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Abstract. Chords are not pure sets of tones or notes. They are mainly
characterized by their matrices. A chord matrix is the pattern of all
the lengths of intervals given without further context. Chords are well-
structured invariants. They show their inner logical form. This opens up
the possibility to develop a molecular logic of chords. Chords are our
primitive, but, nevertheless, already interrelated expressions. The logical
space of internal harmony is our well-known chromatic scale represented
by an infinite line of integers. Internal harmony is nothing more than
the pure interrelatedness of two or more chords. We consider three cases:
(a) chords inferentially related to subchords, (b) pairs of chords in the
space of major–minor tonality and (c) arbitrary chords as arguments of
unary chord operators in relation to their outputs. One interesting re-
sult is that chord negation transforms any pure major chord into its pure
minor chord and vice versa. Another one is the fact that the negation
of chords with symmetric matrices does not change anything. A molecu-
lar logic of chords is mainly characterized by combining general rules for
chord operators with the inner logical form of their arguments.
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1. Introduction

A logic can be understood as a network of codices. A codex is an ideal construc-
tion and contains the totality of those rules which completely determine con-
cepts, languages, formal systems, models etc. (cf. [1]). If we look at a Hilbert-
style deductive system of classical propositional logic, then the recursive def-
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inition of the concept well-defined formula is a codex which is decidable. We
can call this concept an internal one. There is no context needed to decide
whether a given sequence of symbols is a well-defined formula or not.

We consider any appropriate axiomatic basis. Then the concept being a
theorem becomes an internal concept as well. If we add an (semantic) interpre-
tation, the concept being a tautology will be the next codex-based candidate.
In games like chess the concept admissible move can be characterized as an
internal one with respect to a determinable sublist of the FIDE-Laws of Chess
(cf. [2]).

To get a logic of chords we need the primitive symbols as well as the
primitive expressions of our language and rules of combining them to more
complex symbols. Should a logic of chords begin with atomic tones or primitive
intervals? In classical propositional logic the decision is clear: propositional
variables are primitive symbols and primitive formulas as well.

Chords are not pure sets of tones or notes. They are mainly characterized
by their matrices. A chord matrix is the pattern of all the lengths of inter-
vals within this chord free of context. Chords are well-structured invariants.
They show their inner logical form. This opens up the possibility to develop a
molecular logic of chords. Chords are our primitive, but, nevertheless, already
interrelated expressions.

To show the inner form of chords we have to assume a general structure
of our logical space. We take the chromatic scale for granted. This assumption
is independent of the concrete tuning. We need only the assumption that we
can investigate all possibilities within an infinite and discrete space of integers.
This is our coordinate system.

No chord can be understood independently of its own logical space. Each
chord represents an invariant proper segment of this space. A chord itself is
a “fusion” of at least two intervals which leads necessarily to at least a third
interval within this chord. In general, there is no restriction to major or minor
chords.

Harmony is a relational concept. Internal harmony is the totality of the inter-
relations between chords as well-structured segments of the logical space. Each
such structure is admissible. The internal major–minor tonality, the dodeca-
phonic harmony etc. can be considered as special cases of internal harmony.
Of course, this does not give us the whole harmony of music! There is a lot of
inspiring research regarding context-dependent (external) harmony.

Internal harmony is nothing more than the pure interrelatedness of two
or more chords. We consider three cases:

(a) Chords inferentially related to sub-chords,
(b) Pairs of chords in the subspace of major–minor tonality and
(c) Arbitrary chords as arguments of unary chord operators in relation to

their outputs.

One interesting result of (c) is that chord negation transforms any pure major
chord into its pure minor chord and vice versa. Another one is the fact that
the negation of chords with symmetric matrices does not change anything. A
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molecular logic of chords is mainly characterized by combining general rules
for chord operators with the inner logical form of their arguments.1

2. Declaration of Our Logical Space and Its Invariant Basic
Structures

Logical space is the space of the whole game (e.g., geometry of a soccer field,
geometry of a chessboard or the syntax of a formal language). I.e., our game
has a range limited by its space; range of calculus/theory. We can name phe-
nomena/symbols/structures which cannot be explicated within such a for-
mal/empirical theory. Inconsistency proofs show that we are not able to prove
every formula. Formation rules show that not any sequence of symbols is al-
lowed: “∨)p∀” is not well-formed with respect to the syntax of propositional
logic. Phenomena of performance cannot be explicated in a theory of compe-
tence.

Our logical space of representing all possible chords and the internal
harmonic relations between them has an underlying formal structure. It is
the chromatic scale of tone pitches explicated by a discrete scale of integers.
Each integer ti can be used to represent a (different) simple tone pitch. The
chromatic scale—like the scale of integers—is to be thought as open in both
directions and, therefore, infinite. Independently from our hearing capacities
we have—from our logical point of view—an infinite number of tones, intervals
and chord patterns.

Each interval can be represented by an ordered pair of integers ti and tj .
But we must distinguish between a melodic and a harmonic understanding of
intervals.

Melodically intervals are ordered sequences of two tones without any restric-
tion. We have two separate (possibly overlapping) sounds; the sound of ti and
the sound of tj . Both tones can have the same pitch (repetition of tones). This
is usually called prime (interval): 〈ti, tj〉 with ti = tj or simply 〈ti, ti〉. The
pitch of the first tone can be higher (decreasing interval: 〈ti, tj〉 with ti > tj)
or lower (increasing interval: 〈ti, tj〉 with ti < tj). We call the relation between
ti and tj interval distance D〈ti, tj〉 or di

j for short. The interval distance ti − tj
can be positive (decreasing), negative (increasing) or zero (prime).

Harmonically an interval is exactly one sound “consisting of” two tones. In this
respect there is neither pitch repetition nor an increasing/decreasing melody.
There is simply one sound {ti, tj} covering two different tones ti and tj with
ti representing the tone with the higher pitch and tj representing the tone
with the lower pitch. An interval sound {ti, tj} does not have a distance but
it has its characteristic length L{ti, tj} (lij for short) which is always positive:
L{ti, tj} = ti − tj > 0. Each interval has its characteristic distance (melodi-
cally) or length (harmonically).

1 The reader could miss a long list of references. There maybe remote predecessors but no
really close forerunners of the presented logic of chords.
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Within a logic of harmony each interval sound is as good as any other
interval sound. We do not assume any kind of an a priori distinction between
consonant and dissonant intervals. Our goal is to develop a logical theory of
all the possibilities within the chromatic space, of all possible compositions
playable on the piano: tonal, atonal, serial, jazz, folk, pop etc.

We declare chords as the basic (minimal) expressions of our logic of har-
mony. A chord is neither a sequence of three or more tones, nor a sequence
of a tone and an interval sound in any order, nor a sequence of two or more
interval sounds.2 Each chord is context-freely identifiable by its characteristic
inner structure. The number of tones is not important: chords are not pure sets
of tones. Chords are primarily well-structured with respect to interval lengths.
The minimal condition for being a chord is that the lengths of at least two
intervals {ti, tj} and {tk, tl} are directly connected in such a way that tj = tk
(the lower pitch of the first interval is equal to the higher pitch of the second
interval) and there is only one sound event of tj/tk. As a consequence each
chord contains at least three tones t1 (lowest pitch), t2 (intermediate pitch)
and t3 (highest pitch). Another consequence is that each chord contains at
least three internal lengths: L{t3, t2}, L{t3, t1}, L{t2, t1}. A chord is not a
sequence of two or more of the intervals {t3, t2}, {t3, t1}, {t2, t1}, but all three
intervals are emancipated parts of one sound. The general pattern of a 3-tone
chord is

⎧
⎨

⎩

t3
t2
t1

[
{t3, t2}
{t2, t1}

]1 [
{t3, t1}

]2

⎫
⎬

⎭

The whole structure is the pattern of one sound. The vertical order of the
three tone pitches t3, t2 and t1 is in accordance with the usual notation in
sheet music: higher position means higher pitch. Additionally, in our notation
higher index of t means higher pitch. The superscripts indicate the grades
of the intervals within a chord. The superscript “1” says that the intervals
within the square brackets are basic intervals. Basic intervals of a chord are
the intervals of directly adjacent tones. The superscript “2” or, generally, the
square brackets containing exactly one interval shows the frame interval. The
frame interval of a chord is the interval consisting of the tones with the highest
and the lowest pitch.

Each chord can be uniquely identified solely by its inner structure. You
can cut an arbitrary chord out of any sheet music and you know already
whether this chord is a 3-tone-major-chord in root position, a 3-tone-minor

2 Of course, there are broken chords and we can try to hear melodies consisting of three or
more tones or containing tones and interval sounds as chords. The other way around: we can
analyze a complex sound as representing a melody. In the context of analyzing compositions
it can be hard to decide whether such sequences/sounds are melodies or chords. In any
case our decision to interpret such structures/sounds either melodically or harmonically is
a decision regarding their logical form. It could be shown that there are interesting cases
where neglecting this distinction leads to confusion. It is possible to look at/search for
melodies (tone sequences) and/or interval sequences throughout chord sequences. But the
logical distinctions remain unaffected!
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chord in first inversion, a 4-tone-major-seventh-chord in third inversion etc.
But you do not know its harmonic function as a tonic, subdominant, domi-
nant, double dominant etc. chord. Otherwise, you know that a chord with its
characteristic inner structure can be used in any logically possible harmonic
function and you know already that any minor chord cannot be used as a
major dominant.

