Fig. 5, the understanding is that the ABox is cumulatively expanded down-
wards in the picture and different branches denote alternative ABox expan-
sions. Arrow labels indicate which tableau rule has been applied, and < and �
denote the preference relations constructed during the expansion. A × at the
end of a branch represents the detection of a clash along the upward path,
whereas vertical dots denote a branch still to be expanded.

5. Related Work

To the best of our knowledge, the first approach to an explicit notion of typi-
cality in DLs was the one by Giordano et al. [29]. They introduced a typicality
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Figure 5. Example of an ALCH• tableau expansion

operator T(·), applicable to concepts only, and for which they define a prefer-
ential semantics that is a special case of ours, in the sense that they place a
preference relation only on objects of the domain. In their setting, a concept of
the form T(C), understood as referring to the typical objects falling under C,
serves as a macro for the sentence C ��¬C in a description language extended
with a modality capturing the behaviour of a preference relation on objects.
Hence, the intuition of x ∈ (T(C))I = (C � �¬C)I is that x is an instance
of C and any other object that is more preferred than x falls under ¬C. (This
semantic characterisation can be shown to be analogous to the one we have
given here if preferences on pair of objects are not taken into account.) It is
worth pointing out, though, that in Giordano et al.’s framework, the typicality
operator T(·) is tacitly assumed to occur only in the left-hand side of GCIs
and not in the scope of other concept constructors. Not having such a syntactic
constraint is a feature of our approach that we have put forward in the present
work.

When it comes to reasoning about typicality, Giordano et al. have defined
a tableau calculus for their preferential extension of DLs [32]. There are many
similarities between their calculus and the one we presented here. Besides
having a simpler presentation, our calculus does not have to explicitly handle
an extra modality in the way Giordano et al.’s does, and is therefore more
elegant.
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More recently, Giordano et al. [34] have gone beyond preferential entail-
ment in that they have also explored a definition of non-monotonic entail-
ment for their description logic of typicality corresponding to the well-known
notion of rational closure as studied by Lehmann and Magidor [39] in the
propositional case. Semantically, and roughly, this amounts to a version of
a minimal-model semantics, in which some interpretations are preferred over
others. This is a promising extension of our work that we may consider. Nev-
ertheless, special care must be taken since Giordano et al.’s approach has a
circumscriptive [41,42] flavour to it (even if not completely) in that it relies
on the explicit specification by the knowledge engineer of a set of concepts for
which atypical instances must be minimised.

Booth et al. [12,13] investigated the addition of a typicality operator •
to propositional logic, of which the semantics is given in terms of KLM ranked
models [39]. The logic thus obtained is more expressive than that of KLM
conditional statements, allowing us to move beyond propositional defeasible
conditionals. Following up on that, Booth et al. [11] investigated two seman-
tic versions of entailment in the presence of •, constructed using two differ-
ent forms of minimality. Both are based on the notion of rational closure
defined by Lehmann and Magidor for KLM-style conditionals. It was shown
that (i) these notions of entailment can be viewed as generalised definitions of
rational closure; (ii) that they are equivalent w.r.t. the conditional language
originally proposed by Kraus et al., but (iii) they are different in the language
enriched with •. We may consider taking the approach by Booth et al. as a
springboard to investigate rationality and different forms of non-monotonic
entailment for ALCH•.

Britz et al. [15] have introduced the notion of defeasible role restrictions, a
variant of generalised quantifiers [40] and analogous to the notion of defeasible
modalities defined by Britz and Varzinczak [22,23] for modal logics. The idea is
to extend the concept language with an additional construct

∨∼, the defeasible
value restriction. The semantics of

∨∼r.C is then given by all objects of the
domain such that all of their minimal r-related objects are C-instances. This
is useful in situations where certain classical concept descriptions may be too
strong.

Recently, Britz and Varzinczak have lifted the preferential semantics to
also allow for orderings on role-interpretations [19,21], as we have done here,
and multi-orderings on objects of the domain [20,24]. The latter give us the
handle needed to introduce a notion of context in defeasible subsumption rela-
tions making typicality a relativised construct. The former provides a seman-
tics for defeasible role inclusions of the form r �∼ s and for defeasible role
assertions such as “r is usually transitive”, “r and s are usually disjoint”, as
well as others.

