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Abstract. This expository paper on Aristotle’s prototype underlying logic
is intended for a broad audience that includes non-specialists. It requires
as background a discussion of Aristotle’s demonstrative logic. Demon-
strative logic or apodictics is the study of demonstration as opposed to
persuasion. It is the subject of Aristotle’s two-volume Analytics, as its first
sentence says. Many of Aristotle’s examples are geometrical. A typical ge-
ometrical demonstration requires a theorem that is to be demonstrated,
known premises from which the theorem is to be deduced, and a deductive
logic by which the steps of the deduction proceed. Every demonstration
produces (or confirms) knowledge of (the truth of) its conclusion for ev-
ery person who comprehends the demonstration. Aristotle presented a
general truth-and-consequence theory of demonstration meant to apply to
all demonstrations: a demonstration is an extended argumentation that
begins with premises known to be truths and that involves a chain of
reasoning showing by deductively evident steps that its conclusion is a
consequence of its premises. In short, a demonstration is a deduction whose
premises are known to be true. Aristotle’s general theory of demonstra-
tion required a prior general theory of deduction presented in the Prior
Analytics. His general immediate-deduction-chaining theory of deduction
was meant to apply to all deductions: any deduction that is not imme-
diately evident is an extended argumentation that involves a chaining of
immediately evident steps that shows its final conclusion to follow log-
ically from its premises. His deductions, both direct and indirect, were
rule-based and not tautology-based. The idea of tautology-based deduc-
tion, which dominated modern logic in the early years of the 1900s, is
nowhere to be found in Analytics. Rule-based (or “natural”) deduction
was rediscovered by modern logicians. To illustrate his general theory
of deduction, Aristotle presented a prototype: an ingeniously simple and
mathematically precise special case traditionally known as the categori-
cal syllogistic. With reference only to propositions of the four so-called
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categorical forms, he painstakingly worked out exactly what those imme-
diately evident deductive steps are and how they are chained to complete
deductions. In his specialized prototype theory, Aristotle explained how
to deduce from a given categorical premise set, no matter how large, any
categorical conclusion implied by the given set. He did not extend this
treatment to non-categorical deductions, thus setting a program for fu-
ture logicians. The prototype, categorical syllogistic, was seen by Boole
as a “first approximation” to a comprehensive logic. Today, however it
appears more as the first of the dozens of logics already created and as
the first exemplification of a family that continues to expand.
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1. Introduction

In the long history of this text even what is obvious
has often been overlooked.

—Norman Kretzmann on a passage in the Organon, Buffalo, 1972.

This expository paper on Aristotle’s prototype underlying logic is in-
tended for a broad audience that includes non-specialists. It requires as back-
ground a discussion of Aristotle’s demonstrative logic. Demonstrative logic
presupposes the Socratic knowledge/belief distinction, between knowledge (be-
liefs that are known) and opinion (those that are not known). As said in the
abstract, Aristotle’s general theory of demonstration required the prior general
theory of deduction presented in the Prior Analytics. His general immediate-
deduction-chaining theory of deduction was meant to apply to all deductions.
According to him, any deduction that is not immediately evident is an ex-
tended argumentation1 that involves a chaining of immediately evident steps
that shows its final conclusion to follow logically from its premises.

The task of demonstration is to make known what is not known: by ex-
traction of information contained in what is known. Starting with what is
known, demonstration produces knowledge of the unknown. It is a common
and perhaps natural mistake to think that demonstration is limited to making
evident what is not immediately evident. This mistake continues to be made:
see von Plato [62, p. 5]. The premises of a demonstration must be known to
be true, of course, but they do not need to be immediately evident. Indeed, as
explained in Corcoran [11], for Aristotle the ultimate premises of demonstra-
tion were known by epagoge (traditionally translated ‘induction’) an arduous
process of deriving knowledge from experience. For a more detailed treatment
see Hintikka’s excellent account in his 1980 article ‘Aristotelian Induction’,
Hintikka [38].

1 For an extended discussion of argumentation and argumentations, see Corcoran [14].
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To illustrate his general theory of deduction, Aristotle presented a proto-
type: an ingeniously simple and mathematically precise special case tradition-
ally known as the categorical syllogistic. With reference only to propositions of
the four so-called categorical forms, he painstakingly worked out exactly what
those immediately evident deductive steps are and how they are chained. In his
specialized theory, Aristotle explained how to deduce from a given categorical
premise set, no matter how large, any categorical conclusion implied by the
given set. He did not extend this treatment to non-categorical deductions, thus
setting a program for future logicians. The prototype, categorical syllogistic,
was seen by Boole as a “first approximation” to a comprehensive logic. Today,
however it is regarded as the first of the dozens of logics already created and
as the first exemplification of a genus that continues to expand.

2. The Truth-and-Consequence Conception of Demonstration

Demonstrative logic or apodictics is the study of demonstration (conclusive or
apodictic proof) as opposed to persuasion or even probable proof.2 Demon-
stration produces knowledge. Probable proof produces grounded opinion. Per-
suasion merely produces opinion. Demonstrative logic thus presupposes the
Socratic knowledge/belief distinction.3 Every proposition that I know [to be
true] I believe [to be true], but not conversely. I know that some, perhaps
most, of my beliefs are not knowledge. Every demonstration produces knowl-
edge of the truth of its conclusion for every person who comprehends it as a
demonstration.4 Strictly speaking, there is no way for me to demonstrate a
conclusion for another person. There is no act that I can perform on another
that produces the other’s knowledge. People who share my knowledge of the
premises must deduce the conclusion for themselves—although they might do
so by autonomously following and reconfirming my chain of deduction.5

Demonstration makes it possible to gain new knowledge by use of previ-
ously gained knowledge. A demonstration reduces a problem to be solved to

2 As the words are being used here, demonstration and persuasion are fundamentally dif-
ferent activities. The task of demonstration is production of knowledge, which requires that
the conclusion be true. The task of persuasion is production of belief to which the question
of truth is irrelevant. Of course, when I demonstrate, I produce belief. Nevertheless, when I
have demonstrated a proposition, it would be literally false to say that I persuaded myself of
it. Such comments are made. Nevertheless, they are falsehoods or misleading and confusing
half-truths when said without irony or playfulness.
3 There is an extensive and growing literature on knowledge and belief. See Corcoran and
Hamid [27].
4 Aristotle seemed to think that demonstration is universal in the sense that a discourse
that produces demonstrative knowledge for one rational person does the same for any other.
He never asked what capacities and what experiences are necessary before a person can
comprehend a given demonstration (Corcoran [14, pp. 22f]).
5 Henri Poincaré (Newman [49, p. 2043]) said that he recreates the reasoning for himself in
the course of following someone else’s demonstration. He said that he often has the feeling
that he “could have invented it”.
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problems already solved. See Corcoran [14, pp. 17 and 19], Spanish transla-
tion [16]. This point was central to the Peripatetic legacy. As noted by Ian
Mueller [48, p. 1]: “Alexander [of Aphrodisias] is very concerned to defend
Aristotelian logic as the tool (organon) of philosophy and science, a means for
making unknown things known through known premises”.