A chord is a molecular expression characterized not primarily by its tones
but mainly by its matrix of interval lengths:

⎧
⎨

⎩

[
l32

l21

]1
[
l31

]2

⎫
⎬

⎭

Again: l32 and l21 are the basic interval lengths and l31 is the frame interval
length.

A class of (partially or totally tone-different) chords— e.g., the class of
3-tone-major-chords in root position—can be identified simply by knowing its
characteristic matrix of interval lengths common to all of its elements.

Let us assume that

{[
l32 = 3
l21 = 4

]1 [
l31 = 7

]2
}

is the characteristic matrix

of interval lengths of the chord class 3-tone-major-chord in root position:{[
+ 3
+ 4

]1 [
+ 7

]2
}

for short. Positive natural numbers of the Form + i express

interval lengths. Then the chords

⎧
⎨

⎩

7
4
0

[
+ 3
+ 4

]1 [
+ 7

]2

⎫
⎬

⎭
,

⎧
⎨

⎩

8
5
1

[
+ 3
+ 4

]1 [
+ 7

]2

⎫
⎬

⎭

and

⎧
⎨

⎩

11
8
4

[
+ 3
+ 4

]1 [
+ 7

]2

⎫
⎬

⎭
are all 3-tone-major chords in root position. Pair-

wise they can have a tone in common (4 or 8) or not.3

The smallest logical structures of our logic of harmony are 3-tone-chords
consisting of three tones, two basic intervals (basic interval lengths) and one
frame interval (one interval length). But structures containing more than three
tones and two basic interval lengths are elementary formulas as well. The
general form of chords4 as elementary structures of our logic of harmony with
respect to all given interval lengths is:

3 We use integers as name of tones/pitches. Later we will use an exponential notation of
integers.
4 In this paper I avoid to speak of chord types. But each concrete chord—i.e., that we know

all the tones and, therefore, all the concrete intervals of this chord—is ultimately a chord

type. The given general form is the general form of chord types. We develop a logic of chord
types and their forms. The logic of chords is a logic of abstract entities, not of concrete
occurrences in sheet music or in music performances.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
tn−1

...
t3
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ln+1
n

lnn−1

.

.

.
l32

l21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ln+1
n−1

lnn−2
...
l42

l31

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

. . .

[
ln+1
2

ln1

]n−1 [
ln+1
1

]n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Each chord contains n + 1 (n ≥ 2) distinct tones (tone pitches). Each
chord shows n×(n+1)

2 intervals/interval lengths. The superscript i of square
brackets (with 1 ≤ i ≤ n) indicates the grade of all the interval lengths occur-
ring in these brackets. We call the interval lengths of grade i with 2 ≤ i ≤ n−1
intermediate interval lengths. If we consider chords with more than 3 tones,
we have at least one grade of intermediate interval lengths. As stated above
basic interval lengths are of grade 1. The frame interval length is of grade
n. We call the structure of all basic interval lengths []1 of a chord its ma-
trix of basic interval lengths: its basic matrix for short. We call the structure
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ln+1
n

lnn−1

.

.

.
l32

l21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ln+1
n−1

lnn−2
...
l42

l31

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

. . .

[
ln+1
2

ln1

]n−1 [
ln+1
1

]n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

of an arbitrary chord its matrix.

Each chord matrix characterizes a chord class uniquely. Given any concrete
basic matrix of a chord class we can compute its matrix. Given all tones of a
chord in our chromatic space we can compute its basic matrix and, therefore,
its matrix. Because we assume that our logical space (the chromatic scale) is
infinite there are infinitely many chords realizing the same matrix. If we know
the basic matrix of a chord and at least one concrete tone ti and its position in
the form of the chord, we can compute the complete form of this chord. E.g.:

⎧
⎨

⎩
8

[
+ 3
+ 4

]1

[]2

⎫
⎬

⎭
leads to

⎧
⎨

⎩

11
8
4

[
+ 3
+ 4

]1 [
+ 7

]2

⎫
⎬

⎭

3. Independence of Chords and Inference Relations Between
Chords

With respect to propositional variables in classical logic—which is our proto-
type of an atomic codex—we have two kinds of independence: (I1) Indepen-
dence in the sense that any combination of propositional variables is possible,
that a propositional variable can occur at any argument position of any n-ary
sentence operator. There is no constraint to use propositional variables within
the whole logical space of classical logic. (I2) There are no inference relations
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between such atomic propositional variables. Let pi and pj be two arbitrary
different propositional variables then pj does not follow from pi and pi does
not follow from pj : ∀pi∀pj with i �= j: (a) pi �	 pj and (b) pj �	 pi. The same
holds if we put a negation sign in front of one or both propositional variables.

In classical logic it is impossible to find inference relations between a
formula A and its classical negation ¬A: ∀A: (a) A �	 ¬A and (b) ¬A �	 A.
Primitive n-ary first order formulas of the form Fni1 . . . in are not atomic like
propositional variables because they are composed by an n-ary function Fn

and really atomic terms i1, . . . , in. Nevertheless we keep (I2): without further
context there is no inference between two syntactically different primitive first
order formulas: negated or unnegated.

If we look at chords as the primitive forms of our logic of harmony in
analogy to atomic propositional variables, we keep independence (I1): each
combination of chords is possible, not only combinations that sound “nice” or
“pleasant”. Chord operators are like sentence operators: an n-ary chord oper-
ators takes n chords as input and yields one chord as output. Each chord can
occur at any argument position of any n-ary chord operator without restric-
tion.5

If we take all instances of our general form of chords as primitive expres-
sions, then there are interesting inference relations between chords. We can
differentiate between two types of inference relations:

(1) Inference relations with respect to chords and
(2) Inference relations with respect to chord types.

Definition 1 (Inference to chords). Let C1 be a chord containing the tones
t1, . . . , tn and C2 be the chord containing the tones s1, . . . , sm. C1 	t C2 iff
{s1, . . . , sm} ⊆ {t1, . . . , tn}.

This inference relation is reflexive: C 	t C.
Because of our assumption that a chord contains at least 3 tones there is

the following restriction: if C1 is a 3-tone-chord, then there is exactly one chord
which can be inferred: C1 itself. Intervals are not allowed as consequences. Each
consequence C2 of a chord C which is not identical with C has at least one
tone less than C. To get real transitivity we have to start with at least a
5-tone-chord.

There is a special case of inferences between chords.
(1*) Inferences with respect to connected tone-sequences: i.e., that the basic
matrix of the consequent is a subpart of the basic matrix of the antecedent:

Definition 2. Let C1 be a chord containing the tone-sequence 〈t1, . . . , tn〉 and
C2 be the chord containing the tone-sequence 〈s1, . . . , sm〉. C1 	t∗ C2 iff
{〈s1, . . . , sm〉} is part of the tone-sequence 〈t1, . . . , tn〉.

5 If we try to develop a special logic of tonality or atonality, it could be done by postulating
such restrictions.



246 I. Max Log. Univers.

⎧
⎪⎪⎨

⎪⎪⎩

9
6
2
0

⎡

⎣
+ 3
+ 4
+ 2

⎤

⎦

1 [
+ 7
+ 6

]2 [
+ 9

]3

⎫
⎪⎪⎬

⎪⎪⎭

	t

⎧
⎨

⎩

9
6
0

[
+ 3
+ 6

]1 [
+ 9

]2

⎫
⎬

⎭
but

⎧
⎪⎪⎨

⎪⎪⎩

9
6
2
0

⎡

⎣
+ 3
+ 4
+ 2

⎤

⎦

1 [
+ 7
+ 6

]2 [
+ 9

]3

⎫
⎪⎪⎬

⎪⎪⎭

�	t∗

⎧
⎨

⎩

9
6
0

[
+ 3
+ 6

]1 [
+ 9

]2

⎫
⎬

⎭

There are several possibilities to define inference relations between chord
classes. The concrete tones does not matter here. Let us take the following
example:

Definition 3 (Inference to chord types). Let BMC1 be the basic matrix of an
n + 1-tone-chord C1 consisting of the sequence 〈ln+1

n , . . . , l21〉 of basic interval
lengths. Let BMC2 be the basic matrix of an m + 1-tone-chord C2 consisting
of the sequence 〈lm+1

m , . . . , l21〉 of basic interval lengths. C1 	T C2 iff BMC2 is
a proper or an improper sub-sequence of BMC1 .