Another recent proposal is the approach by Bonatti et al. [7,10], which
introduces a normality operator N(·) on concepts only but that can also be
used in the scope of other operators, as in the statement N(C) � N(D) �
∃r.N(E). The resulting system, DLN , is not based on the preferential
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approach, though, and as a consequence their closure operation does not allow
defeasible subsumption to satisfy the preferential properties. Nevertheless,
Bonatti et al.’s approach satisfies some interesting properties on the meta-
level. It also has the advantage of being computationally tractable for any
tractable classical DL.

6. Concluding Remarks

We have introduced ALCH•, a description logic allowing for an explicit notion
of typicality that can be applied to both concepts and roles and of which
the intuition is to capture the most typical instances of, respectively, classes
and relations. We have seen that ALCH• can be given a simple and intuitive
semantics in terms of partially-ordered structures in the spirit of the prefer-
ential approach to defeasible reasoning. We have shown that reasoning w.r.t.
ALCH• knowledge bases is decidable through the definition of a tableau-based
decision procedure that we have shown to be sound and complete w.r.t. our
semantics.

When compared to other approaches to non-monotonicity in DLs, the
novelty of ALCH• resides in the provision of a framework for typicality of
both classes and relations and that can serve as the foundation for extensions
of defeasible DLs of increasing expressivity, with non-monotonicity at the level
of concepts as well as that of roles.

As for the computational complexity of reasoning with general ALCH•

knowledge bases, we conjecture it is exptime-complete, and therefore in the
same complexity class of the problem of reasoning with general (classical)
ALCH knowledge bases. The algorithm we presented is not optimal in that it
can be shown to run in time that is doubly exponential in the size of the input
knowledge base. An investigation of optimal tableaux for ALCH• reasoning is
a task we shall for now leave for future work.

The work here presented can be taken further in many ways. Some con-
crete next steps comprise: (i) An extension of the underlying language with
further DL constructs such as cardinality restrictions, role operations, nom-
inals and role assertions [1], along with new notions of typicality that those
may call for, or even non-monotonic versions of the classical operators [19,21];
(ii) An extension of the preferential semantics to allow for multi-orderings on
both objects and role interpretations, each ordering standing for a notion of
context [20] and giving rise to a context-based typicality operator for concepts
and roles, and (iii) An investigation of non-monotonic entailment for ALCH•,
in particular of what the notion of rational closure [39] semantically corre-
sponds to when ordering pairs of objects. (The work by Booth et al. [11] on
entailment for propositional typicality may provide us with a starting point
for tackling this issue.)
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Appendix A. Proof of Theorem 1

We remind the reader that we can assume w.l.o.g. that all GCIs in a TBox are
of the form � � E, for E ∈ L•, and that the ABox is non-empty (cf. beginning
of Sect. 4).

Lemma 5. Let KB = T ∪ R ∪ A. If Consistent(KB) returns “Consistent”,
then KB is preferentially consistent.

Proof. Let KB = T ∪R∪A and assume Consistent(KB) returns “Consistent”.
Then the result of Expand(KB) is non-empty. Let 〈A′, <A′ ,�A′〉 be the result
returned by Expand(KB). Hence A′ is a complete and clash-free ABox. More-
over, since the expansion rules never delete assertions, we have A ⊆ A′. In
what follows, we will:

1. Define a modification 〈A′′, <,�〉 of 〈A′, <A′ ,�A′〉 to deal with blocked
individuals in A′ and such that A ⊆ A′′;

2. Show that A′′ is complete and clash-free;
3. Use A′′, along with < and �, to construct a suitable bi-ordered interpre-

tation satisfying KB, which is a witness to the preferential consistency
of KB.