Demonstrative logic is not an exhaustive theory of scientific knowledge.
For one thing, demonstration presupposes discovery; before we can begin to
prove, we must have a conclusion, a hypothesis to try to prove. Apodictics
presupposes heuristics, which has been called the logic of discovery. Demon-
strative logic explains how a hypothesis is proved; it does not explain how it
ever occurred to anyone to accept the hypothesis as something to be proved or
disproved. If we accept Davenport’s 1950 characterization [29, p. 9] that the
object of a science is to discover and establish propositions about its subject
matter, we can say that science involves heuristics (for discovering) and apod-
ictics (for establishing). Besides the unknown conclusion, we also need known
premises. Demonstrative logic does not explain how the premises are known
to be true. Thus, apodictics also presupposes epistemics, sometimes called the
logic of truth, which will be discussed briefly below.

Demonstrative logic is the subject of Aristotle’s two-volume Analytics, as
he said in the first sentence of the first volume, the Prior Analytics [1]—a point
emphasized in 1989 both by Gasser [35] and by Smith [59, p. xiii]. Aristotle
repeatedly referred to geometry for examples. However, shortly after having
announced demonstration as his subject, Aristotle turned to deduction, the
process of extracting information contained in given premises—regardless of
whether those premises are known to be true or even whether they are true.
After all, even false propositions imply logical consequences; we can determine
that a premise is false by deducing from it a consequence we already know
to be false. A deduction from unknown premises also produces knowledge—
of the fact that its conclusion follows logically from (is a consequence of) its
premises—not knowledge of the truth of its conclusion.6

In the beginning of Chapter 4 of Book A of Prior Analytics [1, 25b30],
Aristotle wrote the following (1991 translation by Gasser [36, pp. 235f]):

Deduction should be discussed before demonstration. Deduction is
more general. Every demonstration is a deduction, but not every
deduction is a demonstration.

Aristotle implied the same point elsewhere. In Chapter 10 of Book A of Pos-
terior Analytics, [2, 76b23], he wrote the following (translation by Mure in
McKeon [47, p. 29]):

6 In some cases it is obvious that the conclusion follows from the premises, e.g., if the conclu-
sion is one of the premises. However, in many cases a conclusion is temporarily hidden, i.e.,

cannot be seen to follow without a chaining of two or more deductive steps (Corcoran [25]).
Moreover, as Gödel’s work has taught, in many cases a conclusion that follows from given
premises is permanently hidden: it cannot be deduced from those premises by a chain of
deductive steps no matter how many steps are taken.
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All syllogism, and therefore a fortiori all demonstration, is addressed
not to the spoken word but to the discourse within the soul.

Demonstrative logic is temporarily supplanted by deductive logic, the study
of deduction in general. Since demonstration is one of many activities that use
deduction, it is reasonable to study deduction before demonstration.

Although Aristotle referred to demonstrations7 several times in Prior
Analytics, he did not revisit demonstration per se until the Posterior Analytics,
the second volume of the Analytics. Deductive logic is the subject of the first
volume.

It has been said that one of Aristotle’s greatest discoveries was that de-
duction is cognitively neutral: the same process of deduction used to draw a
conclusion from premises known to be true is also used to draw conclusions
from propositions whose truth or falsity is not known, or even from premises
known to be false.8 The same process of deduction used to extend our knowl-
edge is also used to extend our opinion. Moreover, it is also used to determine
consequences of propositions that are not believed and that might even be
disbelieved or even known to be false.

Another of his important discoveries was that deduction is topic neutral:
the same process of deduction used to draw a conclusion from geometrical
premises is also used to draw conclusions from propositions about biology or
any other field. His point, using the deduction/demonstration distinction, was
that as far as the process is concerned, i.e., after the premises have been set
forth, demonstration is a kind of deduction: demonstrating is deducing from
premises known to be true.

Deduction is content independent in the sense that no knowledge of the
subject matter per se is needed. It is not necessary to know the numbers, the
subject matter of arithmetic, in order to deduce “No square number that is
perfect is a prime number that is even” from “No prime number is square”. Or
more interestingly, it is not necessary to know the subject matter to deduce
“Every number other than zero is the successor of a number” from “Every
number has every property that belongs to zero and to the successor of every
number it belongs to”.

Moreover, Aristotle also discovered that deduction is non-empirical in
the sense that external experience is irrelevant to the process of deducing a

7 As will be seen below, it is significant that all demonstrations mentioned in Prior Analytics
are geometrical and that most of them involve indirect reasoning or reductio ad absurdum.
Incidentally, although I assume in this paper that Prior Analytics precedes Posterior An-
alytics, my basic interpretation is entirely compatible with Solmsen’s insightful view that
Aristotle’s theory of demonstration was largely worked out before he discovered the class
of deductions and realized that it includes the demonstrations as a subclass (Ross [55, pp.
6–12, esp. 9]).
8 Of course, demonstration is not cognitively neutral. The whole point of a demonstration
is to produce knowledge of its conclusion. It is important to distinguish the processes of de-
duction and demonstration from their respective products, deductions and demonstrations.
Although the process of deduction is cognitively neutral, it would be absurd to say that the
individual deductions are cognitively neutral. How can deductions be cognitively neutral
when demonstrations are not? After all, every demonstration is a deduction.
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conclusion from premises. Diagrams, constructions, and other aids to imagin-
ing or manipulating subject matter are irrelevant hindrances to purely logical
deduction. See Prior Analytics [1, 49b33–50a4] and Smith [59, p. 173].9 In fact,
in the course of a deduction, any shift of attention from the given premises to
their subject matter risks the fallacy of premise smuggling—information not in
the premises but intuitively evident from the subject matter might be tacitly
assumed in an intermediate conclusion. This would be a non sequitur, vitiating
the logical cogency of reasoning even if not engendering a material error.10

Aristotle did not explicitly mention the idea that deduction is information
processing, but his style clearly suggests it. In fact, his style has seemed to some
to suggest the even more abstract view that in deduction one attends only to
the logical form of the argument ignoring the content entirely.11

For Aristotle, a demonstration begins with premises that are known to
be true and shows by means of chaining of evident steps that its conclusion is
a logical consequence of its premises. Thus, a demonstration is a step-by-step
deduction whose premises are known to be true. For him, one of the main
problems of logic (as opposed to, say, geometry) is to describe in detail the
nature of the deductions and the nature of the individual deductive steps, the
links in the chain of reasoning. Another problem is to say how the deductions
are constructed. This might have been the, or one of the problems Aristotle
promised to deal with when he wrote the following in the beginning of Chapter
4 of Book A of Prior Analytics [1, 25b26] (1989 translation by Smith [59, p. 4]).

Let us now say through what premises, when,
and how every deduction comes about.

As we show below Aristotle gave, in full detail, instructions by which
each categorical deduction is constructed, but, as difficult and important this
achievement was, it does not explain how every deduction “comes about”. To
do that it would be necessary to explain how humans came to possess the skill
or operational knowledge of deduction. See Corcoran and Hamid [27] and also
Corcoran [14] Spanish translation [16], where the problem is described in more
detail.

9 Other writers, notably Kant and Peirce, have been interpreted as holding the nearly
diametrically opposite view that every mathematical demonstration requires a diagram.
10 Of course, this in no way rules out heuristic uses of diagrams. For example, a diagram,
table, chart, or mechanical device might be heuristically useful in determination of which
propositions it is promising to try to deduce from given premises or which avenues of deduc-
tion it is promising to pursue. However, according to this viewpoint, heuristic aids cannot
substitute for apodictic deduction. This anti-diagram view of deduction dominates modern
mainstream logic. In modern mathematical folklore, it is illustrated by the many and off-told
jokes about mathematics professors who hide or erase blackboard illustrations they use as
heuristic or mnemonic aids.
11 This formalistic view of deduction is not one that I can subscribe to, nor is one that Aristo-

tle ever entertained. See Corcoran [14]. The materialistic and formalistic views of deduction
are opposite fallacies. They illustrate what Frango Nabrasa (per. comm.) called “Newton’s
Law of Fallacies”: for every fallacy there is an equal and opposite fallacy—overzealous at-
tempts to avoid one land the unwary student in the other.
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Curiously, as Gasser and others have noted, Aristotle seems to have ig-
nored a problem that deeply concerned later logicians, viz., the problem of
devising a criterion for recognizing demonstrations. See Gasser [35].

