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Abstract. Venn diagram system has been extended by introducing names
of individuals and their absence. Absence gives a kind of negation of sin-
gular propositions. We have offered here a non-classical interpretation of
this negation. Soundness and completeness of the present diagram system
have been established with respect to this interpretation.
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1. Introduction

The study of logic in terms of diagrams dates back to Euler (1707–1783, [8]),
Venn (1834–1923, [21]) and Peirce (1839–1914, [14]). However, representation
of a statement in linear form by a string of symbols has dominated the logic-
culture. After a gap for about 100 years through the publications of Shin [15],
Hammer [11], Barwise and Gerard Allwein [1] interest in diagrammatic studies
in the context of logic has been renewed and regular conferences, workshops,
schools and publications are taking place in recent decades.

In [3], diagrams of Shin and Hammer have been extended by incorpo-
ration of names of individuals. Parallelly, in Spider diagrams [9,12,13,17,18]
existential and constant spiders have been introduced. This diagram system,
indeed strives for greater expressibility. Further development can be viewed
in [4,16,20]. But what is unique in [3] is the representation of absence of in-
dividuals. The introduction of absence explicitly was motivated from ancient
Indian logical system [7] and an attempt to deal with the context of open
universe diagrammatically [5] followed as a natural consequence. Since then
some other studies have been carried out on depicting both the presence and
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absence of individuals in a diagram [2,6,19]. The most recent publications in
this series [2,19] report a comparative empirical study as regards cognitive
advantage between depiction of absence of an individual and not its explicit
depiction in a diagram.

In the context of closed universe where it is assumed that the universe of
discourse is pre-fixed which is usually represented by a rectangle, absence of an
individual a in a region would be equivalent to its presence in the complemen-
tary region with respect to the given universe. This is the classical standard
understanding and was considered in [3], though it was observed afterwards
that the formalism requires some improvement. However, there may be an-
other interpretation of the absence of an individual in a region and that is the
theme of the present work. Under this interpretation, absence of an individ-
ual in the extension of a predicate does not necessarily imply the individual’s
presence in the complement of the extension with respect to the universe. For
an initial discussion on this kind of interpretation we refer to [6]. However, in
order to make this paper as much self contained as possible we discuss briefly
about the motivation of such an interpretation. In the second interpretation,
from the absence of an individual in a region r we cannot infer its presence
in the complement of r though from the presence of an individual in r we can
infer its absence in the complement of r. From the point of view of information
theory, ‘a is here in A’ and ‘a is not here in A’ are both meaningful pieces
of information. ‘a is outside A’ is a much stronger information than merely
‘a is not here in A’. The agent who informs ‘a is outside A’ means to convey
that he/she knows where ‘a’ is and that location is not A. While ‘a is not in
A’ is a negative information, ‘a is in Ā (the complement of A)’ is a positive
information. By the depiction of the absence of a in the diagram we intend to
reflect the negative information.

Besides, in the set theoretic context, there is the notion of recursively
enumerable set A of which the inside elements are tractable while the com-
plement is not. There is a program that will find the object a if a ∈ A, but
no program will be able to locate a if it is outside. Our present interpretation
is more general than recursive enumerability. All these and other motivations
have been discussed in [5,6]. We shall formally define this interpretation in
Sect. 5 and establish soundness and completeness of our proposed diagram-
system in the present paper. In defining present diagram system Shin’s system
Venn-II [15] will be mainly followed. But incorporation of individual and its
absence within the diagram-system would require substantial modification in
syntax, semantics and the procedure of proving the completeness. Addition-
ally, the non-standard semantics renders significant difference from all other
diagrammatic systems.

It is to be noted that depiction of absence is a way of representing nega-
tion in a diagram. There have been very few attempts to represent negation in
diagram systems. This may be because traditionally, the collection of categor-
ical propositions A, E, I, O are closed w.r.t negations and the use of emptiness
(by shading) and non-emptiness (by cross) takes care of negated statements.
The negation of an A statement is an O statement and vise versa. Similar is
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the relationship between E and I statements. The problem arises with the sin-
gular propositions and their negations (see [6] for a detailed discussion). The
general propositions A, E, I, O have both contraries and contradictories but
singular propositions have only contradictories. Thus depiction of absence in
the present context is the depiction of negation of singular propositions and
which, along with the present non-classical interpretation will require differ-
ent assumptions and formal rules. These will be apparent in Sect. 3 with the
introduction and elimination rules of the absence of individuals.

In spider diagram system a horizontal bar is used on top of a diagram
to represent negation [9,17]. Thus negation of singular propositions could be
depicted in it, of course, with classical interpretation. However, presence of
an individual a and absence of an individual b simultaneously seem to be
better represented in the present diagrammatic system from the angle of well-
matchedness and iconicity [10].

This paper is organized in the following order:
Section 2: The diagrammatic Language,
Section 3: Rules of transformation,
Section 4: Some useful notions,
Section 5: Semantics of the diagram system and soundness theorem,
Section 6: Completeness theorem,
Section 7: Concluding remarks: differences of our system with the others,

Appendix: Proof of Lemma 5.5 required for soundness theorem.
We have tried to separate syntax from semantics with sufficient rigour.