Dealing with 1. Let A′′, < and � be defined as follows:

A′′ := {a : C | a : C ∈ A′ and a is not blocked}

∪{(a, b) : R | (a, b) : R ∈ A′ and b is not blocked}

∪{(a, b′) : R | (a, b) : R ∈ A′, a is not blocked and b is blocked by b′}

∪{(a, b) : ¬R | (a, b) : ¬R ∈ A′ and a, b are not blocked}
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< := {(a, b) | (a, b) ∈ <A′ and b is not blocked}

∪{(a, b′) | (a, b) ∈ <A′ , a is not blocked and b is blocked by b′}

� := {((a, b), (c, d)) | ((a, b), (c, d)) ∈ �A′ and b, d are not blocked}

∪{((a, b), (c, d)) | ((a, b), (c, d)) ∈ �A′ , a, c are not blocked,

b is blocked by b′ and d is blocked by d′}
It is not hard to see that A ⊆ A′′: first note that A ⊆ A′; then observe

that for all assertions a : C, (a, b) : R and (a, b) : ¬R in A, both a and b are
root individuals (see Definition 6), and therefore can never be blocked.

An immediate consequence of the definition of A′′ is the following prop-
erty: For every a, b in A′′,A′,

conA′′(a) = conA′(a) (∗)

Moreover, it is not hard to see that, by construction, < and � simulate
<A′ and �A′′ for non-blocked (and pairs of non-blocked) individuals.

Dealing with 2. Since A′ is clash-free, A′′ is also clash-free, for if A′′ contained
a clash, Property (∗) would imply A′ has a clash, too. It remains to show
that A′′ is complete, which we do by showing that none of the expansion rules
is applicable to A′′.

– ¬-rule: If a : ¬¬C ∈ A′′, then by (∗) we get a : ¬¬C ∈ A′, and since A′

is complete, we have a : C ∈ A′. By (∗) we have a : C ∈ A′′, and then
the ¬-rule is not applicable to A′′.

– �+-rule: If a : C � D ∈ A′′, then by (∗) we have a : C � D ∈ A′. Since A′

is complete, {a : C, a : D} ⊆ A′. By (∗) again, {a : C, a : D} ⊆ A′′ and
therefore the �+-rule is not applicable to A′′.

– �+-rule: If a : C � D ∈ A′′, then by (∗) we have a : C � D ∈ A′. Since A′

is complete, {a : C, a : D}∩A′ �= ∅. By (∗) again, {a : C, a : D}∩A′′ �= ∅
and therefore the �+-rule is not applicable to A′′.

– �−- and �−-rules are analogous to the two previous cases.
– �T -rule: Let � � D ∈ T . If a : C ∈ A′′, then by (∗) we have a : C ∈ A′.

Since A′ is complete, a : D ∈ A′, too. By (∗) again, we get a : D ∈ A′′

and therefore the �T -rule is not applicable to A′′.
– �R-rule: Let R � S ∈ R. If (a, b) : R ∈ A′′, then by (∗) we have

(a, b) : R ∈ A′. Since A′ is complete, (a, b) : S ∈ A′, and then by (∗) we
have (a, b) : S ∈ A′′. Hence the �R-rule is not applicable to A′′.

– ∃+-rule: If a : ∃R.C ∈ A′′, then by (∗) a : ∃R.C ∈ A′. This implies a is
not blocked in A′, and therefore there is b s.t. {(a, b) : R, b : C} ⊆ A′,
for A′ is complete. There are two possible cases:

– b is not blocked: Then {(a, b) : R, b : C} ⊆ A′′, from the construction
of A′′;

– b is blocked: Since a is not blocked and is b’s predecessor, we must
have that b is blocked by some b′ in A′. Hence we have (i) (a, b′) :
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R ∈ A′′, by construction of A′′. Clearly, b′ is not blocked because
it is an ancestor of b which is a successor of an individual that
is not blocked. Also, conA′(b) ⊆ conA′(b′), and then b′ : C ∈ A′.
This and (∗) imply (ii) b′ : C ∈ A′′. From (i) and (ii) follows
{(a, b′) : R, b′ : C} ⊆ A′′.