We can have inferences between two chords which do not have any tone in
common:

⎧
⎪⎪⎨

⎪⎪⎩

9
6
2
0

⎡

⎣
+ 3
+ 4
+ 2

⎤

⎦

1 [
+ 7
+ 6

]2 [
+ 9

]3

⎫
⎪⎪⎬

⎪⎪⎭

	T

⎧
⎨

⎩

7
3
1

[
+ 4
+ 2

]1 [
+ 6

]2

⎫
⎬

⎭

These inference relations between chords or chord types seem to be very strange
from a classical, an atomistic point of view. We can preserve the atomistic po-
sition if we move on to an understanding of possible worlds as complete and
consistent sets of literals (unnegated/negated propositional variables). With
respect to the propositional variables p and q we get four consistent and com-
plete worlds: {p, q}, {¬p, q}, {p,¬q} and {¬p,¬q}. No such set is a proper
subset of any other set.

We can switch to a non-classical point of view if we allow incomplete
or inconsistent set-ups like {p}, {¬p}, {q}, {¬q} (consistent, but incomplete),
{p,¬p, q}, {p,¬p,¬q}, {p, q,¬q}, {¬p, q,¬q}, {p,¬p, q,¬q} (complete, but in-
consistent) and {p,¬p}, {q,¬q} (incomplete and inconsistent). Now we get a
lot of inferences between set-ups with respect to ⊆.6

But this non-classical step keeps the atomic character of propositional
variables. Atoms, atomic symbols are free of logical form. They do not have an
inner structure which could be relevant for harmonic relations between them.
There is nothing that makes p resembling q or r.

Chords are independent of each other in the sense that any sequence of
chords is allowed without any restriction (independence I1). But they are har-
monically dependent in the sense that each pair of chords due to the inner

6 We get a similar situation if we interpret the values of a 4-valued logic as sets with respect
to the elements 1 and 0: ∅, {1}, {0} and {1, 0}.
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structure of both chords constitutes internal harmony which can be described
by using chord operators. Chords are not points with respect to our logical
space, but structured segments of this space. Internal harmony is nothing
more than the relation between two or more chords based solely on the in-
ner structure of these chords. Internal harmony does not depend on further
context. One subgoal of presenting our logic of chords is to show which rela-
tions that we describe intuitively as harmonic are harmonic in itself. We will
see that some relations are internal (X-dominant, relative minor), but other
well-known relations are not (tonic, dominant, subdominant).

In our sense concepts like “chord” as well as “harmony” are formal con-
cepts. Euphony is not necessary. E.g., we have of course chords and harmony in
our sense not only in tonal music but also in twelve-tone music (dodecaphony)
and free jazz located in the chromatic space. A key feature of the logic of
chords is that this formal theory is not an atomistic but a molecular one.

4. Syntax of Chords in More Detail

4.1. Proper Names for Tones (Tone Pitches) Using Integers

The general form of names for tones with respect to their pitches is ty. “t”
gives us the position of the tone in the octave space “y”: 0 ≤ t ≤ 11. The
exponent y can be any integer. The computation of the integer ty runs as
follows: ty = t+(12×y). We call t the basic number of a tone name. Examples
are:

00 = 0 + (12 × 0) = 0
41 = 4 + (12 × 1) = 16
7−1 = 7 + (12 × −1) = 7 − 12 = −5
9−3 = 9 + (12 × −3) = 9 − 36 = −27 etc.

We use the following correlation between traditional tone (pitch) names and
our notation:

. . . ,,,A� ,,,B ,,C . . . ,,B ,C . . . ,B C . . . B

. . . 10−4 11−4 0−3 . . . 11−3 0−2 . . . 11−2 0−1 . . . 11−1

c . . . b c’ . . . b’ c” . . . b” c”’ . . . . . .
00 . . . 110 01 . . . 111 02 . . . 112 03 . . . . . .

4.2. Complex Proper Names of Intervals and Interval Lengths Using Integers

4.2.1. Intervals. Intervals as sounds will be coded by complex names of the
form {ti, tj}. {ti, tj} is a pair of the two tones ti and tj with ti and tj represent-
ing integers and ti > tj . {ti, tj} is the form of complex names for intervals as
sounds. But to know an interval as sound one has to know the concrete values
of ti and tj . ti = tj is not allowed with respect to intervals as sounds because
the sound represented by ti and the sound represented by {ti, ti} would be
indistinguishable. There is no perfect unison as a “new” sound.
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4.2.2. Lengths of Intervals and Interval Classes. Each interval as sound has
simply a length which is represented by a positive natural number lij : lij > 0.
L is a (length-)function which takes an interval as argument and yields the
length of this interval simply as the difference between ti and tj : L{ti, tj} =
(ti − tj) = lij . In order to differentiate between integers and their exponential
form ty denoting tones and positive integers and their exponential form lij = iz

we write the latter in isolation in the form + iz with 11 ≥ i ≥ 0 and z > 0 if
i = 0, z ≥ 0 else. + 00 is not allowed. The computation is the same as for ty.
+ iz is the name of the class of intervals with the same length l:
Example

01 denotes the tone c’.
+ 01 denotes the class of intervals with the length 12 called “(perfect)
octave”.
L{32, 31} gives us the length of the concrete interval (as sound) {32, 31}
which is 32 − 31 = 27 − 15 = + 01 = + 12.

4.2.3. Traditional Class Names of Interval Lengths and Their Formal
Counterparts.

MINOR SECOND + 10 (+ 1 for short)
MAJOR SECOND + 20 (+ 2)
MINOR THIRD + 30 (+ 3)
MAJOR THIRD + 40 (+ 4)
PERFECT FOURTH + 50 (+ 5)
TRITONE + 60 (+ 6
PERFECT FIFTH + 70 (+ 7)
MINOR SIXTH + 80 (+ 8
MAJOR SIXTH + 90 (+ 9)
MINOR SEVENTH + 100 (+ 10
MAJOR SEVENTH + 110 (+ 11)
(PERFECT) OCTAVE + 01 (+ 12
MINOR NINTH + 11 (+ 13)
MAJOR NINTH + 21 (+ 14
MINOR TENTH + 31 (+ 15)
MAJOR TENTH + 41 (+ 16
etc.

4.2.4. Definition of Identity of the Lengths of Two (Distinct) Invervals.

Definition 4. Two intervals Ii = {ti1 , ti2} and Ij = {tj1 , tj2} are identical
with respect to their interval lengths (IL-identical): Ii =IL Ij or {ti1 , ti2} =IL

{tj1 , tj2} iff L{ti1 , ti2} = L{tj1 , tj2}.
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4.2.5. Overview of Some Tonal Chord Matrices.

Chord pattern (Completed) Traditional name

{[
+ 3
+ 4

]1 [
+7

]2
}

3-Tone-major-chord root position

{[
+ 4
+ 3

]1 [
+7

]2
}

3-Tone-minor-chord root position

{[
+ 5
+ 3

]1 [
+8

]2
}

3-Tone-major-chord first inversion [sixth chord]

{[
+ 3
+ 5

]1 [
+8

]2
}

3-Tone-minor-chord second inversion [six-four chord]

{[
+ 4
+ 5

]1 [
+9

]2
}

3-Tone-major-chord second inversion [six-four chord]

{[
+ 5
+ 4

]1 [
+9

]2
}

3-Tone-minor-chord first inversion [sixth chord]

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 5
+ 3
+ 4

⎤

⎦

1 [
+ 8
+ 7

]2 [
+ 01

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-chord root position

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 5
+ 4
+ 3

⎤

⎦

1 [
+ 9
+ 7

]2 [
+01

]3

⎫
⎪⎬

⎪⎭
4-Tone-minor-chord root position

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 4
+ 5
+ 3

⎤

⎦

1 [
+ 9
+ 8

]2 [
+01

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-chord first inversion

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 3
+ 5
+ 4

⎤

⎦

1 [
+ 8
+ 9

]2 [
+01

]3

⎫
⎪⎬

⎪⎭
4-Tone-minor-chord first inversion

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 3
+ 4
+ 5

⎤

⎦

1 [
+ 7
+ 9

]2 [
+01

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-chord second inversion

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 3
+ 3
+ 4

⎤

⎦

1 [
+ 6
+ 7

]2 [
+10

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-seventh-chord root position

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 2
+ 3
+ 3

⎤

⎦

1 [
+ 5
+ 6

]2 [
+8

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-seventh-chord first inversion

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 4
+ 2
+ 3

⎤

⎦

1 [
+ 6
+ 5

]2 [
+9

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-seventh-chord second inversion

⎧
⎪⎨

⎪⎩

⎡

⎣
+ 3
+ 4
+ 2

⎤

⎦

1 [
+ 7
+ 6

]2 [
+9

]3

⎫
⎪⎬

⎪⎭
4-Tone-major-seventh-chord third inversion
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5. Inner Structure of Chords: Major Chords, Minor Chords
and Their Roots

Each chord C consists of its tones and has a characteristic inner structure
which is called its matrix MC . This is the characteristic pattern of interval
lengths of chord C. For any pair of distinct chords holds that they bear in
some characteristic relation of internal harmony due to their inner structure
alone. No external context is needed!