Usually in the diagram-logic literature syntax and semantics overlap which in
our opinion misses the target namely establishing that diagrams themselves,
without much explanation by words, can be the conveyor of information. The
objective that manipulation of diagrams should be like manipulation of sym-
bols also gets lost. We have deliberately tried to adopt the type of a standard
logic text in the syntax-semantics divide. For this reason it may appear that
there are often unnecessary steps in derivations. But this attempt has, we
believe, rendered our system free from ambiguity (use of semantic notions in
syntactic proofs) while distancing itself from the approach of abstract syn-
tax [9,12,13,18].

2. The Diagrammatic Language

We intend to proceed as is done in logic texts, viz. first the alphabet and then
the well formed formulas − in our case, primitive symbols which are basic
diagrams and then more complex diagrams i.e. well formed diagrams.

2.1. Primitive Symbols

: Rectangle; representing the universe,

: Closed curve; representing monadic predicate,

: Shading; representing emptiness,
x: Cross; representing non-emptiness,
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a, b, c,. . . : Names of individuals (finitely many),
ā, b̄, c̄,. . . : Absence of individual named a, b, c,. . . ,
A, B, C,. . . : Names for closed curve or labels (finitely many),
—: Line connecting crosses (x’s) and rectangles,
- - -: Broken line connecting individuals (a’s).

Definition 2.1 (Diagrammatic objects). The following items are diagrammatic
objects:

(1) shading ( ),
(2) cross (x),
(3) names of individuals (a, b, c,. . . ),
(4) names of individuals with bars (ā, b̄, c̄,. . . ),
(5) sequence of crosses (x’s) connected by — (line connecting crosses, in

short lcc),
(6) sequence of individuals (a’s) connected by - - - (broken line connecting

individuals, in short lci) for each name ‘a’.

Definition 2.2 (Node).
Each x in an lcc is called a x-node.
Each a in an lci is called an a-node.
x-nodes and a-nodes are simply called nodes if there is no confusion.

Definition 2.3 (Blank closed curve).
Any closed curve without any diagrammatic object is called a blank closed

curve.

Definition 2.4 (Diagram).
A rectangle containing finitely many closed curves or diagrammatic ob-

jects or both are the building blocks of basic diagrams (vide Fig. 1). Besides,
there may be a diagram which is a sequence of such basic diagrams joined by
lines.

Of these diagrams some are taken to be well formed (see Sect. 2.2).

Definition 2.5 (Region, basic region, minimal region).
A basic region is the space enclosed by a rectangle or a closed curve. A

basic region included by a closed curve A shall also be denoted by A whenever
necessary.

The rectangle and the closed curves together divide the space within the
rectangle into disjoint spaces. Each such space is called a minimal region.

A region is union of some minimal regions.

Figure 1. Diagrams
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Figure 2.

Figure 3. Type-I diagrams

Example 2.1. In Fig. 2, the diagram D has three basic regions A, B and the
basic region enclosed by the rectangle. Four minimal regions (−A) · (− B), A
· B, A · (− B) and (− A) · B. A region is the union of some of this minimal
regions, for example, ((A · B) + (A · (− B ))) is a region [+, · and − denote
respectively the join, intersection and relative complement of regions: see also
Sect. 2.3 for definitions].

2.2. Well-Formed Diagram (wfd)

Type-I

(1) A single blank closed curve within a rectangle with a single label at-
tached with it is a Type-I diagram.

(2) A single closed curve having a label with one or more diagrammatic
objects inscribed within it or outside it but within the rectangle is a
wfd provided the following conditions i-iv are satisfied.

(i) Two nodes of an lcc or lci will not occur in the same minimal region.
(ii) Two single x’s or a’s or ā’s will not occur in the same minimal region.
(iii) If shading occurs in a minimal region it should cover the entire minimal

region.
(iv) An individual ‘a’ will not occur in more than one minimal region.

Following are some examples (vide Fig. 3).

Type-II
A Type-II diagram is a diagram with more than one closed curves within

rectangle that can be ordered in a sequence C1, C2, . . ., Cn (say) such that
the closed curve Ci divides all the minimal regions obtained from the closed
curves C1, C2, . . ., Ci−1 in exactly two minimal regions and which satisfies the
following conditions:

(i) The minimal regions so formed may have or may not have entries of
diagrammatic objects.

(ii) The closed curve should not pass through the signs x, a, or ā or labels,
A, B,. . .

(iii) The diagram may contain lcc or lci with the restriction that two nodes
of the same lcc or lci will not appear in the same minimal region.
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Figure 4. Type-II diagrams

Figure 5. Type-III diagram

(iv) If there is shading in a minimal region it has to cover the entire minimal
region.

(v) Two single x’s or a’s or ā’s will not occur in the same minimal region.
(vi) Labels should be attached to each closed curve and different labels for

different closed curves within the same rectangle.
(vii) An individual ‘a’ should not occur in more than one minimal region.

Following are some examples (vide Fig. 4).
Note:

We follow here Venn’s method of constructing overlapping closed curves.
There are various other definitions of Venn diagrams. It is established that for
any number n > 1 it is always possible to draw a Venn diagram satisfying the
conditions stated in the definition of type-II diagrams.

Type-III
If D1, D2, . . ., Dn, n ≥ 2 are of type-I or type-II diagrams then the

diagram D
′
resulting from connecting them by straight lines (written as D1 −

D2 − . . . − Dn) is a wfd of Type-III. Each Di is called a component of the
diagram D

′
(vide Fig. 5).