In both cases above, the ∃+-rule is not applicable to A′′.
– ∀+-rule: If {a : ∀R.C, (a, b′) : R} ⊆ A′′, then a : ∀R.C ∈ A′, by (∗), and

neither a nor b′ is blocked in A′. There are two possible cases:
– (a, b′) : R ∈ A′: Then b′ : C ∈ A′, for A′ is complete. From (∗) we

get b′ : C ∈ A′′;
– (a, b′) : R /∈ A′: Then there is b s.t. (a, b) : R ∈ A′, with b blocked

by b′ in A′, and b : C ∈ A′, since A′ is complete. Moreover, since
conA′(b) ⊆ conA′(b′), we have b′ : C ∈ A′. This and (∗) yield b′ :
C ∈ A′′.

In both cases above, the ∀+-rule is not applicable to A′′.
– ∃−- and ∀−-rules are analogous to the two previous cases.
– •+C-rule: If a : •C ∈ A′′, then by (∗) we have a : •C ∈ A′. Since A′ is

complete, a : C ∈ A′ and for all b s.t. b <A′ . . . <A′ a, b : ¬C ∈ A′.
By (∗) again and the construction of <, we have a : C ∈ A′′ and for all b
s.t. b < . . . < a, b : ¬C ∈ A′′. Hence the •+C-rule is not applicable to A′′.

– •−
C -rule: If a : ¬•C ∈ A′′, then by (∗) we have a : ¬•C ∈ A′. Since A′ is

complete, we have either (i) a : ¬C ∈ A′, or (ii) {a : C, c : C} ⊆ A′ and
(c, a) ∈<A′ . From (i) and (∗) follows (iii) a : ¬C ∈ A′′. From (ii), (∗)
and the construction of < follows (iv) {a : C, c : C} ⊆ A′′ and (c, a) ∈<.
In either of (ii) and (iv), the •−

C -rule is not applicable to A′′.
– •+r -rule: If (a, b) : •r ∈ A′′, there are two possible cases:

– (a, b) : •r ∈ A′: Then, since A′ is complete, (a, b) : r ∈ A′, and for
all (c, d) s.t. (c, d) �A′ . . . �A′ (a, b), (c, d) : ¬r ∈ A′. By (∗) and
the construction of �, we get (a, b) : r ∈ A′′ and for all (c, d) s.t.
(c, d) � . . . � (a, b), (c, d) : ¬r ∈ A′′;

– (a, b) : •r /∈ A′: Then, there is b′ s.t. (a, b′) : •r ∈ A′, with b′

blocked by b in A′. Since A′ is complete, (a, b′) : r ∈ A′ and for
all (c, d) s.t. (c, d) �A′ . . . �A′ (a, b′), (c, d) : ¬r ∈ A′. Then, by
construction of A′′ and �, we have (a, b) : r ∈ A′′, and for all (c, d)
s.t. (c, d) � . . . � (a, b), (c, d) : ¬r ∈ A′′.

In both cases above, the •+r -rule is not applicable to A′′.
– •−

r -rule: If (a, b) : ¬•r ∈ A′′, then by (∗) we have (a, b) : ¬•r ∈ A′. From
completeness of A′, we have either (i) (a, b) : ¬r ∈ A′, or (ii) {(a, b) :
r, (c, d) : r} ⊆ A′ and ((c, d), (a, b)) ∈�A′ . If (i) is the case, (a, b) : ¬r ∈
A′′. If (ii) is the case, since c, d are not blocked (they are root individuals,
for they were freshly introduced), we have {(a, b) : r, (c, d) : r} ⊆ A′′ and
((c, d), (a, b)) ∈�. In both (i) and (ii), the •−

r -rule is not applicable to A′′.

Dealing with 3. We use A′′ together with < and � to construct a suitable
model B for KB as follows:

– ΔB := {a | a is an individual name occurring in A′′};
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– aB := a, for each individual name occurring in A′′;
– AB := {a | A ∈ conA′′(a)}, for each concept name occurring in A′′;
– rB := {(a, b) | (a, b) : r ∈ A′′}, for each role name occurring in A′′;
– <B := <+;
– �B := �+.

We show that B := 〈ΔB, ·B, <B,�B〉 is a bi-ordered interpretation satis-
fying KB = T ∪ R ∪ A.