Thus, at the very beginning of logic we find what has come to be known
as the truth-and-consequence conception of demonstration: a demonstration is
a discourse or extended argumentation that begins with premises known to be
truths and that involves a chain of reasoning showing by evident steps that its
conclusion is a consequence of its premises. The adjectival phrase ‘truth-and-
consequence’ is elliptical for the more informative but awkward ‘established-
truth-and-deduced-consequence’.

3. Demonstratives and Intuitives

Following the terminology of Peirce (b.1839–d.1914), a belief that is known to
be true may be called a cognition. Cognitions that were obtained by demon-
stration are said to be demonstrative or apodictic. Cognitions that were not
obtained by demonstration are said to be intuitive. In both cases, it is conve-
nient to shorten the adjective/noun combination into a noun. Thus, we will
speak of demonstratives instead of demonstrative cognitions and of intuitives
(or intuitions) instead of intuitive cognitions. In his 1868 paper on cognitive
faculties, Peirce has a long footnote on the history of the words ‘intuition’
and ‘intuitive’. Shortly after introducing the noun, he wrote [52, pp. 11–12],
“Intuition here will be nearly the same as ‘premise not itself a conclusion’.”
For more of Peirce on intuition see [53].

Just as individual deductions are distinguished from the general process
of deduction through which they are obtained, individual intuitions are distin-
guished from the general process of intuition through which they are obtained.
Moreover, just as individual attempts to apply deduction are often arduous
and often erroneous, individual attempts to apply intuition are often arduous
and often erroneous. Not every intuition is “intuitively obvious” and not every
belief thought to be an intuition actually is one, as Tarski said in [61], quoted
from [39, pp. 110f and 117]. Intuitions may be said to be self-evident or im-
mediate in any of several senses, but not in the sense of “trivial”, “obvious”,
“easy”, or “instant”. The processes of deduction and intuition are equally fal-
lible in the sense that there is no guarantee that attempts to apply them will
always succeed.

Some writers subdivide intuitives into those that involve sense percep-
tion essentially and those known purely intellectually. However, other writers
use different terminology for the two subclasses. They call intuitives known
by senses ‘inductions’ and they restrict ‘intuition’ to intuitives known intel-
lectually. For example, the ancient physician Galen (129–216 CE), wrote the
following in his Institutio Logica [34, I.1], translated by Kieffer [42, p. 31].

As human beings, we all know one kind of evident things through
sense perception and another through . . . intellectual intuition. These
we know without demonstration. But things known neither by sense
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perception nor by intellectual intuition, we know through demon-
stration.

It is impossible to have informative demonstrative knowledge without intuitive
knowledge.12 This point was made by Plato, Aristotle, Galen, Leibniz, Pascal,
and many others including Tarski [39, p. 117]. However, it is difficult for people
to determine with certainty exactly which of their cognitions are intuitive and
which are demonstrative. Peirce said in the 1868 paper that there is no evidence
that we have the ability to determine, given an arbitrary cognition, whether
it is intuitive or demonstrative [52, p. 12]. In his 1980 article “Aristotelian
Induction”, Hintikka [38] gave an excellent account of Aristotle’s view of how
intuitive cognitions are achieved. Hintikka’s view agrees substantially with that
of Beth [3, p. 34].13

12 This passage refers to informative knowledge. It should not be taken to exclude the
possibility of uninformative demonstrative knowledge not based on intuitive premises. For
example, we have uninformative demonstrative knowledge of many tautologies, e.g., that
every even number that is prime is a prime number that is even. Aristotle’s syllogistic did
not recognize tautologies and thus did not recognize the role of tautologies in deduction,
which was one of Boole’s revolutionary discoveries [20].
13 It is important to understand how this terminology is to be used. For purpose of discussion,
let us assume for the moment that once a person has a cognition, it is never lost, forgotten,
or renounced. Let us further assume that people start out devoid of cognitions. As each
cognition is achieved, it is established as an intuitive or as a demonstrative. For a given
person, no cognition is both. However, I know of no reason for not thinking that perhaps
some of one person’s intuitive cognitions are among another person’s demonstratives. A
seasoned investigator can be expected to have a far greater number of intuitive cognitions
than a neophyte.

In order to understand the truth-and-consequence conception of demonstration, it is
useful to see how an “apparent” demonstration fails. Since a demonstration produces knowl-
edge, there is no way for me to demonstrate something I already know. No argumentation
whose conclusion is one of my present cognitions can ever become a demonstration for me.
Let us exclude such cases. Any other argumentation that does not have the potential to
become a demonstration for me in my present state of knowledge either has a premise that
I do not know to be true or it has a chain of deduction that I cannot follow, that does not
show me that the conclusion follows from its premises. The trouble is with the premise set
or with the deduction—the data or the processing.

Now, if I have a demonstration that I wish to share with another, the situation is
similar. The conclusion cannot be the other person’s cognition. Moreover, the premises must
all be the other person’s cognitions. And finally, the other person must be able to follow the
chain of deduction to its conclusion and through it come to know that the conclusion is a
logical consequence of the premises.

None of the above should be taken to deny the remarkable facts of deductive empathy,
without which teaching of logic would be impossible, and demonstrative empathy, without
which teaching of mathematics would be impossible. Under demonstrative empathy, I include
the ability to follow an argumentation whose premises and conclusion are known to me to
be true and conclude that it would have demonstrated the conclusion if I had not already
known it. As a practical matter, I must have demonstrative empathy in order to teach
others the mathematics I know. Under deductive empathy, I include the ability to follow an
argumentation whose premises are known by me to imply its conclusion and judge that it
would have shown that the conclusion follows if I had not already known it. Further pursuit
of this important topic would take us away from the immediate task.
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4. Aristotle’s General Theory of Deduction

Aristotle’s general theory of deduction must be distinguished from the cate-
gorical syllogistic, the restricted prototype system he created to illustrate it.
The latter will be sketched in the next section “Aristotle’s Theory of Categor-
ical Deductions”. The expression ‘immediate-deduction-chaining’ can be used
as an adjective to describe his general theory, which is based on two insights.
The first is that in certain cases a conclusion can be seen to follow logically
from given premises without recourse to any other propositions; these have
been called immediate deductions14 in the sense that no proposition mediates
between the premises and conclusion in the process—unmediated would be a
better word.15 The second insight is that the deductions involving mediation
are chainings of immediate deductions.16

Over and above the premises and conclusion, every deduction and thus
every demonstration has a chain-of-reasoning that shows that the (final) con-
clusion follows logically from the premises—and thus that assertion of the
premises is also virtual assertion of the conclusion.17 The practice of clarifying
the idea of an argument’s validity by adding something to the effect “that as-
sertion of the premises is also virtual assertion of the conclusion” was common
in the 1800’s, as exemplified by Whately’s influential 1855 Elements of Logic
[63, pp. 17, 40, 44 and passim].