Note: By a proper part of a type-III diagram D we shall mean a diagram
obtained by dropping some of the components of D.

Henceforth by diagram we shall mean wfd.
Note: Let r be a region obtained by union of minimal regions m1, m2, . . ., mn.
Then we say that r has a x-sequence or r has an a-sequence if and only if each
mi contains exactly one node of that sequence and none of the nodes fall in
any minimal region outside r.

2.3. Counterpart Relation

The counterpart relation is a relation between the regions of any two diagrams
defined as follows.

Two basic regions are counterparts if and only if they are regions enclosed
by curves having the same label.
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Figure 6. Example of counterpart relation between type-II diagrams

Figure 7. Example of counterpart relation between type-I/II
and type-III diagram

If r and r
′

are regions of diagram D and s and s
′

are regions of diagram
D

′
, r is the counterpart of s and r

′
is the counterpart of s

′
, then r + r

′
is

the counterpart of s + s
′
, r · r

′
is the counterpart of s · s

′
and r − r

′
is

the counterpart of s − s
′
, where +, · and − denote respectively the join,

intersection and relative complement of regions. By − r we shall denote the
relative complement of a region r w.r.t the rectangle. It follows that if r is the
counterpart of s then − r is the counterpart of − s.

Example 2.2. In Fig. 6, D1 has the counterpart of the basic region P in D and
D2 has the counterpart of the basic region P and the basic region Q in D. The
minimal region P · Q in D has a x and the counterpart of P · Q in D2 has
shading.

Example 2.3. In Fig. 7, the first component D1 has the counterpart of the
basic region P and counterpart of the basic region Q in D and the second
component D2 has no counterpart in D. The minimal region P · Q has shading
in D and the counterpart of P · Q is blank in the first component of D1. Again,
the minimal region Q − P has x in D and the counterpart of Q − P has an
a-sequence in the first component D1.

Example 2.4. In Fig. 8, D3 has the counterpart of the basic region A in D1

and the counterpart of the basic region B in D2. A in D1 has a x-sequence but
A in D3 has shading. B in D2 has a-sequence, but in D3 the minimal region
A · B has shading and there is no counterpart of A · B.

D4 has the counterpart of the basic region Q in D1 but it has no coun-
terpart in D2. Q in D1 has shading and Q in D4 has a-sequence.

Definition 2.6 (Identity).
Two type-I/II diagrams are identical if and only if
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Figure 8. Example of counterpart relation between type-III diagrams

Figure 9. Example of identity

(i) the set of labels used in the two diagrams are same,
(ii) a region in one is shaded if and only if its counterpart in the other is

shaded,
(iii) a region of one has a x-sequence if and only if its counterpart in the

other has a x-sequence,
(iv)) a region of one has an a-sequence if and only if its counterpart in the

other has an a-sequence,
(v) a region in one has ā if and only if its counterpart in the other has ā.

[This definition is a modification of Hammer [11]].

Two type-III diagrams are identical if and only if each component of one
is identical with some component of the other.

Example 2.5. In Fig. 9, D1 and D2 are drawn representation of same diagram.

2.4. Normal Form of type-I/II Diagrams

Let D (vide Fig. 10) be a type-II diagram having two closed curves. Let the
minimal regions of D be m1, m2, m3 and m4.

Now m1, m2, m3 and m4 represent respectively the regions
A · (−B),
A · B,
(−A) · B and
(−A) · (−B).

Figure 10.
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These are all the possible combinations of the basic regions A, B and
their complements −A, −B taken two together, i.e. for two curves we have
22(= 4) minimal regions and 22(= 4) combinations.

Suppose D has 3 curves A, B and C. Then all possible combinations of
the basic regions A, B, C and their complements −A, −B, −C taken three
together are

A · (−B) · C,
A · B · C,
(−A) · B · C,
(−A) · (−B) · C,
A · (−B) · (−C),
A · B · (−C),
(−A) · B · (−C),
(−A) · (−B) · (−C).

Definition 2.7 (Normal form).
Let a type-II diagram D have n curves C1, C2, . . ., Cn (n ≥ 2). The

diagram D is said to be in its normal form if it satisfies the following properties
(i) there are 2n minimal regions in D,
(ii) all possible combinations of the basic regions C1, C2, . . ., Cn and their

complements −C1, −C2, . . ., −Cn taken n together should be repre-
sented by these 2n minimal regions.

Note: From the first two properties we can say that, a combination should be
represented by exactly one minimal region.

It is clear that for any diagram with n closed curves there exists a unique
Venn diagram which is in the normal form.

Example 2.6. Let us considered the following diagrams (vide Fig. 11).

These diagrams have the same number (= 3) of basic regions but varying
number of minimal regions. It may be noted that only diagram D1 is in the
normal form. The diagram D2 has 5 (�= 23) minimal regions, i.e. it violates the
first property of normal form. The diagram D3 has 8 (= 23) minimal regions
but the combination ((−A) · (−B) · C) is not represented, i.e. it violates the
second property of normal form. Also the combination (A · B · (−C)) was
represented by two minimal regions in the diagram D3. The diagram D4 has
10 (�= 23) minimal regions, i.e. it violates the first property of normal form.