There are well-known traditional concepts of harmonics which can be un-
derstood as cases of internal harmony: (1) relative minor, (2) opposite relative
minor and (3) X-dominant with X ∈ {∅, sub}.

(3) is a new concept: C1
X⇐⇒ C2 means that two arbitrary major chords

C1 and C2 are X-dominants of each other. I.e., that the distance between their
basic tones is ±5i or ±7j (with i, j being arbitrary integers) but we do not
know whether C1 is the dominant of C2 (X = ∅) or C1 is the subdominant of
C2 (X = sub).

Conjecture 1. Typical harmonic characterizations which are related to tonality
like dominant, subdominant, dominant seventh, tonic are cases of harmony not
representable in L.

Conjecture 2. To characterize tonality we have to modify the logical space by
fixing a designated point or structure on our chromatic scale—traditionally
realized by a key like A-minor or C-major. From a logical perspective a desig-
nated point is a fixed number of our form tz of integers representing roots of
tonic chords.

5.1. Pure Major and Minor Chords

Pure major and minor chords contain a finite number of tone names of three
forms: ti1, tj2, tk3 . Such chords contain exactly three basic numbers of tones: t1,
t2 and t3: 0, 4 and 7 in the following example (1), 0, 3 and 7 in example (2)
and 0, 5 and 9 in example (3).

(1)

⎧
⎨

⎩

70

40

00

[
+ 3
+ 4

]1 [
+ 7

]2

⎫
⎬

⎭
: 3-tone-C-major-chord in root position

(2)

⎧
⎨

⎩

01

70

30

[
+ 3
+ 5

]1 [
+ 8

]2

⎫
⎬

⎭
: 3-tone-C-minor-chord in first inversion

(3)

⎧
⎪⎪⎨

⎪⎪⎩

52

01

90

5−1

⎡

⎣
+ 51

+ 30

+ 41

⎤

⎦

1 [
+ 81

+ 71

]2 [
+ 03

]3

⎫
⎪⎪⎬

⎪⎪⎭

: 4-Tone-F-major-chord.

Chords with a distinct fourth basic number can be seen as major chords, but
they are not pure in our sense. Famous examples are major seventh chords or
minor seventh chords.

If CJ is any pure major chord or CN is any pure minor chord, then all
interval lengths within their matrices have one of these seven possible forms:
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+ 0i1 with i1 > 0, + 3i2 , + 4i3 , + 5i4 , + 7i5 , + 8i6 and + 9i7 . But the converse
does not hold:

⎧
⎨

⎩

01

70

00

[
+ 5
+ 7

]1 [
+ 01

]2

⎫
⎬

⎭

⎧
⎨

⎩

81

40

00

[
+ 4
+ 4

]1 [
+ 8

]2

⎫
⎬

⎭

are counterexamples.They contain exclusively admissible forms of interval
lengths, but they are neither major nor minor chords.

5.2. Roots of Major and Minor Chords

There are precisely six matrices of 3-tone-major-chords:
{[

+ 3
+ 4

]1 [
+ 7

]2
} {[

+ 5
+ 3

]1 [
+ 8

]2
} {[

+ 4
+ 5

]1 [
+ 9

]2
}

{[
+ 9
+ 7

]1 [
+ 41

]2
} {[

+ 7
+ 8

]1 [
+ 31

]2
} {[

+ 8
+ 9

]1 [
+ 51

]2
}

.

We can generalize this observation to the general case by characterizing the
basic matrices (patterns of the lengths of basic intervals) of chords: We start
with the following six incomplete forms:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
+ 3i

...
+ 4j

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
+ 5i

...
+ 3j

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
+ 4i

...
+ 5j

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
+ 9i

...
+ 7j

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
+ 7i

...
+ 8j

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

...
+ 8i

...
+ 9j

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let li3i2 be the length of an arbitrary interval {ti3, ti2} of any of these
incomplete forms. Let li4i3 be the length of the interval that follows immediately
upwards and let li2i1 be the length of the interval that follows immediately
downwards. Then each finite completion of these forms yields a major chord
if the following conditions are fulfilled:
(a) ∀li2i1∀li3i2∀li4i3 :

If li3i2 ∈ {+ 3j1 ,+ 7j2} then li4i3 ∈ {+ 5j3 ,+ 9j4}.
If li3i2 ∈ {+ 5k1 ,+ 8k2} then li4i3 ∈ {+ 4k3 ,+ 7k4}.
If li3i2 ∈ {+ 4l1 ,+ 9l2} then li4i3 ∈ {+ 3l3 ,+ 8l4}.
If li3i2 ∈ {+ 3j5 ,+ 8j6} then li2i1 ∈ {+ 4j7 ,+ 9j8}.
If li3i2 ∈ {+ 4k5 ,+ 7k6} then li2i1 ∈ {+ 5k7 ,+ 8k8}.
If li3i2 ∈ {+ 5l5 ,+ 9l6} then li2i1 ∈ {+ 3l7 ,+ 7l8}.

(b) You can add to each of these (still possibly incomplete) forms a finite
number of interval lengths of the form + 0k with k > 0 at the top, between
any pair of basic interval lengths and at the bottom.

The totality of all of these constructions yields the class of all pure n-tone-
major-chord-types and, therefore, the (basic) matrices of all logically possible
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pure major chords. We abbreviate the class of all possible pure major chords
by J .

Let CJ be any pure major chord: CJ ∈ J . Each major chord has one or
more roots (basic tones, not tonic notes) represented by integers b1, . . . , bn. If
CJ contains more than one root, then for the interval distance D between any
two of them holds:
D〈bi, bj〉 = 0z with D〈bi, bj〉 = bi −bj and z any integer: D〈bi, bj〉 can of course
be negative. I.e., the base numbers of our form of integers for bi and bj are
identical: Let si be the integer form of bi and tj be the integer form of bj . If
bi and bj are basic tones of CJ , then s = t.

To be a major root is an inner property of major chords. To be a root of CJ

depends exclusively on the position of this tone in CJ relative to the basic
matrix of CJ . Warning: to be a root in CJ does not mean to be a tonic note
in the sense of being the root of a tonic. Being a tonic note is not an inner
property of major or minor chords.

Let ti+1 and ti be two tones in any basic interval {ti+1, ti} of CJ . Then
we can find the basic tones of the form bi of CJ simply by looking at the length
of the basic interval under consideration:

(i) If L{ti+1, ti} = + 4j or L{ti+1, ti} = + 7k, then bi = ti.
(ii) If L{ti+1, ti} = + 5l or L{ti+1, ti} = + 8m, then bi = ti.
(iii) If bi is a basic tone of CJ , then all tones t of CJ with D〈bi, t〉 = 0z

(octave-distinct tones with z �= 0) are basic tones as well.
(iv) lk+1

k = + 3i or ll+1
l = + 9j does not allow to compute a basic tone of any

major chord.

Basic tones can occupy arbitrary positions within a chord. “Basic” does not
mean “deepest”!

It is up to the reader to formulate the incomplete forms of basic matrices
of minor chords CN and all possible completions of them. For all of these
forms it is then possible to identify all positions of roots within any minor
chord analogously to major chords.

The concepts major chord and minor chord are characterizations with
respect to the inner structure of chords alone. If we know the concrete pattern
of interval lengths of such a chord (its matrix), we already know the position(s)
of its roots. If we know the chord completely, we know the concrete tones being
roots.

6. Internal Harmony

Our logic of chords is a formal theory of molecules, not of atoms. Each chord
has its characteristic inner structure with respect to pitch levels. Without
further context we can identify each chord simply by seeing its inner logical
form. The minimal condition to get internal harmony is that we consider the
relation between at least two chords. We can say that internal harmony is
the togetherness of chords and nothing else. In this section we will consider
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three cases of internal harmony between two chords without looking for chord
operators which transform one chord into the other.

6.1. Relative Minor

Let us start with any major chord CJ and any minor chord CN . We can define
the relation is-a-relative-minor-of: CN RM=⇒ CJ as our first case of internal
harmony:

Definition 5. Let bCJ be any one of the basic tones of CJ and bCN be any one
of the basic tones of CN . We can say that CN is a relative minor of CJ iff the
interval distance between bCJ and bCN is + 3i (i is any integer):

CN RM=⇒ CN iff D〈bCJ , bCN 〉 = + 3i

with D〈bCJ , bCN 〉 = bCJ − bCN .

An example of the case that any A-minor chord is a relative minor chord to
any given C-major chord:

⎧
⎨

⎩

91

40

00

[
+ 51

+ 40

]1 [
+ 91

]2

⎫
⎬

⎭

RM=⇒

⎧
⎨

⎩

71

01

40

[
+ 70

+ 80

]1 [
+ 31

]2

⎫
⎬

⎭

because of D〈01, 91〉 = 01 − 91 = + 3−1

We can define the inverse:

Definition 6. CN RM⇐= CJ iff D〈bCN , bCJ 〉 = bCN − bCJ = + 9i.