First we show that B is a bi-ordered interpretation (cf. Definition 1):

– ΔB �= ∅, as we assumed A �= ∅ and A ⊆ A′′;
– By construction, ·B maps every individual name in A′′ to an element

of ΔB, every concept name A ∈ sub(A′′) to a subset of ΔB, and every
role name r occurring in A′′ to a subset of ΔB × ΔB;

– It is easy to see that both <B and �B are well-founded strict partial
orders, for (i) in both < and � no reflexive elements are ever introduced,
as only pairs containing either a new individual name a or a new pair (a, b)
are added at the beginning of the respective chain; (ii) by an analogous
argument, no symmetric elements are ever added to < or �; (iii) taking
their transitive closure clearly delivers a transitive relation, and (iv) since
both < and � are finite (which is ensured via blocking), we have that <B

and �B are finite, too, and therefore the orderings are well-founded.

Hence, B is a bi-ordered interpretation.
Now we show that B satisfies all concepts and role assertions in A, all

GCIs in T , and all RIAs in R.
We start by showing that B satisfies all concepts and role assertions in A′′,

and since A ⊆ A′′, we will get B � A. First, it is not hard to see that, by its
construction, B satisfies all role assertions in A′′. To see that B satisfies all
concept assertions in A′′, we show the following property:

If a : C ∈ A′′, then aB ∈ CB (∗∗)

The proof is by induction on the structure of concepts:

Induction basis: Let C = A ∈ C. By the definition of B, if a : C ∈ A′′, then
aB ∈ CB.

Induction steps: (Since there is no NNF for L•—cf. paragraph following Propo-
sition 1—we have to analyse more cases than if it had been otherwise. More-
over, note that the case C = ¬D, for an arbitrary D, can be reduced to all
the others below through De Morgan’s laws and therefore we do not address
it explicitly here.)

– Let C = ¬A, for A ∈ C. Since A′′ is clash-free, a : ¬A ∈ A′′ implies
a : A /∈ A′′, and therefore A /∈ conA′′(a). From this and the construction
of B, it follows that a /∈ AB.

– Let C = D � E. If a : D � E ∈ A′′, then, since A′′ is complete, {a :
D, a : E} ⊆ A′′, otherwise the �+-rule would be applicable to A′′. By
the induction hypothesis, aB ∈ DB and aB ∈ EB, and therefore aB ∈
DB ∩ EB = (D � E)B.
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– Let C = D � E. If a : D � E ∈ A′′, then, since A′′ is complete, {a :
D, a : E} ∩ A′′ �= ∅, otherwise the �+-rule would be applicable to A′′.
By the induction hypothesis, aB ∈ DB or aB ∈ EB, and therefore aB ∈
DB ∪ EB = (D � E)B.

– Let C = ∀R.D.
– Case R = R: Assume a : ∀R.D ∈ A′′, and let (aB, bB) ∈ RB, for

an arbitrary b. Then, by construction of B, (a, b) : R ∈ A′′, and
since A′′ is complete and a : ∀R.D ∈ A′′, we have b : D ∈ A′′,
otherwise the ∀+-rule would be applicable to A′′. By the induction
hypothesis, bB ∈ DB. Since b is arbitrary, the above holds for all b
s.t. (aB, bB) ∈ RB and therefore aB ∈ (∀R.D)B.

– Let C = ∃R.D. Again, we distinguish two cases: R = r and R = •r, for
r ∈ R.

– Case R = r: Let a : ∃r.D ∈ A′′. Since A′′ is complete, {(a, b) :
r, b : D} ⊆ A′′. By the construction of B, (aB, bB) ∈ rB. By the
induction hypothesis, bB ∈ DB. Putting these results together gives
us aB ∈ (∃r.D)B.

– Case R = •r: Let a : ∃•r.D ∈ A′′. Since A′′ is complete, {(a, b) :
•r, (a, b) : r, b : D} ⊆ A′′. By the construction of B, (aB, bB) ∈ rB

and there is no c, d s.t. (cB, dB) �B (aB, bB). Hence (aB, bB) ∈ (•r)B.
By the induction hypothesis, bB ∈ DB. Therefore, aB ∈ (∃•r.D)B.