Note:
(i) A type-I diagram is in normal form by default.

Figure 11. Example of normal form
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(ii) A diagram is in normal form if and only if it is wfd.
So the formation rules are stated. Now, we pass on to the transformation

rules as is done in the logic texts. Obviously, there are motivations behind
introducing these rules but we refrain from stating them now. We would like
to see that the intentions would be visible from the diagrams themselves. Oth-
erwise the purpose of diagrammatic representation and diagram logic would
be lost.

3. Rules of Transformation

3.1. Introduction Rules (for Closed Curves, ā and x)

3.1.1. For Closed Curves. Let D be a type-I/II diagram. It may be transformed
into a diagram by introducing a closed curve in D, obeying the restrictions 1–4
below:

(1) the newly introduced curve should divide all the minimal regions in D,
into exactly two parts.
[It is to be noted that if a minimal region is shaded then it is divided into
two minimal regions where both of them are shaded (vide Fig. 12))].

(2) If there is an x/a/ā in a minimal region m of D, the new curve, say B,
should be drawn in such a way that neither B passes through x/a/ā nor
the existing x/a/ā appear in the intersection of the minimal region and
the new curve i.e. m · B.
Examples of wrong introduction of closed curve (vide Figs. 13 and 14).

(3) (a) If a minimal region m included in D has a node of a x-sequence and
a new closed curve, say B, is introduced in D, then x should be added
in the region m · B and a line should connect the new x with one of the
end x’s of the existing x-sequence.

Example 3.1. Let us demonstrate introduction of the closed curve to B to the
diagram D (vide Fig. 15).

Figure 12.

Figure 13.
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Figure 14.

Figure 15.

Figure 16.

Figure 17.

When we introduce a new curve to B to D (vide Fig. 15), the minimal
regions A · C and −(A + C) are divided in minimal regions ((A · C) − B) and
(A · C · B) and (B − (A + C)) and −(A + C + B) respectively. We then add
x in the regions (A · C · B) and (B −(A + C)) and connect them with one of
the end x’s of the existing x-sequence in the minimal regions ((A · C) − B)
and −(A + C + B) to get the following diagram (vide Fig. 16).

(b) If a minimal region m included in D has a node of an a-sequence and
a new closed curve, say B, is introduced in D, then a should be added in the
region m · B and a broken line should connect the new a with one of the end
a’s of the existing a-sequence.

Example 3.2. Let us demonstrate introduction of the closed curve B to the
diagram D (vide Fig. 17).

When we introduce a new curve to B to D (vide Fig. 17), the minimal
regions A − C and C − A are divided in minimal regions ((A · B)− C) and
((A − (B + C)) and ((C · B)− A) and ((C − (A + B)) respectively. We then
add a in the regions ((A · B)− C) and ((C · B)− A) and connect them with
one of the end a’s of the existing a-sequence in the minimal regions ((A − (B
+ C)) and ((C − (A + B)) to get the following diagram (vide Fig. 18).
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Figure 18.

Figure 19.

Figure 20.

Figure 21.

(4) If a minimal region m included in D has ā and a new closed curve,
say B, is introduced in D, then ā should be added in the region m · B.

Example 3.3. Let us demonstrate introduction of the closed curve to B to the
diagram D (vide Fig. 19).

When we introduce a new curve to B to D, the basic region A is divided
in minimal regions (A · B) and (A − B). We add ā in the region (A · B) to
get the following diagram (vide Fig. 20).

3.1.2. For ā. Let D be a type-I/II diagram, It may be transformed into a
diagram by introducing ā in a minimal region m of D if

(i) m is shaded or
(ii) a portion (may be whole) of − m, the complementary region of m has

a-sequence.

Example 3.4. In diagram D (vide Fig. 21), the minimal regions A − B and B
− A are shaded.
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Figure 22.

Figure 23.

Figure 24.

Figure 25.

Now using the above rule we introduce ā in the minimal regions A − B
and B − A (vide Fig. 22).

Example 3.5. In diagram D (vide Fig. 23), the region (((A · B) − C) + ((A ·
C) − B) + (C − (A + B)) has a-sequence.

Now using the above rule we can introduce ā in any of the minimal
regions (A − (B + C)),(B − (A + C)),((B · C) − A), (A · B · C), −(A + B +
C). Without loss of generality we can introduce ā for example in the minimal
region (A − (B + C)) (vide Fig. 24).

3.1.3. For x. Let D be a type-I/II diagram.
(i) This may be transformed into a diagram by introducing a x-sequence

in some region r of D if there is an a-sequence in r.
(ii) This may be transformed into a diagram by introducing a x-sequence

in D such that each minimal region of D has a node of this x-sequence.

Example 3.6. We can introduce x-sequence in D (vide Fig. 25) in the region
((A − B) + (A · B)) and get the following diagram (vide Fig. 26).
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Figure 26.

Figure 27.

Figure 28.

Example 3.7. We can introduce x-sequence in D (vide Fig. 27) such that all
the minimal regions, i.e. A − B, A · B, B − A, −(A + B) has a node of this
x-sequence and get the following diagram (vide Fig. 28).

For a type-III diagram while using introduction rule we can introduce
closed curves or diagrammatic objects in any one or more components.
Note:

(1) That a x-sequence may be introduced spreading over all the minimal
regions is due to the fact that in the interpretation we take the universe
to be non-empty. Here we differ from Shin [15] and Hammer [11].