⎧
⎨

⎩

71

01

40

[
+ 70

+ 80

]1 [
+ 31

]2

⎫
⎬

⎭

RM⇐=

⎧
⎨

⎩

91

40

00

[
+ 51

+ 40

]1 [
+ 91

]2

⎫
⎬

⎭

because of D〈91, 01〉 = 91 − 01 = + 90

6.2. Opposite Relative Minor

The relation is-an-opposite-relative-minor-of is the second kind of internal har-
mony. Here is the definition of this relation: CN ORM=⇒ CJ :

Definition 7. Let bCJ be any one of the basic tones of CJ and bCN be any one
of the basic tones of CN . We can say that CN is an opposite relative minor of
CJ iff the interval distance between bCJ and bCN is + 8i:

CN ORM=⇒ CJ iff D〈bCJ , bCN 〉 = + 8i

with D〈bCJ , bCN 〉 = bCJ − bCN .

An example of the cases that any E-minor chord is an opposite relative minor
chord to any given C-major chord is:



254 I. Max Log. Univers.

⎧
⎨

⎩

71

40

11−1

[
+ 31

+ 50

]1 [
+ 91

]2

⎫
⎬

⎭

ORM=⇒

⎧
⎨

⎩

71

01

40

[
+ 70

+ 80

]1 [
+ 31

]2

⎫
⎬

⎭

because of D〈01, 40〉 = 01 − 40 = + 80

Again, we can define the inverse:

Definition 8. CN ORM⇐= CJ iff D〈bCN , bCJ 〉 = bCN − bCJ = + 4i.

6.3. X-Dominant with X ∈ {∅, sub}
Let us start with two major chords CJ

1 and CJ
2 . An example could be

CJ
1 :

⎧
⎨

⎩

70

40

00

[
+ 30

+ 40

]1 [
+ 70

]2

⎫
⎬

⎭
: 3-tone-C-major chord in root position and

CJ
2 :

⎧
⎨

⎩

90

50

00

[
+ 40

+ 50

]1 [
+ 90

]2

⎫
⎬

⎭
: 3-tone-F-major chord in second inversion.

Traditionally (with respect to tonality) we could say that CJ
2 is the subdomi-

nant of CJ
1 , presupposing that CJ

1 is the tonic. But we could also say that CJ
1

is the dominant of CJ
2 , presupposing that CJ

2 is the tonic. With respect to our
understanding of internal harmony it is not decidable which reading should
be adopted. But it is internally clear that we have only these two options. We
can combine both cases under the label “CJ

1 and CJ
2 are X-dominants of each

other” with X ∈ {∅, sub}. For X = ∅ we get the dominant-reading from CJ
2

to CJ
1 . For X = sub we get the subdominant-reading from CJ

1 to CJ
2 . But we

describe the same situation between these two chords from two different tonal
points of view. Within a fixed tonal frame we cannot have both cases at once.
Cp. the following theorem-like statements:

Theorem 1. If CJ
2 is the subdominant of CJ

1 , then CJ
1 is the tonic (and not

the dominant) of CJ
2 .

Theorem 2. If CJ
1 is the dominant of CJ

2 , then CJ
2 is the tonic (and not the

subdominant) of CJ
1 .

Let us define the relation that CJ
1 and CJ

2 are X-dominats of each other:
CJ

1
XD⇐⇒ CJ

2

Definition 9. Let bCJ
1

be any one of the basic tones of CJ
1 and bCJ

2
be any one

of the basic tones of CJ
2 . We say that CJ

1 and CJ
2 are X-dominants of each

other iff the interval distance between bCJ
1

and bCJ
2

is + 7i or + 5j (i and j are
integers).

CJ
1

XD⇐⇒ CJ
2 iffD〈bCJ

1
, bCJ

2
〉 ∈ {+ 7i,+ 5j}.

Example 1.
⎧
⎨

⎩

70

40

00

[
+ 30

+ 40

]1 [
+ 70

]2

⎫
⎬

⎭

XD⇐⇒

⎧
⎨

⎩

90

50

00

[
+ 40

+ 50

]1 [
+ 90

]2

⎫
⎬

⎭
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with D〈00, 50〉 = + 7−1.
⎧
⎨

⎩

90

50

00

[
+ 40

+ 50

]1 [
+ 90

]2

⎫
⎬

⎭

XD⇐⇒

⎧
⎨

⎩

70

40

00

[
+ 30

+ 40

]1 [
+ 70

]2

⎫
⎬

⎭

with D〈50, 00〉 = + 50. Therefore, this 3-tone-C-major-chord and this 3-tone-
F-major-chord are X-dominants of each other.

Example 2.
⎧
⎨

⎩

70

40

00

[
+ 30

+ 40

]1 [
+ 70

]2

⎫
⎬

⎭

XD⇐⇒

⎧
⎨

⎩

70

20

11−1

[
+ 50

+ 30

]1 [
+ 30

]2

⎫
⎬

⎭

with D〈00, 70〉 = + 5−1.
⎧
⎨

⎩

70

20

11−1

[
+ 50

+ 30

]1 [
+ 80

]2

⎫
⎬

⎭

XD⇐⇒

⎧
⎨

⎩

70

40

00

[
+ 30

+ 40

]1 [
+ 70

]2

⎫
⎬

⎭

with D〈70, 00〉 = + 70. Therefore, this 3-tone-C-major-chord and this 3-tone-
G-major-chord are X-dominants of each other.

(a) XD⇐⇒ is irreflexive: No chord is an X-dominant of itself.
(b) XD⇐⇒ is symmetric: If CJ

1
XD⇐⇒ CJ

2 , then CJ
2

XD⇐⇒ CJ
1

(c) XD⇐⇒ is not transitive: From CJ
1

XD⇐⇒ CJ
2 and CJ

2
XD⇐⇒ CJ

3 we do not get
CJ

1
XD⇐⇒ CJ

3 .

Let C1 be the class of all major chords which contains at least one basic tone
represented by an integer of the form bi1

1 . E.g., the class of all C-major-chords
contains exactly all major chords with at least one basic tone represented by
an integer of the form 0k. The class of all C�-major-chords contains exactly
all major chords with at least one basic tone represented by an integer of the
form 1l etc. Let C2 be another class of all these major chords which contains
at least one basic tone represented by an integer of the form bi2

2 :

Theorem 3. ∀CJ
1 ∈ C1 ∀CJ

2 ∈ C2:

D < bi1
1 , bi2

2 > ∈ {+ 7i,+ 5j} ⇔ (CJ
1

XD⇐⇒ CJ
2 ).

E.g., each element of the class of all C-major-chords and each element of the
class of all F-major-chords are X-dominants of each other and vice versa. The
same holds for each element of the class of all C-major-chords and each element
of the class of all G-major-chords.

Theorem 4. There exist a class C3 with C2 ∩ C3 = ∅ and bi3
3 �= bi2

2 such that
∀CJ

1 ∈ C1 ∀CJ
3 ∈ C3 :

D < bi1
1 , bi3

3 > ∈ {+ 7i,+ 5j} ⇔ (CJ
1

XD⇐⇒ CJ
3 ).
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I.e., each major cord of class C1 has all elements of two different classes C2 and
C3 as its X-dominants. This gives us the logical space for using this constella-
tion as a cadence.
But we can define CJ

1 and CJ
3 as 2X-dominants of each other:

Definition 10. CJ
1

2XD⇐⇒ CJ
3 iff ∃CJ

2 [(CJ
1

XD⇐⇒ CJ
2 ) & (CJ

2
XD⇐⇒ CJ

3 )].

7. Unary Chord Operators

We can explicate internal harmony by using unary and binary O1 chord oper-
ators O2 which take one chord or two chords as argument (input) and gives
another chord as output. Our formation rules look like the corresponding ones
of classical propositional logic:

R1 :
C

R2 :
C

O1C
R3 :

C1 , C2

O2C1C2

R1 says that any chord standing alone is a formula.
R2 says that given a chord and applying an arbitrary unary chord operator to
it yields a chord.
R3 says that given two chords and applying a binary chord operator to them
yields a chord.

Remark. If we restrict our chord syntax to R1 and R2 only, we get our very
weak formal language L1. But it is a very interesting task to determine the
resources and limits of representing internal harmony using only L1.

There are two interesting types of unary chord operators:

(OIL): The logical behavior of such operators can be characterized by referring
exclusively to the lengths of the (basic) intervals of the argument chord with
respect to one or more fixed tones or one fixed interval. We can formulate
general rules characterizing these operators. Applying these rules results in a
systematic movement of tones if any. The concrete result depends not only on
the general rule but also on the inner structure of the chord in argument posi-
tion. We will look only at operators permuting the lengths of basic intervals.
Examples are
(1) Negation/matrix-inversion: This operator inverts the order of the lengths

of basic intervals within a fixed frame interval. As a consequence we get
the inversion of interval lengths of any grade.

(2) Reversions: Given the fixed length of the frame interval (not the interval
itself) these operators reverse the order of the lengths of basic intervals
with respect to a fixed center tone or center interval. We will consider
only the reversion of triads with a fixed middle tone.