An Aristotelian direct deduction based on three premises p1, p2, and p3,
having the conclusion fc, and having a chain-of-reasoning with three interme-
diate conclusions ic1, ic2, and ic3, can be pictured as below. The question
mark prefacing the conclusion merely indicates the conclusion to be deduced.
It may be read, “Can we deduce?” or “To deduce”. Here QED simply marks
the end of a deduction much as a period marks the end of a sentence.18

14 Aristotle called an immediate deduction a teleios syllogismos or a complete syllogism,
where by ‘complete’ he meant that nothing else is required to see that the conclusions
follows. See Aristotle [1, 24b22], Boger [4, p. 188], and Smith [59, pp. 110 and 115].
15 Remember ‘immediate’ does not mean “instantaneous”: it has no temporal connotation.
It takes time to grasp the argument and there may well be a time interval between the end of
the grasping of the argument and the achieving knowledge of its validity. Cf. von Plato [62,
p. 5].
16 For an extended discussion of chaining and the epistemic problems it poses see (Corco-
ran [14, p. 33ff]). Aristotle and his commentators, both ancient and modern, are silent on
this fundamental topic.
17 In the case of immediate deductions, I must count a single link as a “degenerate” chain-
of-reasoning. The act of deducing the conclusion from the premises is more than just the
conclusion and premises. The conclusion follows without any act, but for me to deduce it,
to see that it follows, requires an act.
18 In a demonstration, it would be appropriate to take the QED marking the end of a
deduction as an abbreviation of the traditional Latin quod erat demonstrandum (that which
was to be demonstrated, or more properly, that which was required to be demonstrated),
referring to the last intermediate conclusion. However, that would be inappropriate with
deductions since a deduction is not necessarily a demonstration. Fortunately, those who
prefer to take it as an abbreviation of Latin are free to use quod erat deducendum (that
which was to be deduced, or more properly, that which was required to be deduced).
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Direct Deduction Schema

p1
p2
p3
?fc
ic1
ic2
ic3
fc
QED

Note that in such an Aristotelian deduction the final conclusion fc occurs twice:
once with a question mark as a goal to be achieved and once followed by QED
as a conclusion that has been deduced—thus following the format common in
Greek mathematical proofs, as previously noted by Robin Smith [59, p. 173].
Having a fully expressed goal at the outset is one of the important differences
between a deduction and a calculation. Aristotle gives us a “formal system”
but not a calculus. Also, note that intermediate conclusions are also used
as intermediate premises. This picture represents only a direct deduction; a
picture for indirect deduction is given below—after we consider a concrete
example of a direct deduction.

Direct Deduction 1.

1. Every quadrangle is a polygon.
2. Every rectangle is a quadrangle.
3. Every square is a rectangle.
? Some square is a polygon.
4. Every square is a quadrangle. 3, 2
5. Every square is a polygon. 4, 1
6. Some polygon is a square. 5
7. Some square is a polygon. 6
QED

The example is from Aristotle’s categorical syllogistic which is restricted
to propositions in the four categorical subject-copula-predicate forms. In the
below samples of categorical propositions, the subject is “square”, the predicate
“polygon”, and the copula the rest.19 Today, we would say that the copula is
a logical or formal constant and that the subject and predicate are non-logical
or contentful constants.

19 In Greek as in English, in a categorical sentence such as ‘Every square is a rectangle’,
the subject ‘square’ divides the copula ‘Every . . . is a’. Aristotle reworded his Greek in an
artificial way so that the copula was entirely between the subject and predicate, which he
called “terms” (using the Greek word for terminal, endpoint, end, limit, etc). He also moved
the predicate to the front. For example, “Every square is a rectangle” would be worded
“Rectangle belongs to every square”. See the section “Colloquial and formalized languages”
in Corcoran [19]. Also see [20].



Vol. 12 (2018) Aristotle’s Prototype Rule-Based Underlying Logic 19

Every square is a polygon.
No square is a polygon.
Some square is a polygon.
Some square is not a polygon.

It is worth emphasizing the difference between this subject-copula-predicate
terminology and the subject-predicate terminology according to which a sen-
tence is composed of subject and predicate. For example, in “Every square
is a polygon”, “Every square” would be the subject and “is a polygon” the
predicate.

Since there are no “truth-functional constants”, there is no way to form
negations, double negations, or any other “truth-functional combinations” of
categorical propositions.20 Aristotle took what came to be called the contradic-
tory opposite of a proposition to serve some of the purposes we are accustomed
to assigning to the negation of the proposition. Using ‘CO’ to abbreviate ‘con-
tradictory opposite’, we have the following pairings.

“Some square is not a polygon” is the CO of “Every square is a polygon”,
and vice versa.
“Some square is a polygon” is the CO of “No square is a polygon”, and
vice versa.

In every case, the contradictory opposite of a categorical proposition is logically
equivalent to its negation. E.g., “Some square is not a polygon”, which is
the CO of “Every square is a polygon”, is logically equivalent to “Not every
square is a polygon”, which is the negation of “Every square is a polygon”. To
understand inner working of syllogistic, we should remind ourselves that “Not
every square is a polygon” is not a categorical sentence. Aristotle’s concept of
contradictory opposition enables him to implement indirect deduction without
using negation.21

Today we have a law of double negation, that the negation of the negation
of a proposition is distinct from but logically equivalent to the proposition. For
Aristotle, however, every categorical proposition is the contradictory opposite
of its own contradictory opposite. In his categorical syllogistic, there is no such
thing as a double negation. His concept of contradictory opposition is entirely
syntactic.

The picture for an indirect deduction, or reductio-ad-impossibile, resem-
bles but is significantly different from that for a direct deduction. Indirect
demonstrations are called proofs by contradiction. In such a deduction, after
the premises have been assumed and the conclusion has been set as a goal, the
contradictory opposite of the conclusion is assumed as an auxiliary premise.
Then, a series of intermediate conclusions are deduced until one is reached

20 A proposition that is a truth-functional combination of a set of propositions is composed of
those in the set in such a way that its truth-value is determined by those of the propositions
in the set. For example, “zero is even if one is odd” is a truth-functional combination of the
two propositions “zero is even” and “one is odd”, but “zero is even because one is odd” is
a non-truth-functional combination. Aristotle did not make this distinction.
21 To a modern logician this “work-around” seems very clever. But there is no independent

evidence for thinking that Aristotle took any satisfaction in the device.
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which oppositely contradicts a previous proposition. To represent a simple in-
direct demonstration, ∼fc (the contradictory opposite of the final conclusion)
is added as a new assumption, the sign @ indicates auxiliary assumption, and
the letter X indicates that the last intermediate conclusion ic3 “oppositely con-
tradicts” one of the previous intermediate conclusions or one of the premises or
even, in extremely rare cases, the auxiliary assumption. The rare case played
an important role in the discovery of non-Euclidean geometry [13].

The sign @ can be read “Assume as an auxiliary assumption” or “Assume
for purposes of reasoning”. X can be read “A contradiction”, or more literally
“Which contradicts a previous proposition”, where the relative pronoun refers
to the last intermediate conclusion.22

Indirect Deduction Schema 1
p1
p2
p3
?fc
@∼fc
ic1
ic2
ic3
X
QED

Indirect Deduction 1.
1. Every quadrangle is a polygon.
2. Every rectangle is a quadrangle.
3. Every square is a rectangle.
? Some polygon is a square.
4. Assume: No polygon is a square.
5. No quadrangle is a square.1,4
6. No rectangle is a square. 2,5
7. Some rectangle is a square. 3

22 In an indirect deduction, it would be inappropriate to take the QED marking the end of a
deduction as an abbreviation of the traditional Latin quod erat deducendum (that which was
to be deduced), referring to the last intermediate conclusion because the last intermediate
conclusion is usually not the conclusion to be deduced. For a discussion of the unusual cases
where it is, see Corcoran [13]. Euclid [31] avoided this awkwardness by repeating the final
conclusion just after reaching his contradiction so that indeed the QED could always be
taken as referring to the last intermediate conclusion. However, it would be less artificial
to drop the idea of referring to the last intermediate conclusion by regarding QED as mere
punctuation marking the end of a deduction.