(2) There are no rules to introduce constants. We will see that this re-
striction is basic for non-classical interpretation of the diagrammatic
language (cf. conclusion).

3.2. Extension Rule (for lcc, lci and Components)

3.2.1. For lcc and lci. Let D be a type-I/II diagram containing a x-sequence
or an a-sequence in some region r, then it may be transformed into a diagram
by introducing x or a in a minimal region m (which is outside of r) connecting
it with the existing x or a-sequence with a line or a broken line respectively.

Example 3.8. We can introduce x in D (vide Fig. 29) in any of the minimal
regions (A −(B + C)), ((A · C) − B), (A · B · C), (C − (A + B)), −(A + B +
C), say we introduce x in (A · B · C). Then this x is connected with any end
of the existing x-sequence with a line. Thus we get either the diagram D1 or
the diagram D2 but not the diagram D3 (vide Fig. 30) [It is to be noted that
D3 is a valid spider diagram [12]].
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Figure 29.

Figure 30.

Figure 31.

Figure 32.

Similarly from the diagram D4, we get the diagrams D5 and D6 (vide
Fig. 31).

3.2.2. For Components. A diagram D may be transformed into a diagram
D

′−D or D − D
′
by connecting any diagram D

′
to D.

Example 3.9. We may transform D into either the diagram D − D
′

or the
diagram D

′−D (vide Fig. 32) w.r.t any diagram D
′
.

3.3. Elimination Rules (for lcc, lci, Shading, ā and Closed Curves)

3.3.1. For lcc and lci. (i) A type-I/II diagram D may be transformed into a
diagram by eliminating entire sequence of nodes of x’s or a’s.

Example 3.10. We can eliminate the entire x-sequence from D (vide Fig. 33)
to get the following diagram (vide Fig. 34).

Also we can eliminate the entire a-sequence from D to get the following
diagram (vide Fig. 35).

We can eliminate both x-sequence and a-sequence from D to get the
following diagram (vide Fig. 36).



156 R. Bhattacharjee et al. Log. Univers.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

(ii) If a type-I/II diagram contains a sequence of x’s or a’s with more than
one node and some nodes fall in shaded region, then it may be transformed
into a diagram by eliminating those nodes in the shaded region and preserving
the remaining nodes in a chain.

Example 3.11. We can eliminate the node of the x-sequence from D (vide
Fig. 37) that falls in the shaded region to get the following diagram (vide
Fig. 38).

Also we can eliminate the node of the a-sequence from D that falls in the
shaded region to get the following diagram (vide Fig. 39).

We can eliminate the nodes of the both of the sequences from D that fall
in the shaded region to get the following diagram (vide Fig. 40).

(iii) If a type-I/II diagram contains a sequence of a’s with more than
one node and one node falls in a minimal region containing ā then it may
be transformed into a diagram by eliminating that node and preserving the
remaining nodes in a chain.

Example 3.12. We can eliminate the node of the a-sequence from D (vide
Fig. 41) that fall in the region containing ā to get the following diagram (vide
Fig. 42).
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Figure 37.

Figure 38.

Figure 39.

Figure 40.

3.3.2. For Shading. A type-I/II diagram D may be transformed into a diagram
by eliminating shading from any minimal region of D.

Example 3.13. We can eliminate the shading from D to get the diagram D1

(vide Fig. 43).

3.3.3. For ā. A type-I/II diagram D may be transformed into a diagram by
eliminating ā from any minimal region of D.

Example 3.14. We can eliminate ā from D to get the diagram D1 (vide Fig. 44).

3.3.4. For Closed Curve. For a type-I diagram closed curve elimination is not
allowed since then the diagram obtained will not be well-formed.

A type-II diagram D may be transformed into a diagram, say D
′
, by

eliminating a closed curve, say B, provided the following conditions hold:
(1) For all regions r, if B · r is shaded then r − B is also shaded and vise-

versa.
(2) For all regions r, if B · r has ā then r − B also has ā and vise-versa.
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Figure 41.

Figure 42.

Figure 43.

Figure 44.

If such conditions are satisfied then D
′

is obtained through following
steps:

(i) B is eliminated. Let the resulting diagram (not necessarily wfd) be D1.
(ii) A diagram D2 is obtained thus − if D1 is in normal form, D1 is D2. If

not, then we reduce D1 to its normal form D2. [This reduction is always
possible] (cf. Sect. 2.4)

(iii) All the diagrammatic objects of D1 are transferred into the respective
counterpart regions in D2.

(iv) If more than one node of a x-sequence/a-sequence fall within the same
minimal region of the diagram D2 then only one such node is to be
retained.

The resulting diagram is D
′
.

Example 3.15. The minimal regions A − B, B · A, C · A and A − C are all
shaded. Thus we can eliminate the curve B or the curve C or both of the curves
from the diagram D (vide Fig. 45) to get the well-formed diagrams D1, D2, D3

respectively (vide Fig. 46).
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Figure 45.

Figure 46.

Figure 47.

Figure 48.

But we cannot eliminate curve A as neither B − A nor C − A is shaded.

Example 3.16. From the diagram D in Fig. 47) if we eliminate the closed curve
C then we get the diagram D1 (vide Fig. 48).