– Let C = •D. Assume a : •D ∈ A′′. Since A′′ is complete, a : D ∈ A′′

(and by the induction hypothesis we have aB ∈ DB), and for every b s.t.
b < . . . < a, b : ¬D ∈ A′′. As we already know, bB ∈ (¬D)B. Hence,
by the construction of B, for every bB s.t. bB <B aB, bB ∈ (¬D)B, and
therefore aB ∈ min<B DB.

– Let C = ¬•D. Assume a : ¬•D ∈ A′′. Since A′′ is complete, either
a : ¬D ∈ A′′ or {a : D, c : D} ⊆ A′′ and c < a. If a : ¬D ∈ A′′, then
by the induction hypothesis aB ∈ (¬D)B and therefore aB ∈ (¬•D)B. If
{a : D, c : D} ⊆ A′′ and c < a, then aB ∈ DB and cB ∈ DB (by the
induction hypothesis) and cB <B aB (by the construction of B). Hence
aB /∈ (•D)B, i.e., aB ∈ (¬•D)B.

This concludes the proof of (∗∗). Hence B � A′′ and therefore B � A.

Now we show that B is a model of T . Let � � D ∈ T and let a be an
arbitrary individual occurring in A′′. Since A′′ is complete, a : D ∈ A′′. Hence
a = aB ∈ DB, since B � A′′. Given that a is arbitrary (i.e., we assumed any
a ∈ ΔB, the set of individual names in A′′), we have ΔB ⊆ DB, as required.
Hence B � T .

Finally, we show that B is a model of R. First, recall that the elements
of R have one of four possible forms, namely r � s, r � •s, •r � s and •r � •s.
We analyse each case.

– Assume r � s ∈ R. If (aB, bB) ∈ rB, then (a, b) : r ∈ A′′, by construction
of B. Since A′′ is complete, (a, b) : s ∈ A′′, and then (aB, bB) ∈ sB.
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– Assume r � •s ∈ R. If (aB, bB) ∈ rB, then (a, b) : r ∈ A′′, by construc-
tion of B. Since A′′ is complete, {(a, b) : •s, (a, b) : s} ⊆ A′′ and then
(aB, bB) ∈ min�B sB.

– Assume •r � s ∈ R. If (aB, bB) ∈ (•r)B, then (aB, bB) ∈ rB and (a, b) :
r ∈ A′′. If (a, b) : •r ∈ A′′, then (a, b) : s ∈ A′′, and then (aB, bB) ∈ sB.

– Assume •r � •s ∈ R. If (aB, bB) ∈ (•r)B, then (aB, bB) ∈ rB and (a, b) :
r ∈ A′′. If (a, b) : •r ∈ A′′, then (a, b) : •s ∈ A′′, and then (aB, bB) ∈
min�B sB.

Hence B � R.
Putting all the results together, we have that B � KB and therefore KB

is preferentially satisfiable. �

Lemma 6. Let KB = T ∪ R ∪ A. If KB is preferentially consistent, then
Consistent(KB) returns “Consistent”.

Proof. Assume KB = T ∪ R ∪ A is preferentially consistent, and let B =
〈ΔB, ·B, <B,�B〉 be a model of KB. In particular, B � A. Since A is consistent,
it does not contain a clash.

If A is complete, and since it is clash-free, Expand(KB) returns A and
Consistent(KB) returns “Consistent”.

Assume A is not complete. Then Expand(KB) performs iterations of
the while loop until A is complete; each iteration selects a rule and applies
it, possibly calling Expand(·) recursively. We show that this while loop in
Expand(·) preserves consistency. We do so by analysing all possible cases of
applicable rules:

– ¬-rule: If a : ¬¬C ∈ A, then aB ∈ (¬¬C)B = CB and therefore B is a
model of A∪{a : C}. Hence A is still consistent after the rule is applied.

– �+-rule: If a : C � D ∈ A, then aB ∈ (C � D)B = CB ∩ DB, and then
both aB ∈ CB and aB ∈ DB. Hence B is a model of A ∪ {a : C, a : D}, so
A is still consistent after the application of the rule.