In the example indirect deduction, the conclusion being deduced occurs only once
where it is prefaced by the question mark; it never occurs as an intermediate conclusion.
However, Aristotle’s proof that every conclusion deducible directly from given premises can
also be deduced indirectly probably depends on the possibility of having the stated conclusion
occurring twice, the second time as an intermediate conclusion. See the diagram on page
115 in Corcoran [9].
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8. Contradiction. 7, 6
QED

Like demonstration, deduction also makes it possible to gain new knowl-
edge by use of previously gained knowledge. However, with deduction the ref-
erence is to knowledge that a conclusion follows from premises and not to
knowledge of the truth of its conclusion. Again like demonstration, deduction
reduces a problem to be solved to problems already solved. However, here
the problem to be solved is “seeing” that the conclusion follows from the
premises. The problems already solved are seeing that the conclusions of the
rules of deductions follow from their respective premises. According to Aris-
totle, a “hidden” conclusion is seen to follow by means of chaining evidently
valid arguments connecting that conclusion to premises. For the importance
of the phenomenon of hiddenness as opposed to “evidentness” in logic see [25].

Aristotle’s syllogisms were composed of premises, conclusions, and inter-
mediate lines having truth-values such as in the above deductions even though
there are no concrete examples in Prior Analytics. The concrete syllogisms
were presented by using abstract syllogism schemas [21] such as the following.

Indirect Deduction Schema 2

1. Every Q is a P.
2. Every R is a Q.
3. Every S is an R.
? Some P is an S.
4. Assume: No P is an S.
5. No Q is an S. 1, 4
6. No R is an S. 2, 5
7. Some R is an S. 3
8. Contradiction. 7, 6
QED

5. Aristotle’s Prototype Theory of Categorical Deductions

As an illustrative prototype special case of his general theory of deduction,
Aristotle’s theory of categorical deductions also had two types of deduction,
direct and indirect. However, the categorical deductions used only categorical
propositions and were constructed using only the eight “rules of deduction”. Of
the eight, seven are formal in the special sense that every two “applications”
of the same rule are in the same logical form [9, p. 102]. For a more general
treatment of logical form see [18] or [6, pp. 511–512]. The remaining rule
amounts to the rule of repetition for categorical propositions. All eight are
formal in the sense that every argument in the same form as an “application”
of a given rule is an “application” of the same rule. Of the seven, three involve
only one premise; four involve two premises. Those involving only one premise
can be called conversions, since the terms in the premise occur in reverse
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order in the conclusion.23 Following Boole’s usage, those involving only two
premises can be called eliminations, since one of the terms in the premises is
“eliminated”, i.e., does not occur in the conclusion.

Three Conversions

Every square is a rectangle No circle is a rectangle Some square is a rectangle

Some rectangle is a square No rectangle is a circle Some rectangle is a square

Two Universal Eliminations

Every rectangle is a polygon No rectangle is a circle
Every square is a rectangle Every square is a rectangle

Every square is a polygon No square is a circle

Two Existential Eliminations

Every rectangle is a polygon No rectangle is a circle
Some square is a rectangle Some polygon is a rectangle

Some square is a polygon Some polygon is not a circle

Aristotle collected what he regarded as evidently valid categorical arguments
under the eight rules—although he did not refer to them as rules of deduc-
tion. Aristotle seemed to think that every other valid categorical argument’s
conclusion was hidden in the sense that it could not be seen to follow without
chaining two or more of the evidently valid arguments. Moreover, he believed
that any categorical conclusion that follows logically from a given set of cate-
gorical premises, no matter how many, was deducible from them by means of
a deduction constructed using only his eight rules. In other words, he believed
that every categorical conclusion hidden in categorical premises, once found,
could be unveiled by applying his eight rules in a direct or indirect deduction.
He had good reason for his belief and, as far as I know, he might have believed
that he had demonstrative knowledge of it: a view argued forcefully by Smi-
ley [58]. Aristotle’s belief, but not Smiley’s, has since been established using
methods developed by modern mathematical logicians, See Corcoran’s 1972
paper [7] and Smiley’s 1973 paper [57].

It is important to notice that Aristotle’s underlying deductive system
was intended as an apodictic for showing that a given conclusion follows from
given premises. It was not intended as a heuristic for finding the conclusions

23 From Aristotle’s point of view, the conclusions of the last two are [outer] converses of their
respective premises in one modern sense of ‘converse’ [6, p. 189]. Moreover, the conclusions
are logical equivalents of the premises. However, in the first case, the conclusion is neither
a converse nor an equivalent of the premise. Furthermore, the first rule is rather artificial.
From Aristotle’s point of view, it is more evident that “Some square is a rectangle” follows
from “Every square is a rectangle”, avoiding the reversal of terms. Anyway, Aristotle’s
deduction of an existential conclusion from a universal premise has been mindlessly and
unfairly criticized (Corcoran [9, pp. 104 and 126]; Smith [59, pp. xxv–xxvi]). It involves
what has been called existential import (Corcoran [22]).
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that follow from given premises. Deduction is a goal-directed activity not a
goal-generating activity. Goal-generating activity has been called abduction, a
word previously used for other activities. It would be better to coin a new word,
perhaps heuriscation (from heuristic) or telation (from telos “goal”, “purpose”,
“end”, etc.) [25].24

As Robin Smith [59, p. 115] noted in 1989: “Aristotle’s practice is almost
always to state in advance the conclusion he is about to deduce”. Aristotle’s
almost invariable practice of indicating the conclusion to be deduced after
listing the premises to be used suggests that he intuitively recognized the
goal-directedness of deduction. However, Aristotle never explicitly said that
deduction is goal-directed. In fact, as far as I know no scholar writing before
the present century explicitly made this point.

Accordingly, in the deductions below the question mark prefacing the
conclusion is used to indicate the conclusion to be deduced. It may be read,
“Can we deduce?” or “To deduce”.

Certain features of Aristotle’s rules are worth noticing. Each of the four
forms of categorical proposition is exemplified by a conclusion of one of the
four two-premise rules, giving them a kind of symmetry. In addition, in the
seven rules just schematized, existential negative propositions such as “Some
polygon is not a circle” are treated in a very special way. In the above schema-
tization, there is only one occurrence of an existential negative, even though
there are three occurrences of the existential affirmative. Moreover, although
there are conversions for the other three, there is no conversion for the exis-
tential negative. Most strikingly, the existential negative does not occur as a
premise. This means that no existential negative can be used as a premise in
a direct deduction.

The existential negative’s remarkably peculiar place in the syllogistic re-
mains to be investigated. For example, even though the conversion of the
universal negative into the existential is as obvious as the conversion of the
universal affirmative into the existential it is not used in deductions.

No circle is a rectangle.
Some rectangle is not a circle.

Moreover, even though the existential negative is syllogistically deducible from
the universal Aristotle never does a deduction.