Now the diagram D1 is not in normal form as it has 10 (�= 23) minimal
regions, so we reduce D1 to the diagram D2 (vide Fig. 49).

All the diagrammatic objects of D1 are transferred into the respective
counterpart regions in D2 (vide Fig. 50).

Finally by erasing the extra node from the minimal region D − B − A,
we get the wfd diagram D

′
(vide Fig. 51).

Example 3.17. In Fig. 52a the minimal regions A − B, B · A have ā. Thus we
can eliminate the curve B from the diagram to get the well-formed diagrams
D

′
(vide Fig. 53). But we cannot eliminate curve A as there is no ā in B − A.

On the other hand B cannot be eliminated from diagram vide Fig. 52b.

For type-III diagram while using elimination rule we can eliminate closed
curves or diagrammatic objects in any one or more components.
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Figure 49.

Figure 50.

Figure 51.

(a) (b)

Figure 52.

3.4. Unification Rule

3.4.1. For Type-I or Type-II Diagram. Diagrams D1 and D2 may be trans-
formed into a diagram by uniting them in one diagram, obeying the following
steps.

(1) All the closed curves of D2 of which there were no counterparts in D1,
are introduced in D1 to obtain the diagram D.

(2) All the diagrammatic objects of D2 are drawn in the respective coun-
terpart regions of the diagram D, obeying the rule of introduction of
closed curve.

[i.e. if a region r in D2 has a x and if c(r), the counterpart region of r in D,
has the minimal regions m1, m2, . . ., mn within it due to the introduction of
curves, then each of the mi has a node of the above mentioned x-sequence with
a line connecting them. Similarly for a-sequence. If a minimal region m in D2

has shading or ā, then c(m), the counterpart region of m in D, is divided into
two parts due to introduction of closed curve and thus each part has shading
or ā respectively].
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Figure 53.

Figure 54.

Figure 55.

Figure 56.

The resulting diagram is called the Unification of two diagrams and is
denoted as Uni(D1, D2).

One can observe that the operator Uni is commutative. Also the operator
Uni is associative. So, the process of unification can be extended to n number
of diagrams i.e. Uni(D1, D2, . . ., Dn).

Example 3.18. Let us take the diagrams D1 and D2 (vide Fig. 54). Now we
first introduce the curve B in the diagram D1 to obtain the diagram D (vide
Fig. 55).

Then we draw all the diagrammatic objects of D2 (i.e. ā) in the respective
counterpart region of D to obtain the diagram Uni(D1, D2) (vide Fig. 56).

3.4.2. For Type-III Diagram with Type-I or Type-II Diagram. If D1 −D2 is a
type-III diagram and D3 be a type-I/II diagram then they may be transformed
into the type-III diagram Uni(D1, D3)− Uni(D2, D3), by unification rule (vide
Fig. 57).
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Figure 57.

Figure 58.

3.4.3. For Type-III Diagram with Type-III Diagram. If D1 −D2 and D3 −D4

be two type-III diagrams then they may be transformed into the type-III dia-
gram Uni(D1, D3)− Uni(D2, D3)− Uni(D1, D4)− Uni(D2, D4), by unification
rule (vide Fig. 58).

Clearly the above rule can be extended to the unification of type-III
diagrams with any number n1, n2 of components.

3.5. Rule of Splitting Sequences

Let D be a type-I/II diagram containing a x-sequence or an a-sequence in a
region r. Let m1, m2, . . ., mn be all the minimal regions contained in r.

Then D may be transformed into a type-III diagram D1 − D2 − · · · − Dn

such that

(i) each Di has the counterparts of all the basic regions of D,
(ii) each Di has only one x or an a in the counterpart regions of mi (1 ≤ i ≤

n),
(iii) any other diagrammatic object in any region r of D will be present in

the counterparts c(r) in each Di.

Example 3.19. From the diagram D using the rule of splitting sequences we
get the diagram D1 (vide Fig. 59).

Similarly, if we have the diagram D2, using the rule of splitting sequences
we get the diagram D3 (vide Fig. 60).

Figure 59.
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Figure 60.

Figure 61.

3.6. Rule of Excluded middle

(a) If D is a type-I/II diagram such that there is a minimal region m contain-
ing no diagrammatic object then it may be transformed into a type-III
diagram D1 − D2 such that

(i) both D1 and D2 have the counterparts of all the basic regions of D,
(ii) the counterpart of m in D1 is shaded and in D2 has a x and
(iii) all the other diagrammatic objects remain the same in D1 and D2 as in

D.

Example 3.20. From the diagram D using the rule of excluded middle we get
the diagram D1 − D2 (vide Fig. 61).

(b) If D is a diagram such that there is a minimal region m containing
either x or m has no diagrammatic object and the region − m does
not contain an a-sequence, then it may be transformed into a type-III
diagram D1 − D2 such that

(i) both D1 and D2 have the counterparts of all the basic regions of D,
(ii) the counterpart of m in D1 has an a and in D2 has ā [if m has x then

the x also remains in m in both D1 and D2] and
(iii) all the other diagrammatic objects remain the same in D1 and D2 as in

D.

Example 3.21. The minimal region C − A − B of D does not contain any dia-
grammatic object. Then applying the rule of excluded middle to the diagram

Figure 62.
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Figure 63.