– �+-rule: If a : C�D ∈ A, then aB ∈ (C�D)B = CB∪DB, i.e., either aB ∈
CB or aB ∈ DB. Hence at least one of the ABoxes A′ ∈ ndexp(A,�+, a :
C�D) is consistent. Then Expand(T ∪R∪A′) is called recursively with A′

being consistent, and we can repeat the same argument.
– �−- and �−-rules are analogous to both cases above.
– �T -rule: If a : C ∈ A and � � D ∈ T , then aB ∈ DB in any model B of

T ∪ R ∪ A, so B is still a model of T ∪ R ∪ A ∪ {a : D}.
– �R-rule: If (a, b) : R ∈ A and R � S ∈ R, then both (aB, bB) ∈ RB and

RB ⊆ SB in any model B of T ∪ R ∪ A, and therefore (aB, bB) ∈ SB.
Hence B is a model of A ∪ {(a, b) : S} and A is still consistent.

– ∃+-rule: If a : ∃R.C ∈ A, then aB ∈ (∃R.C)B, and then there is some x ∈
ΔB s.t. (aB, x) ∈ RB and x ∈ CB. It is not hard to see that there is a
model B′ of A that is identical to B, except that for some new individual
name d, we have dB = x. Clearly, B′ is a model of A ∪ {(a, d) : r, d : C},
so A is still consistent after the application of the rule.
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– ∀+-rule: If {a : ∀R.C, (a, b) : R} ⊆ A, then aB ∈ (∀R.C)B, (aB, bB) ∈ RB,
and bB ∈ CB. Then B is a model of A ∪ {b : C}, and therefore A is still
consistent after the rule is applied.

– ∃−- and ∀−-rules are analogous to those above.
– •+C-rule: If a : •C ∈ A, then aB ∈ min<B CB. Let b be s.t. b < . . . < a. If

b : C ∈ A, then b was created by the •−
C -rule (which is the only rule that

creates <-elements), and then a : ¬•C ∈ A, which is impossible, as A
is clash-free. Therefore b : C /∈ A. It is not hard to see that there is a
model B′ of A that is identical to B, except for the fact that bB ∈ (¬C)B.
Hence B satisfies A ∪ {a : C, b : ¬C}. Since b is arbitrary, A is still
consistent after the rule is applied.

– •−
C -rule: If a : ¬•C ∈ A, then aB /∈ min<B CB, i.e., either (i) aB /∈ CB or

(ii) aB ∈ CB and there is b s.t. bB <B aB and bB ∈ CB. If (i) is the case,
then B is a model of A ∪ {a : ¬C}. If (ii) is the case, then B is a model
of A ∪ {b : C}. In both cases, A is still consistent after the application of
the rule.

– •+r -rule: If (a, b) : •r ∈ A, then (aB, bB) ∈ min�B rB. Let c, d be s.t.
(c, d) � . . . � (a, b). If (c, d) : r ∈ A, then (c, d) was created by the •−

r -
rule (which is the only rule that creates �-elements), and then (a, b) :
¬•r ∈ A, which is impossible, since A is clash-free. Hence (c, d) : r /∈ A.
It is not hard to see that there is a model B′ of A that is identical to B,
except for the fact that (aB′

, bB′
) /∈ rB′

. Hence B satisfies A ∪ {(a, b) :
r, (c, d) : ¬r}. Since c, d are arbitrary, A is still consistent after the rule
is applied.

– •−
r -rule: If (a, b) : ¬•r ∈ A, then (aB, bB) /∈ min�B rB, i.e., either

(i) (aB, bB) /∈ rB or (ii) (aB, bB) ∈ rB and there is (c, d) s.t. (cB, dB) �B

(aB, bB) and (cB, dB) ∈ rB. If (i) is the case, then B is a model of
A∪{(a, b) : ¬r}. If (ii) holds, then B is a model of A∪{(a, b) : r, (c, d) : r}.
In both cases, A is still consistent after the rule is applied.

�

The proof of Theorem 1 follows immediately from Lemmas 5 and 6.
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