1. No circle is a rectangle.
? Some rectangle is not a circle.
2. Assume: Every rectangle is a circle.
3. Some circle is a rectangle. 2
4. Contradiction. 3, 1
QED

24 To be clear, in typical cases, deduction starts with a premise set and a conclusion
not known to follow and not known to not follow. The reasoner first asks whether the
conclusion follows. Second, the reasoner asks, if it follows, how we determine that it fol-
lows; and, if it does not follow, how we determine that it does not follow (Corcoran and
Tracy [28]).
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Recent work by Joray [41] followed up by Corcoran and Tracy [28] points
to the importance of the missing fourth conversion.

6. Direct Versus Indirect Deductions

In Aristotle’s general theory of deduction, direct and indirect deductions are
equally important. As we will see below, both occur in the scientific and philo-
sophical discourse that Aristotle took as his data. Thus, any theory that omit-
ted one or the other would be recognized by its intended audience as inadequate
if not artificial.

However, it is natural to ask the purely theoretical question whether it is
necessary to have both direct and indirect deductions in Aristotle’s special pro-
totype theory, his categorical syllogistic. This question divides into two. First,
is every conclusion deducible directly from given premises also deducible in-
directly from the same premises? If so, direct deductions are not necessary.
Second, is every conclusion deducible indirectly from given premises also de-
ducible directly from the same premises? If so, indirect deductions are not
necessary. By careful investigation of the details, it is easy to answer yes to
the first question and no to the second.

To see that every direct deduction is replaceable by an indirect deduction
having the same premises compare the following two easy deductions.

1. No circle is a rectangle. 1. No circle is a rectangle.
2. Every square is a rectangle. 2. Every square is a rectangle.
? No square is a circle. ? No square is a circle.
3. No rectangle is a circle. 1 3. Assume: Some square is a circle.
4. Every square is a rectangle. 2 4. No rectangle is a circle. 1
5. No square is a circle. 3, 4 5. Every square is a rectangle. 2
QED 6. No square is a circle. 4, 5

7. Contradiction. 6, 3
QED

The direct deduction on the left was transformed into the indirect deduc-
tion on the right by adding two lines. Between the statement of the conclusion
goal and the first intermediate conclusion, I inserted the assumption of the
contradictory opposite of the conclusion. Between the final conclusion and
QED, I inserted “Contradiction”. Thus, from a direct deduction I constructed
an indirect deduction with the same conclusion and the same premises. It is
evident that this can be done in every case, as Aristotle himself noted in Prior
Analytics [1, 45a22–45b5]. Also see Corcoran [9, p. 115] and Smith [59, p. 154].

Now, let us turn to the second question: is every conclusion deducible
indirectly also deducible directly so that indirect deductions are not necessary?
Consider the following indirect deduction.

1. Every square is a rectangle.
2. Some polygon is not a rectangle.
? Some polygon is not a square.
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3. Assume: Every polygon is a square.
4. Every polygon is a rectangle. 3, 1
5. X 4, 2
QED
It is obvious that neither premise is redundant; the conclusion does not

follow from either one of the two alone. Thus, any deduction of the conclu-
sion from them must use both of them. Notice that one of the premises is
an existential negative. In this case, the existential negative was oppositely
contradicted by the intermediate conclusion. In a direct deduction, one of the
seven schematized rules would have to apply to the existential negative by
itself or in combination with the other premise or with an intermediate con-
clusion. However, as we noted above, none of those rules apply to an existential
negative premise. Therefore, no direct deduction is possible in this case.

The reasoning just used to show that this conclusion cannot be deduced
from these premises by a direct deduction can be applied in general to show
that no conclusion can be deduced directly from a set of premises containing
an existential negative—unless of course the existential negative is redundant.

Thus, in Aristotle’s categorical syllogistic, direct deductions are in a sense
superfluous, whereas indirect deductions are indispensable.25

7. Geometric Background

It is difficult to understand the significance of Aristotle’s logic without being
aware of its historic context. Aristotle had rigorous training and deep interest
in geometry, a subject that is replete with direct and indirect demonstrations
and that is mentioned repeatedly in Analytics. He spent 20 years in Plato’s
Academy, whose entrance is said to have carried the motto: Let no one unversed
in geometry enter here. The fact that axiomatic presentations of geometry were
available to the Academy two generations before Euclid’s has been noted often.
Ross [54, p. 47] pointed out “there were already in Aristotle’s time Elements of
Geometry”. Heath [37, Vol. I, pp. 116–117] wrote, “The geometrical textbook
of the Academy was written by Theudius of Magnesia . . . [who] must be taken
to be the immediate precursor of Euclid, and no doubt Euclid made full use of
Theudius . . . and other available material”. The central importance of mathe-
matics in Aristotle’s thought and particularly in his theory of demonstration
has been widely accepted. See Beth [3, pp. 31–38].

This context makes it all the more remarkable that there is not one fully
expressed or even well-sketched geometrical demonstration in Prior Analytics
or even in Analytics. Today it is accepted that theory is developed from a basis
of mastery of practice, that practice is improved by attention to theory, and
that theory is tested by how well it explains what is found in practice and by
how much it contributes to the understanding and improvement of practice.
Judging by such standards it is difficult to praise Analytics. It is important

25 Ironically perhaps, there are modern symbolic logic texts whose deductions are exclusively
indirect (Jeffrey [40]).
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to be clear about what Analytics isn’t so that we can appreciate and benefit
from what it is.

8. Aristotelian Paradigms

On page 24 of his influential 1962 masterpiece The Structure of Scientific
Revolutions [44], Thomas Kuhn said that normal science “seems an attempt to
force nature into the preformed and relatively inflexible box that the paradigm
supplies”. Continuing on the same page, he added two of the most revealing
sentences of the book.

No part of the aim of normal science is to call forth new sorts of
phenomena; indeed those that will not fit the box are often not seen
at all. Nor do scientists normally aim to invent new theories, and
they are often intolerant of those invented by others.

The fact that he used words having pejorative connotations has not been lost
on some scientists who regard Kuhn’s book as unfairly derogatory and offen-
sive [23]. He spoke of scientific revolutions as “paradigm shifts”, which sug-
gests unflattering comparison to figure-ground shifts in cognitive psychology,
structure-ambiguity shifts in linguistics, and gestalt shifts in Gestalt psychol-
ogy. In some cases, such as the Copernican Revolution, which is the subject of
Kuhn’s previous 1957 book [43], the comparison might seem somewhat justi-
fied.

If we replace Kuhn’s words ‘science’, ‘nature’, and ‘scientist’ by ‘logi-
cal theory’, ‘demonstrative practice’, and ‘logician’, we would not be far off.
The history of logic even to this day is replete with embarrassingly desper-
ate attempts to force logical experience into inflexible paradigms. As late as
Whately [63] was repeating as solid fact the absurdity that single propositions
had no consequences, a view attributable to Aristotle.