Figure 64.

Figure 65.

D we get the diagram D1 − D2 where the minimal region c(C − A − B) has
a in D1 and ā in D2 (vide Fig. 62).

Example 3.22. The minimal region A − B of D contain x. Then applying the
rule of excluded middle to the diagram D we get the diagram D1 − D2 where
the minimal region c(A − B) has a in D1 and ā in D2 (vide Fig. 63).

For a type-III diagram excluded middle rule can be used for one or more
components.

3.7. Rule of Construction

A wfd D1 −D2 −· · ·−Dn may be transformed into a diagram D if each of D1,
D2, . . ., Dn can be transformed into D by some of the previously mentioned
rules.

Example 3.23. Let us consider the following diagram D1 − D2 (vide Fig. 64).
Now from the diagram D1 we can obtain the following diagram D by

using the rule of introduction for lcc (vide Fig. 65).
Again by using the rule of introduction of x we can obtain the following

diagram D
′
from the diagram D2 (vide Fig. 66).

Applying the elimination rule for lci we can obtain the following diagram
D

′′
(vide Fig. 67).

Applying the introduction of closed curve rule we can obtain the following
diagram D

′′′
(vide Fig. 68).
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Figure 66.

Figure 67.

Figure 68.

And finally applying the rule of introduction for lcc we can obtain the
diagram D from the diagram D

′′′
. So we can obtain the diagram D from both

the diagrams D1 and D2 and thus we can obtain the diagram D from D1 −D2.

Definition 3.1 (ρ-equivalence).
Let D and D

′
be two wfds. Then D ρD

′
holds if and only if there is a

sequence of diagrams D1(≡ D), D2, . . ., Dn(≡ D
′
) such that Di+1 is obtainable

from Di (i = 1, 2,. . . , n-1) by one of the previously mentioned rules.
Diagrams D and D

′
are said to be ρ-equivalent if and only if D ρD

′
and

D
′
ρ D.

Note that since the unification rule requires at least two diagrams for
being applicable, in the definition of ρ this rule does not apply.

3.8. Inconsistency Rules

Definition 3.2 (Inconsistent diagram).
(1) A type-I/II diagram D is said to be an Inconsistent diagram if either of

the following conditions hold.
(i) There is a minimal region m in D such that it has both shading and a

x.
(ii) There is a minimal region m in D such that it has both shading and an

a.
(iii) There is a minimal region m in D such that it has both ā and an a.
(iv) Every minimal region in D is shaded.
(2) A type-III diagram D is said to be an Inconsistent diagram if all the

components of D are inconsistent in the sense (1).
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Figure 69.

Figure 70.

Figure 71.

(3) Any diagram D which is ρ-equivalent to an inconsistent diagram of kinds
(1) and (2) is an inconsistent diagram.

(4) No other diagram is inconsistent.

Example 3.24. Here are few examples of inconsistent diagrams.
The diagrams in Fig. 69(3), (4) are ρ-equivalent to the inconsistent dia-

grams D1 (vide Fig. 70(i)) and D2 (vide Fig. 70(ii)) respectively.

Definition 3.3 (Consistent diagram).
(1) If a type-I/II diagram D is not inconsistent then D is consistent.
(2) A type-III diagram D is said to be a consistent diagram if and only if

at least one of the components of D is consistent.

Example 3.25. Here are few examples of consistent diagrams (Fig. 71).

Inconsistency Rules

(i) An inconsistent diagram may be transformed into any diagram.

Example 3.26. From the inconsistent diagram D using the inconsistency rule
we can get any diagram, for example we can get the diagram D1 (vide Fig. 72).

(ii) A type-III diagram may be transformed into a diagram by dropping an
inconsistent component from it.
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Figure 72.

Figure 73.

Example 3.27. From the type-III diagram D using the inconsistency rule we
can drop the inconsistent component and get the diagram D1 (vide Fig. 73).

Definition 3.4 (Provability or syntactic consequence).
A diagram D is provable from a non-empty, finite set Δ of diagrams (Δ �

D) if and only if there is a sequence of diagrams D1, D2, . . ., Dn(≡ D) such that
each diagram is either a member of Δ or is obtainable from earlier diagrams
in the sequence by one of the rules of transformation.

So, any rule may be written as D � D
′

where D
′

is obtained from D by
any of the rules.

If D1ρD2 then D1 � D2 holds but not the converse.
Diagrams D1 and D2 are syntactically equivalent if and only if D1 � D2

and D2 � D1.

4. Some Useful Notions

We shall now define some notions that would be used in the sequel, the re-
spective usages will be mentioned at the end of the section.

Definition 4.1 (Tautology).

(1) A type-I/II diagram D is said to be a Tautology if D has no diagram-
matic objects.

(2) Any diagram which is syntactically equivalent to a Tautology of kind
(1) is a Tautology.

If a diagram D is a tautology we write �D.

It is to be noted that Tautology is taken to be a syntactic notion in this
work.

Proposition 4.2. If �D then for any D
′
, D

′ � D holds.
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Proof. Let �D hold. Then either (i) D is a type-I/II tautology with no dia-
grammatic object or (ii) D is syntactically equivalent to a tautology.

Case-(i):
D is a type-I/II tautology with no diagrammatic object.
(a) Let D

′
be a type-I/II diagram.