(3) Cyclic permutation: It takes the basic interval length from the highest
(lowest position) to the lowest (highest) position in the basic matrix and
moves all the other basic interval lengths one step further.

(OT ): The logical behavior of such operators can be characterized only by
using arithmetical operations applied to integers representing tones. Examples
are:
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(1) Chord inversion operators
(2) Barré operators

7.1. Operators Permuting the Lengths of Basic Intervals

7.1.1. Chord Negation. Our negation is a chord operator which inverses the
order of the lengths of basic intervals within a fixed frame interval completely.
Any n+1-tone-chord C can be characterized by its tones and its basic matrix
in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
tn−1

...
t3
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

.

.

.
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The negation “−” can be applied to any chord of this form. We will see that
our negation “−” has some classical and some non-classical properties. It acts
within a fixed frame interval {tn+1, t1} indicating that the highest tone tn+1

and the lowest tone t1 remain unchanged and, therefore, the frame interval
{tn+1, t1} is fixed under negation.
The general rule for −C runs as follows:

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
tn−1

...
t3
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

.

.

.
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

sn

sn−1

...
s3
s2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, sn}
{sn, sn−1}

.

.

.
{s3, s2}
{s2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

with the following conditions

(i) For even-numbered n: {tn+1, sn} =IL {t2, t1}, {sn, sn−1} =IL {t3, t2},
. . . , {sn

2 +2, sn
2 +1} =IL {tn

2 +1, tn
2
}, {sn

2 +1, sn
2
} =IL {tn

2 +2, tn
2 +1}, . . . ,

{s2, t1} =IL {tn+1, tn}
(ii) For odd-numbered n: {tn+1, sn} =IL {t2, t1}, {sn, sn−1} =IL {t3, t2},

. . . , {sn+1
2 +2, sn+1

2 +1} =IL {tn+1
2

, tn+1
2 −1}, {sn+1

2 +1, sn+1
2

} =IL {tn+1
2 +1,

tn+1
2

}, {sn+1
2

, sn+1
2 −1} =IL {tn+1

2 +2, tn+1
2 +1}, . . . , {s2, t1} =IL {tn+1, tn}

– Remember: {ti, tj} =IL {tk, tl} =df L{ti, tj} = L{tk, tl}.
– In case (ii) the length of the middle interval remains unchanged. But it

can be represented by other tones.
– The deepest (lowest-pitched) tone t1 remains unchanged.
– The sharpest (highest-pitched) tone tn+1 remains unchanged.
– The frame interval {tn+1, t1} with its length L{tn+1, t1} is fixed.
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– From a phenomenological point of view this usually leads to precisely rule-
governed “movements” of the tones t2, . . . , tn within the frame interval,
but not necessarily so [cp. below].

If we negate tonal structures, we get well-known tonal correlations for free.
Some examples:7

Argument Result of negation “−” Tonal correlation

C-major root position C-minor root position⎧
⎨

⎩

70

4
00

[
+30

+40

]
[
+70

]

⎫
⎬

⎭

⎧
⎨

⎩

70

30

00

[
+40

+30

]
[
+70

]

⎫
⎬

⎭
Major/minor
same position

C-major first inversion A-minor second inversion⎧
⎨

⎩

01

70

40

[
+50

+30

]
[
+80

]

⎫
⎬

⎭

⎧
⎨

⎩

01

90

40

[
+30

+50

]
[
+80

]

⎫
⎬

⎭
Relative minor
in next position

C-major second inversion E-minor first inversion⎧
⎨

⎩

41

01

70

[
+40

+50

]
[
+90

]

⎫
⎬

⎭

⎧
⎨

⎩

41

110

70

[
+50

+40

]
[
+90

]

⎫
⎬

⎭
Opposite
relative minor
former inversion

If we add an octave to the deepest tone and put the resulting chords under
negation, we get other cases of internal harmony:

C-major root position F-minor second inversion⎧
⎪⎪⎨

⎪⎪⎩

01

70

40

00

⎡

⎣
+50

+30

+40

⎤

⎦

[
+80

+70

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

01

80

50

00

⎡

⎣
+40

+30

+50

⎤

⎦

[
+70

+80

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

Minor X-dominant 1
C-major first inversion C�-minor first inversion⎧
⎪⎪⎨

⎪⎪⎩

41

01

70

40

⎡

⎣
+40

+50

+30

⎤

⎦

[
+90

+80

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

41

11

80

40

⎡

⎣
+30

+50

+40

⎤

⎦

[
+80

+90

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

C-major second inversion G-minor root position⎧
⎪⎪⎨

⎪⎪⎩

71

41

01

70

⎡

⎣
+30

+40

+50

⎤

⎦

[
+70

+90

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

71

21

100

70

⎡

⎣
+50

+40

+30

⎤

⎦

[
+90

+70

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

Minor X-dominant 2

7 Here and in other cases we omit the superscripts indicating the grade of interval lengths.
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Theorem 5. One reason to name “−” “negation” lies in the fact that double
negation yields exactly the starting chord:

− − A = A.

Definition 11.

⎡

⎢
⎣

ln
...
l1

⎤

⎥
⎦

1

is a symmetric basic matrix of chord C =df

(i) For even-numbered n: l1 = ln, . . . , ln
2

= ln
2 +1

(ii) For odd-numbered n: l1 = ln, . . . , ln+1
2

− 1 = ln+1
2

+ 1 and ln+1
2

fixed.

Observation: For each chord C with a symmetric basic matrix holds that the
patterns on the lengths of intervals within each grade m of C are symmetric
as well. I.e., the matrix of C is symmetric. We abbreviate a chord with a
symmetric matrix CS

Theorem 6. If the argument of our negation “−” is an arbitrary CS, then
applying negation shows no effect.

−CS = CS .

This situation is analogous to the situation in several many-valued logics in
general where negation maps at least one value on itself (e.g., a third value
indeterminate) and in 4-valued semantics of the logic of first degree entailments
in particular: If we could negate expressions which show only the valuations
both and neither, then the negation of such expressions does not have any
effect at all. From a classical point of view this situation is very strange. We
can show that our negation behaves classically with respect to tonal chords
but non-classically with respect to symmetrical diminished chords:8

−
[

+30

+30

]
[
+60

]
=

[
+30

+30

]
[
+60

]

−

⎡

⎣
+30

+60

+30

⎤

⎦

[
+90

+90

]
[
+01

]
=

⎡

⎣
+30

+60

+30

⎤

⎦

[
+90

+90

]
[
+01

]

Let us summarize some essential properties of our negation “−”:
(1) Its general formal characterization is completely independent of the con-

crete tones of the argument chord.
(2) It can be applied to any chord of any complexity without any restriction.
(3) For each chord C—independently of its internal structure—double nega-

tion of C gives C back: − − C = C.
(4) The relation between the expressions −C and C is a very global case of

internal harmony.
(5) Nevertheless: The concrete result of this negation depends highly on the

concrete inner structure of the argument chord.

8 In the first 8 bars of Ludwig van Beethoven’s Opus 132 (String Quartet No. 15 in A minor
(1825)) you can find an amazing number of different diminished chords with a symmetric
matrix.
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(6) If we negate structures of major-minor tonality, we get interesting con-
crete cases of internal harmony like relative minor and kinds of chord
inversion (see below).

(7) An extreme case is the negation of chords with symmetric matrices CS :
−CS = CS .

7.1.2. Major and Minor Chords Under Negation. Our negation “−” has the
interesting property that it converts pure major chords in pure minor chords
and vice versa without any exception. To be more precise: It produces to each
pure major chord its corresponding pure minor chord and the next application
gives the original major chord back. This resembles the situation of the Routley
Star “∗”: We start in some world w. w∗ is its counterpart. And we have w∗∗ =
w.

An analogy: We can think of W as the set of all pure major chords in
the logical space of an infinite scale of integers. W ∗ is then the set of all pure
minor chords in the same logical space. W ∪ W ∗ would be then the set of all
pure tonal chords, i.e. the union of the set of all pure major chords and the set
of all pure minor chords. Finally, “−” corresponds to the Routley Star “∗” in
the sense, that one application of “−” to an element of W switches from the
set of pure major chords to its element of the set of all minor chords (W ∗). The
second application of “−” switches back not only to the first set but exactly to
the same element, the same chord. This holds for all elements of both sets in
both directions. Our negation “−” is an interesting way of a bijective mapping
between the set of all pure major chords and the set of all minor chords. With
respect to the set of all pure tonal chords it characterizes the whole space in
this respect.

Another analogy: If you would like to think about the pure major chords
as the true chords and the minor chords as the false chords (or vice versa!), and
the space of pure tonal chords as the total space, then the situation is similar
to the situation in classical logic. But be aware that the set of all pure tonal
chords is only a small proper subset of the set all logically possible chords!
The underlying meta-theorem of the remarks above reads as follows:

Theorem 7. Let J be the set of all pure major chords and N be the set of all
pure minor chords:

∀C[(C ∈ J ⇔ −C ∈ N ) & (−C ∈ J ⇔ C ∈ N )].