Many of these attempts were based on partial understanding or misun-
derstanding of the relevant paradigm.26 However, many were based on solid
scholarship and insight. Many thinkers saw genuine inadequacies in the rele-
vant paradigm, but failed to address them. However, many scholars mistak-
enly disputed well-founded aspects. Some were indeed pathetic in the wisdom
of hindsight.27 In contrast, a few were ingenious and will be remembered as

26 One of the more ridiculous was to insist that singulars such as “Socrates is a Greek” was an
ellipsis for a universal “Every Socrates is a Greek”. This absurdity was designed to perpetuate
the illusion that Aristotle’s paradigm required that every proposition be categorical. The
illusion was based on mistaking Aristotle’s particular illustration of his general theory of
deduction to be that general theory.
27 Boole’s attempt to force Aristotle’s syllogistic into the equational logic mold could be
seen to be pathetic once one sees that it led Boole into his “solutions fallacy” and blinded
him to Aristotle’s indirect deductions. Boole never even attempted to fit indirect deductions
into his mold. Frege has a tangled explanation that indirect deductions are disguised direct
deductions. Several decades later, Tarski [60, pp. 157–159] still told his readers that the

expressions ‘indirect proof’ and ‘proof by reductio ad absurdum’ indicate direct proofs that

use a certain logical law that he calls “ the so-called LAW OF REDUCTIO AD ABSUR-
DUM”. On the same page, he pathetically alleged “Proofs of this kind may quite generally
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solid contributions to logical wisdom, if not to mainstream logic. In the latter
category, I put William of Ockham’s brilliant attempt to account for empty
terms in the framework of Aristotle’s categorical logic [10].

It would be a serious mistake to think that by ‘inflexible paradigms’ I have
in mind only those traceable to antiquity, although only ancient paradigms
are relevant in this essay. For two millennia, logic was dominated by at least
three paradigms apparently carrying Aristotle’s imprimatur. Two of them are
treated in this essay: the theory of categorical deductions and the truth-and-
consequence theory of demonstration. A third important paradigm, Aristotle’s
logical methodology, including his method of establishing independence, is be-
yond the scope of this essay. It has been treated elsewhere [8,15,17]. Thus,
nothing has been said in this essay about one of Aristotle’s most lasting con-
tributions: his method of counterarguments for establishing independence—
that is, for producing knowledge that a conclusion does not follow from given
premises.

Deductive logic has made immeasurable progress since Aristotle’s theory
of categorical deductions. More and more arguments have been subjected to
the same kind of treatment that Aristotle gave to the categorical arguments. In
some cases advances beyond the syllogistic were made by regarding syllogistic
as a prototype rather than a paradigm.

In retrospect, the explosive increase in the field reported in the 1854 mas-
terpiece [5] by Boole (b.1815–d.1864) merely served to ignite a chain reaction
of further advances that continues even today. Aristotle’s system did not rec-
ognize compound terms (as “triangle or square”) or equations (as “1+2 = 3”).
Boole’s system recognizes both. Unlike other revolutionary logical innovators,
Boole’s greatness as a logician was recognized almost immediately. In 1865,
hardly a decade after his 1854 Laws of Thought [8] and not even a year after
his tragic death, Boole’s logic was the subject of a Harvard University lecture
“Boole’s Calculus of Logic” by C. S. Peirce. Peirce opened his lecture [50] with
the following prophetic words (Peirce [51, pp. 223–224]).

Perhaps the most extraordinary view of logic which has ever been de-
veloped with success is that of the late Professor Boole. His book. . .Laws
of Thought. . . is destined to mark a great epoch in logic; for it con-
tains a conception which in point of fruitfulness will rival that of
Aristotle’s Organon.
Aristotle’s special theory of categorical deductions recognized only four

logical forms of propositions. It recognized only dyadic propositions involving
exactly two [non-logical] terms. Today, infinitely many forms are accepted,
with no limit to the number of terms occurring in a single proposition. In fact,
as early as his famous 1885 paper “On the Algebra of Logic: A Contribution

Footnote 27 continued

be characterized as follows: we assume the theorem to be false, and derive from that certain

consequences which compel us to reject the original assumption”—not a bad description

of a genuine indirect deduction, but nothing like the direct deduction he had given as an

example. Confusion continues in von Plato’s 2017 book [62, p. 19].
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to the Philosophy of Notation”, Peirce [52, pp. 225–226] recognized in print
simple propositions having more than two terms. Examples are the triadic
proposition that the sign ‘7’ denotes the number seven to the person Charles
and the tetradic proposition that one is to two as three is to six. Peirce [53,
pp. 407–408] revisited the topic in his 1907 manuscript “Pragmatism”, where
he presented his now well-known triadic analysis of propositions about giving
such as “The person Abe gives the dog Rex to the person Ben”.

Given Aristotle’s interest in geometry and his historically important ob-
servations about the development of the theory of proportion (analogia), it is
remarkable that in the Organon we find no discussion of tetradic propositions
or proportionality arguments such as the following.

1 : 2 :: 3 : 6. 1 : 2 :: 3 : 6. 1 : 2 :: 3 : 6.
? 3 : 6 :: 1 : 2. ?1 : 3 :: 2: 6. ? 2 : 1 :: 6 : 3.

A significant amount of logical research was needed to expand the syllogis-
tic to include the capacity to treat premise-conclusion arguments composed of
conditionals whose antecedents and consequents are categorical propositions.
The following is an easy example.

Direct Deduction 2.
1. If every rectangle is a quadrangle, then every quadrangle is a
polygon.
2. If every square is a rectangle, then every rectangle is a quadrangle.
3. Every square is a rectangle.
? Some square is a polygon.
4. Every rectangle is a quadrangle. 2, 3
5. Every quadrangle is a polygon. 1, 3
6. Every square is a quadrangle. 3, 4
7. Every square is a polygon. 6, 5
8. Some polygon is a square. 7
9. Some square is a polygon. 8
QED
Aristotle’s theory recognized only three patterns of immediate one-

premise deductions and only four patterns of immediate two-premise deduc-
tions; today many more are accepted. In particular, he never discerned the
fact pointed out by Peirce that to every deduction there is a proposition Peirce
called a leading principle [52, p. 201] to the effect that its conclusion follows
from its premises. It never occurred to Aristotle to include in his system such
propositions as, for example, that given any two terms if one belongs to all of
the other, then some of the latter belongs to some of the former.

The simple linear chain structures of Aristotle’s deductions have been
augmented by complex non-linear structures such as branching trees and
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nested28 linear chains. Moreover, his categorical syllogistic has been subjected
to severe criticism. Nevertheless, the basic idea of his demonstrative logic, the
truth-and-consequence theory of demonstration, was fully accepted by Boole
(Corcoran [21]). It has encountered little overt opposition in its over 2000-year
history. It continues to enjoy wide acceptance in the contemporary logic com-
munity (Tarski [61]). Perhaps ironically, Peirce never expressed full acceptance
and, in at least one place, he seems to say, contrary to Tarski and most modern
logicians, that diagrams are essential not only in geometrical demonstrations
[53, p. 303] but in all demonstration [53, p. 502].

9. Conclusion

Aristotle’s Analytics contains two general theories, a theory of demonstration
and a general theory of deduction, and one special theory of deduction, a pro-
totype pointing beyond itself—in addition to other material including several
metatheorems, several worked-out problems, scattered preliminary research
notes that point to future developments, and a system of “reductions” often
confused with or mixed in with deductions [12,18].

The first two, described by him in broad terms in Prior Analytics and
applied in Posterior Analytics, have had a steady, almost unchallenged, in-
fluence on the development of the deductive sciences and on theorizing about
deductive sciences. His theory of demonstration was rooted in his knowledge of
the demonstrative practice of mathematicians and others that he was familiar
with. Moreover, his theory was intended to describe, clarify, and explain the
processes and rules guiding that and future demonstrative practice. Tradition
came to regard Aristotle’s notion of demonstration as “the notion of demon-
stration”. As Tarski [61, pp. 118–120] implies, formal proof in the modern
sense results from a refinement and “formalization” of traditional Aristotelian
demonstration.