Because of − − C = C it is clear that we have

∀C[C ∈ J ⇔ − − C ∈ J ]and
∀C[C ∈ N ⇔ − − C ∈ N ]

The proof of the theorem presupposes the explication of the general form of
basic interval lengths of major chords as well as the general form of basic
interval lengths of minor chords (cp. above). Then it is easy to see that the
complete inversion of the order of the lengths of basic intervals transforms one
form into the other and vice versa.
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Because of the last theorem we know that CJ and −CJ (CN and −CN )
have different patterns of interval lengths. If C would be an CS , then A and
−A have the same pattern of interval lengths. This leads to the following
meta-theorem:

Theorem 8. There are neither pure major chords nor pure minor chords with
symmetric patterns of interval lengths: let T be the set of all pure tonal chords.
Then

∀C[C ∈ T ⇒ C �= CS ].

7.1.3. Other Reversion Operators with Respect to Triads. Fixing the frame
interval means fixing its interval length together with the pitches of the two
tones realizing that interval. We get alternative reversion operators by fixing
the length of the frame interval together with at most one tone of that interval.
If we look at triads (3-tone-chords) of any kind, it is possible to fix (a) only
the highest tone of the frame interval, (b) only the lowest tone of the frame
interval or (c) the middle tone of this chord. Here is the rule of the reversion
operator −2 with respect to a fixed middle tone:

Definition 12. (Rm)

−2

⎧
⎨

⎩

t3
t2
t1

[
{t3, t2}
{t2, t1}

]
[
{t3, t1}

]

⎫
⎬

⎭
=⇒

⎧
⎨

⎩

s3
t2
s1

[
{s3, t2}
{t2, s1}

]
[
{s3, s1}

]

⎫
⎬

⎭

with

(1) {s3, t2} =IL {t2, t1}
(2) {t2, s1} =IL {t3, t2} and, therefore,
(3) {s3, s1} =IL {t3, t1}: length of frame interval is fixed but normally real-

ized by other tones.9

Argument Result of negation “−2” Tonal correlation

C-major root position C�-minor root position⎧
⎨

⎩

70

4
00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭

⎧
⎨

⎩

80

40

10

[
+4
+3

]
[
+7

]

⎫
⎬

⎭
Major/1+minor
same position

C-major first inversion G-minor second inversion⎧
⎨

⎩

01

70

40

[
+5
+3

]
[
+8

]

⎫
⎬

⎭

⎧
⎨

⎩

101

70

20

[
+3
+5

]
[
+8

]

⎫
⎬

⎭
X-dominant minor
next inversion

C-major second inversion F-minor first inversion⎧
⎨

⎩

41

01

70

[
+4
+5

]
[
+9

]

⎫
⎬

⎭

⎧
⎨

⎩

51

01

80

[
+5
+4

]
[
+9

]

⎫
⎬

⎭
X-dominant
former inversion

9 We omit the superscripts “0” of the numbers indicating the length of intervals.
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Theorem 9. Let C3 be any triad: −2 −2 C3 = C3.

Theorem 10. Let C3S be any triad with a symmetrical matrix: −2C
3S = C3S.

Theorem 11. Let C be a triad with a matrix of the form

{[
l32

l21

]
[
l31

]
}

:

−
{[

l32

l21

]
[
l31

]
}

= −2

{[
l32

l21

]
[
l31

]
}

.

But remember that the last theorem only means that all interval lengths are
identical, but normally the frame interval will be realized by other tones. Com-
pare:

−

⎧
⎨

⎩

70

40

00

[
+30

+40

]
[
+70

]

⎫
⎬

⎭
=

⎧
⎨

⎩

70

30

00

[
+40

+30

]
[
+70

]

⎫
⎬

⎭

−2

⎧
⎨

⎩

70

40

00

[
+30

+40

]
[
+70

]

⎫
⎬

⎭
=

⎧
⎨

⎩

80

40

10

[
+40

+30

]
[
+70

]

⎫
⎬

⎭

By alternately iterating “−” and “−2” we can walk through the circle of fifths
chromatically switching between major- and minor-chords and keeping root
position. We start with C-major-triad in root position:
(a) Upwards

C-major C�-minor

∅

⎧
⎨

⎩

70

40

00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
−2

⎧
⎨

⎩

80

40

10

[
+4
+3

]
[
+7

]

⎫
⎬

⎭

C�-major D-minor

−−2

⎧
⎨

⎩

80

50

10

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
−2 − −2

⎧
⎨

⎩

90

50

20

[
+4
+3

]
[
+7

]

⎫
⎬

⎭

D-major

− −2 −−2

⎧
⎨

⎩

90

60

20

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
. . . . . .
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(b) Downwards

C-major C-minor

∅

⎧
⎨

⎩

70

40

00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
−

⎧
⎨

⎩

70

30

00

[
+4
+3

]
[
+7

]

⎫
⎬

⎭

B-major B-minor

−2−

⎧
⎨

⎩

60

3
11−1

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
−−2−

⎧
⎨

⎩

60

20

11−

[
+4
+3

]
[
+7

]

⎫
⎬

⎭

B-flat-major

−2−−2−

⎧
⎨

⎩

50

2
10−2

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
. . . . . .

7.1.4. Cyclic Chord Operators. In many-valued logics with linearly ordered
truth values represented by natural numbers, cyclic negation is a unary truth
function that takes a truth value n and returns n − 1 as value if n is not the
lowest value; otherwise it returns the highest value. Following this idea by Emil
Post we can characterize cyclic chord operators upwards ↑ and downwards ↓
by the following general rules:

↑

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
tn−1

...
t3
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

.

.

.
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

sn

sn−1

...
s3
s2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, sn}
{sn, sn−1}

.

.

.
{s3, s2}
{s2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

with {tn+1, sn} =IL {t2, t1}, {sn, sn−1} =IL {tn+1, tn}, . . . , {s3, s2} =IL

{t4, t3}, {s2, t1} =IL {t3, t2}

↓

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
tn−1

...
t3
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

.

.

.
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

sn

sn−1

...
s3
s2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, sn}
{sn, sn−1}

.

.

.
{s3, s2}
{s2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

with {s2, t1} =IL {tn+1, tn}, {s3, s2} =IL {t2, t1}, . . . , {sn, sn−1} =IL {tn−1,
tn−2}, {tn+1, sn} =IL {tn, tn−1}
Theorem 12. With respect to triads “−”, “↑” and “↓” are indistinguishable:
Let C3 be any triad. Then

−C3 = ↑ C3 = ↓ C3.
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Theorem 13. Let C4 be any 4-tone-chord. Then ↑↑↑ C4 = ↓↓↓ C4 = C4.

Theorem 14. Let Cn+1 be any n + 1-tone-chord:

↑ . . . ↑
︸ ︷︷ ︸
n−times

Cn+1 = ↓ . . . ↓
︸ ︷︷ ︸
n−times

Cn+1 = Cn+1.

Let us look at two examples of applying “↑” to 4-tone-chords C4 and the
internal harmonic relations.

Example 1. C4 = 4-Tone-C-major-chord in root position:

C-major root position A-flat-major first inversion

↑

⎧
⎪⎪⎨

⎪⎪⎩

01

70

40

00

⎡

⎣
+5
+3
+4

⎤

⎦

[
+8
+7

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

01

80

30

00

⎡

⎣
+4
+5
+3

⎤

⎦

[
+9
+8

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

Another major: root distance +4
A-flat-major first inversion F-major second inversion

↑

⎧
⎪⎪⎨

⎪⎪⎩

01

80

30

00

⎡

⎣
+4
+5
+3

⎤

⎦

[
+9
+8

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

01

90

50

00

⎡

⎣
+3
+4
+5

⎤

⎦

[
+7
+8

]
[
+01

]

⎫
⎪⎪⎬

⎪⎪⎭

Another major: root distance +3

Applying ↑ to any 4-tone-major-chord in root position produces only major
chords. The introduction of double ↑ yields the X-dominant of the argument
chord.

Example 2. C4 = 4-tone-C-seventh-major-chord in root position:

C-major seventh root position E�-minor root position

↑

⎧
⎪⎪⎨

⎪⎪⎩

100

70

40

00

⎡

⎣
+3
+3
+4

⎤

⎦

[
+6
+7

]
[
+10

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

100

60

30

00

⎡

⎣
+4
+3
+3

⎤

⎦

[
+7
+6

]
[
+10

]

⎫
⎪⎪⎬

⎪⎪⎭

and Major sixth as deepest tone
E�-minor & major sixth C-minor seventh root position

↑

⎧
⎪⎪⎨

⎪⎪⎩

100

60

30

00

⎡

⎣
+4
+3
+3

⎤

⎦

[
+7
+6

]
[
+10

]

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

100

70

30

00

⎡

⎣
+3
+4
+3

⎤

⎦

[
+7
+7

]
[
+10

]

⎫
⎪⎪⎬

⎪⎪⎭

Symmetrical matrix pattern

7.2. Arithmetic, Tone-Related Chord Operators

Tone-related chord operators are unary operators where we have to use arith-
metic operations to characterize the logical properties. We look at two exam-
ples.
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7.2.1. Chord Inversion Iu . The general characterization of the (tonal) chord
inversion operator upwards Iu is10

Iu

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
tn−1

...
t3
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

.

.

.
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 + m × 12
tn+1

tn
...
t4
t3
t2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{t1 + m × 12, tn+1}
{tn+1, tn}

.

.

.
{t4, t3}
{t3, t2}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

with the following conditions

(i) m = 1, if L{tn+1, t1} < 12
(ii) m = 2, if 12 ≤ L{tn+1, t1} < 24.
(iii) in general: m = i, if ((i − 1) × 12) ≤ L{tn+1, t1} < (i × 12), 1 < i.

The new highest tone has the same basic number as the former deepest tone.
And it is the closest possible tone to the former highest tone.

Iu

{
70

30

00

[
+4
+3

]

[+7 ]

}

=

{
01

70

30

[
+5
+4

]

[+9 ]

}

We get the new basic interval length +50 out of L{00 + (1 × 12), 70}, i.e.,
L{01, 70} and also a new length of the frame interval: +50 The traditional name
for chords of that matrix is (minor) sixth chord. It characterizes the length of
the frame interval with respect to a minor chord: +90. It is an elliptic and
context-dependent name: (a) It is elliptic because the full name with respect
to the inner structure of that chord would be major-triad/fourth/major-sixth-
chord. The name with respect to its basic matrix would be simply major-
triad/fourth-chord. (b) It is context-dependent because it could be understood
as indicating a functional relation to another chord (3-tone-minor-chord in root
position). But then it is not a name of the chord itself. It is a name of a relation
to another chord. Then it is a name of a special case of internal harmony,
usually called fist inversion. We explicate fist inversion by one application of
Iu to a minor or major triad in root position.

But we can apply Iu to any chord within our logical space. I.e., that we
can apply it to chords with more than three tones (e.g., seventh chords) and
to tonally unpleasant chords as well:

Iu

⎧
⎪⎨

⎪⎩

100

90

30

00

[
+1
+6
+3

] [
+7
+9

]

[+10 ]

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

01

100

90

30

[
+2
+1
+6

] [
+3
+7

]

[+9 ]

⎫
⎪⎬

⎪⎭

10 We omit the superscript “1” of the basic matrices.
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Applying Iu twice yields the second inversion of a minor triad in root position:

IuIu

{
70

30

00

[
+4
+3

]

[+7 ]

}

=

{
31

01

70

[
+3
+5

]

[+8 ]

}

Three application of Iu reproduces the matrix of the triad and the basic num-
ber of each tone, but one octave higher:

IuIuIu

{
70

30

00

[
+4
+3

]

[+7 ]

}

=

{
71

31

01

[
+4
+3

]

[+7 ]

}

.

It would be easy to characterize the corresponding chord inversion operator
downwards Id. The first application of this operator to a (tonal) triad would
yield another second inversion of this chord.

7.2.2. Barré oerators β+i and β−j . Barré-operators have the form β+i or the
form β−j , respectively. The index +i indicates the number of steps of increasing
the pitch of each tone of a argument chord. β+i characterizes the move of a
barreing one step “higher” (e.g., on a guitar). β+3C says, that the chord C
is transformed into a chord with an identical matrix (isomorphic pattern of
interval lengths) via increasing the pitch of each tone ti ∈ C by three steps on
the chromatic scale. β−jC does the same thing in the opposite direction.

The general rules of Barré-operators are:

β+i

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
.
.
.
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

...
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1 + i
tn + i

.

.

.
t2 + i
t1 + i

⎡

⎢
⎢
⎢
⎢
⎢
⎣

{tn+1 + i, tn + i}
{tn + i, tn−1 + i}

...
{t3 + i, t2 + i}
{t2 + i, t1 + i}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

β−j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1

tn
.
.
.
t2
t1

⎡

⎢
⎢
⎢
⎢
⎢
⎣

{tn+1, tn}
{tn, tn−1}

...
{t3, t2}
{t2, t1}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

tn+1 − j
tn − j

.

.

.
t2 − j
t1 − j

⎡

⎢
⎢
⎢
⎢
⎢
⎣

{tn+1 − j, tn − j}
{tn − j, tn−1 − j}

...
{t3 − j, t2 − j}
{t2 − j, t1 − j}

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Because of {tk +i, tl+i} =IL {tk +i, tl+i} and {tk −j, tl−j} =IL {tk +i, tl+i}
for all k and l we get immediately that the chords C, β+iC and β−jC have
isomorphic matrices.
Additionally, we observe that one application of β+1 on triads of the form⎧
⎨

⎩

70

40

00

[
+4
+3

]
[
+7

]

⎫
⎬

⎭
coincides with the application of the operator sequence

−−2:
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β+1

⎧
⎨

⎩

70

40

00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
=

⎧
⎨

⎩

80

50

10

[
+3
+4

]
[
+7

]

⎫
⎬

⎭

−2

⎧
⎨

⎩

70

40

00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
=

⎧
⎨

⎩

80

40

10

[
+4
+3

]
[
+7

]

⎫
⎬

⎭

−

⎧
⎨

⎩

80

40

10

[
+4
+3

]
[
+7

]

⎫
⎬

⎭
=

⎧
⎨

⎩

80

50

10

[
+3
+4

]
[
+7

]

⎫
⎬

⎭

This demonstrates that the iteration of operators acting only with respect to
interval lengths can show stable arithmetical effects. The 12-fold application
of β+1 is identical with the threefold application of Iu:

β+1 . . . β+1
︸ ︷︷ ︸
12−times

⎧
⎨

⎩

70

40

00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭
= IuIuIu

⎧
⎨

⎩

70

40

00

[
+3
+4

]
[
+7

]

⎫
⎬

⎭

8. Some Applications and Perspectives

Applications of our logic of chords can be of interest for several disciplines and
practices: logic itself, philosophy, music theory, computer science, cognitive
science, linguistics, etc. Let us mention some candidates:
(1) It should be possible to embed the entire language of classical proposi-

tional logic (propositional constants/variables, negation and binary con-
nectives) isomorphically into a well-defined sublanguage of our molecular
logic of chords. Following this line we are able to represent any tautology
and any contradiction formally and audibly.

(2) An interesting task would be to find precise characterizations of special
cases of internal harmony corresponding to major-minor tonality, dode-
caphony, serial music etc.

(3) If a formal theory of rhythm is available, it can be combined with the
logic of chords to a more general theory of music. It is also promising to
find an axiomatization.

(4) Chord sequences are interesting cases in the context of Wittgenstein’s
concept of family resemblances. Chords resemble one another regarding
tones, regarding basic numbers of tones, intervals, interval lengths of the
same grade or of different grades, the basic numbers of interval lengths,
more complex parts of matrices etc.

(5) Our vocabulary allows a precise distinction between the inner structure
of chords, internal and external aspects of harmony. A nice example is the
famous Neapolitan chord. The name itself has a cultural context: associ-
ated with the Neapolitan School. If we analyze compositions, we will find
that Neapolitan chord is not a proper name, because there are a lot of dif-
ferent chords with a different number of tones and very different matrices.
What is common to them is that they are all elements of the set of major
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chords. The internal harmony can be described by using another chord
as reference point (usually as tonic) and apply a unary operator to one
of its X-dominants (usually called subdominant). But if we speak about
its function using formulations like “preparing the dominant” or “func-
tions as a subdominant without being a subdominant”, then this belongs
to an external (metaphorical) kind of speaking or indicates conceptual
confusion.

(6) If one puts a Neapolitan chord into the “wrong” position of a cadence,
then it produces something which is called “violation of expectation” in
cognitive science. On the one hand the logic of chords can be used to
make this concept much more precise. On the other hand iterated appli-
cations of chord operators yield expected and unexpected continuations
of sequences of chords in a systematic way. If such sequences are used in
experiments in neuroscience, the obtained data can be interpreted in the
context of formally controlled experimental settings.

(7) We can use chord operators in the context of analyzing pieces of mu-
sic. Using chord operators is an alternative way in describing internal
harmonic relations.

(8) An interesting topic in computer science is the automatic recognition of
patterns. The logic of chords offers an alternative tool to have access to
these patterns.

(9) Looking at chord operators and matrices of chords could also be of in-
terest for composers. With respect to the inner form of chords there is
an alternative to all-interval twelve-ton rows: all-interval-length chords.
All-interval-length chords are structures which contain each of the inter-
val lengths + 10,+ 20, . . . ,+ 100,+ 110 at least once. Perfect all-interval-
length chords are structures there we have each of the mentioned interval
lengths exactly once. A nice example is the matrix

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

+60

+40

+50

+20

+10

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

+100

+90

+70

+30

⎤

⎥
⎥
⎦

⎡

⎣
+31

+110

+80

⎤

⎦

[
+51

+01

]
[
+61

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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