The third, the special theory known as syllogistic, was succinctly de-
scribed by Aristotle in meticulous detail in the first 6 chapters of Prior An-
alytics. Syllogistic has been subjected to intense, often misguided criticism.
Quite properly, it has been almost totally eclipsed by modern logic.

Major commentators and historians of logic have failed to notice that
a general theory of demonstration is to be found in Analytics. �Lukasiewicz
asserted that the Analytics did not reveal its purpose. As pointed out in my

28 One nesting never considered by Aristotle but familiar in modern logic is the subde-
duction. In the course of a deduction, an auxiliary subconclusion is set forth as a sub-
goal to be achieved on the way to achieving the initially chosen conclusion to be reached.
Perhaps the simplest example is the case where the initial conclusion is a conjunction
P&Q and the two subgoals are the two conjuncts P and Q. The syllogistic does not have
conjunctions and, thus, has no need for such strategies. However, it is a kind of miracle
that Aristotle’s categorical deductions do not need indirect subdeductions, which are indis-
pensable in modern systems. In the course of one indirect deduction, it might occur to the
reasoner to set a subgoal and then to guess that one way of achieving the subgoal is indi-
rect reasoning and so to begin an indirect subdeduction inside the initial indirect deduction
(Corcoran 1974 [9, pp. 116–117]).
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2015 lecture “The Aristotle �Lukasiewicz omitted”, he evidently skipped its
first sentence (Corcoran [26]).

The failure to recognize Aristotle’s truth-and-consequence theory of de-
duction did not begin with �Lukasiewicz, of course. Sgarbi and Cosci [56] have
collected essays documenting the reception of Aristotle’s logic from the late
middle ages though the renaissance to the beginnings of modern philosophy.
This interesting collection—which will appeal to anyone interested in the his-
tory of syllogistic—documents a variety of interpretations but a unanimity of
failures of several great philosophers to recognize Aristotle’s demonstration
theory.

Likewise, major commentators and historians of logic have failed to notice
that a general theory of deduction, the immediate-deduction-chaining theory,
is to be found in Prior Analytics. Without presenting a scintilla of evidence,
�Lukasiewicz [46, p. 44] said that Aristotle believed that “the categorical syl-
logistic is the only instrument of proof”.29 It has been widely observed that
Aristotle’s definition of deduction is much more general than required for the
categorical syllogistic, but rarely do we find Aristotle credited with a gen-
eral theory of deduction. For example, writing in the Encyclopedia Britannica,
Lejewski [45, p. 58] noticed the wider definition. Instead of taking it as a clue
to a wider theory, he criticized Aristotle’s definition as being “far too general”.

Finally, major commentators and historians of logic have even failed to
notice that a special theory of deduction is to be found in Prior Analytics. In
fact, �Lukasiewicz did not even notice that there is any theory of deduction to
be found anywhere in Analytics. He knew that every axiomatic or deductive
science presupposes a theory of how deduction from its basic premises is to
be conducted. Instead of recognizing that this was Aristotle’s goal in Prior
Analytics, he took Aristotle to be presenting an axiomatic science whose pre-
supposed underlying theory of deduction was nowhere to be found in Analytics.
More recently in 1980, writing in the prestigious Encyclopedia Britannica [30],
Lejewski made the same mistake when he wrote [45, p. 59], “Aristotle was not
aware that his syllogistic presupposes a more general logical theory, viz., the
logic of propositions”. According to the view presented here, Aristotle’s cate-
gorical syllogistic includes a fully self-contained and gapless system of rules of
deduction: it presupposes no other logic for its cogency.

Besides the general truth-and-consequence theory of demonstration, the
general immediate-deduction-chaining theory of deduction, and the detailed
special deduction theory called categorical syllogistic, Analytics contains much
more, including observations that can be taken to be preliminary groundwork
for another special theory that would supplement the categorical syllogistic.
Cf. Corcoran and Tracy [28].

One of the extra-syllogistic observations that has received the lion’s share
of attention is the process or group of processes known as ecthesis or exposition.

29 This is especially ironic because elsewhere in the same book �Lukasiewicz said the Prior
Analytics contains no instrument of proof at all. His view is that Prior Analytics presents
an axiomatic theory whose underlying logic is presupposed but not presented.
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In my opinion, the best place to begin study of ecthesis is Kevin Flannery’s
1995 book [33]. There is more recent work on the subject [28,41]. In my opin-
ion, further study of ecthesis is not likely to be rewarding and study of it by
beginners will be found to be an exasperating distraction from the valuable
lessons that can be learned from study of Analytics.

In several previous articles listed in the References, I give my textual
basis, analysis, interpretation, and argumentation in support of the statements
made above. My interpretation of Aristotle’s general theory of demonstration
agrees substantially with those of other logically oriented scholars such as
Beth [3, pp. 31–51]. Moreover, there are excellent articles by John Austin,
Michael Scanlan, Timothy Smiley, Robin Smith, and others criticizing the
opponents of my approach to Aristotle’s theory of categorical deduction and
treating points that I have omitted [45,46].30 This paper was intended not to
contribute to the combined argument, which, though not perfect, still seems
conclusive to me. Rather, my goal was to give an overview from the standpoint
of demonstration.31 This limited perspective brings out the genius and the
lasting importance of Aristotle’s masterpiece in a way that can instruct scholars
new to this and related fields.

From a philosophical perspective the most important achievements of
Aristotle’s Analytics were his two general theories, the theory of demonstra-
tion and the general theory of deduction. In contrast, his special theory of
deduction, the prototype syllogistic, is an aside that continues to obscure his
lasting legacy. The arguments, spoken and unspoken, by modern logicians—
that it is a distraction and that it should not be taught in college—carry
weight. I have never taught syllogistic in any of the scores of logic courses I
taught in my near half-century of teaching.

But from a historical perspective his two general theories recede into the
shadows while the prototypical syllogistic stands out as a landmark. The rich-
ness of the prototypical syllogistic continues to unfold. The syllogistic was fully

30 Timothy Smiley’s 1973 work on the categorical syllogistic agrees in all essentials with
mine. He independently discovered his main points about the same time that I discovered
mine. It is an insignificant accident that my earliest publication on this subject predates his.
31 In this paper I presented what I take to be the most basic and simplest of the theories
of demonstration responsibly attributable to Aristotle. There are several passages, usually
disputed and obscure, in which Aristotle seems to further elaborate his views of the nature
of the ultimate premises of a demonstration, our knowledge of them, and what a deduction
of a consequence from them shows. Here are some representative examples. He says that
the ultimate premises must be “necessary” and known to be such, that it is impossible to
demonstrate any of them using others as premises, and that the deductions must show that
the facts referred to in the respective premises are the “causes” of those referred to in the
respective conclusions. But how would one ever know that even one of these conditions is
satisfied? For example, he never gives us a clue how to determine that one proposition cannot
be deduced from any other true propositions.

These passages tend to deflect attention from the deep, clear, useful, and beautiful

aspects of the Analytics. None of these ideas have yet played any role in modern understand-
ing of demonstration. To have raised such murky and contentious issues would have made
it difficult if not impossible to leave the reader with an appreciation of the clear and lasting
contribution Aristotle made to our understanding of demonstration.
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accepted by Boole who transformed it into Boolean logic, which encompassed
incipient forms of class logic and propositional logic—two of the three branches
of “symbolic logic”—the third being relation logic—before beginning unified
into higher-order logic by Frege in 1879 [19].
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