D
′ �D holds by steps (i) to (iii).

(i) Elimination of diagrammatic objects in D
′
.

(ii) Introduction of closed curves in D
′
which are in D and not in D

′
.

(iii) Elimination of closed curves from D
′
which are not in D.

(b) Let D
′
be a type-III diagram where D

′ ≡ D
′
1 − D

′
2 − D

′
3− . . . − D

′
n.

Then D
′
i � D, for all D

′
i (1 ≤ i ≤ n), since all D

′
i’s are type-I/II diagrams

and for any type-I/II diagrams D
′
i, D

′
i � D holds [already proved in (a)].

Thus D
′ � D, by the rule of construction.

Case-(ii):
D is syntactically equivalent to a type-I/II tautology Dt.
Then Dt � D and D � Dt. Now for any diagram D

′
, D

′ � Dt holds (by
case-i). Thus D

′ � D, by transitivity. �

Definition 4.3 (Tautologous minimal region).
A minimal region m in a diagram D is called a tautologous region if and

only if any of the following holds:
(i) D is a type-I/II diagram and m has no diagrammatic object.
(ii) D is a type-III diagram with D1 and D2 as components, m occurs both

in D1 and D2 and m has shading in one and a part of x-sequence in the
other.[D is said to be tautologous at m w.r.t x].

(iii) D is a type-III diagram with D1 and D2 as components, m occurs both
in D1 and D2 and m has ā in one and a part of a-sequence in the other.[D
is said to be tautologous at m w.r.t a].

(iv) D is a type-III diagram with D1 and D2 as components, m occurs both
in D1 and D2 and m has ā in one and a part of x-sequence in the other.[D
is said to be tautologous at m w.r.t (x, ā)].

[Henceforth, we shall use only the term tautologous at m for all the three
kinds stated above].

Example 4.1. The tautologous region of D (vide Fig. 74) are (A − B) and (B
− A).

Figure 74.
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Figure 75.

Example 4.2. In Fig. 75, D is tautologous at (A − B) w.r.t x.

Definition 4.4. Dmax

For a diagram D we define a diagram Dmax as follows:
Case-i:
Let D be a type-I or type-II consistent diagram.

(1) If D has no diagrammatic object then Dmax is obtained by introducing
a x-sequence such that each minimal region of D has a node of this
x-sequence.

(2) D has only one diagrammatic object:
(a) If D has a x-sequence in a region then Dmax is the diagram obtained by

all possible extensions of x-sequence put together.
(b) If D has a shading in a minimal region then Dmax is the diagram ob-

tained by (i) introducing ā in the shaded minimal region for all a, (ii)
introducing a x-sequence such that each minimal region of D has a node
of this sequence, (iii) erasing the node of the x-sequence introduced in
(ii) which falls in the shaded region, (iv) putting together the diagrams
obtained in (i), (ii), and (iii).

(c) If D has an a-sequence in a region then Dmax is the diagram obtained
by (i) introducing x- sequence in the same region where a-sequence is
present and (ii) introducing ā in all other minimal regions (where nodes
of the a-sequence are not present). (iii) Putting together all possible
extensions of a-sequence and x sequence.

(d) If D has a ā in a minimal region then Dmax is the diagram obtained by
introducing x-sequence such that each minimal region of D has a node
of this sequence.

(3) D has more than one diagrammatic objects:
(a) If D has a sequence (x-sequence or a-sequence) such that some nodes

fall in the shaded region, then we first eliminate the nodes which fall in
the shaded region. Let the newly obtained diagram be D1. Then Dmax

is the unification of the max-diagrams for each diagrammatic object of
D1.

(b) If D has an a-sequence such that some nodes fall in the region containing
ā, then we first eliminate the nodes which fall in the that region. Let
the newly obtained diagram be D1. Then Dmax is the unification of the
max-diagrams for each diagrammatic object of D1.

(c) If D has no such sequence (as in the cases in (a) and (b)) then Dmax is
the unification of the max-diagrams for each diagrammatic object of D.
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Figure 76.

Figure 77.

[The idea of Dmax has been taken from Shin and Hammer with necessary
modification because of the introduction of diagrammatic objects a and ā].
Note: Through this process Dmax never becomes inconsistent unless D is itself
inconsistent.

Example 4.3. If D has more than one diagrammatic objects then Dmax (vide
Fig. 76) is the unification of the max-diagrams for each diagrammatic object.

Case-ii:
Let D be a type-III consistent diagram, say D1 −D2 −· · ·−Dn such that

none of the Di is inconsistent. Then Dmax is D1max − D2max − · · · − Dnmax.
If there are some inconsistent components then Dmax is obtained by

droping the inconsistent components and then applying the above procedure.

Example 4.4. If D is a type-III diagram D1 − D2 then Dmax is the diagram
D1max − D2max (vide Fig. 77).

Proposition 4.5. For any consistent wfd D we have D � Dmax and Dmax � D,
that is any consistent diagram D is syntactically equivalent to Dmax.

Proof. Let D be a type-I/II diagram.

Case-i:
D has no diagrammatic object.
Then Dmax is obtained by introducing a x-sequence such that each min-

imal region of Dmax has a node of this x-sequence.
∴ D � Dmax [by rule of introduction of x- sequence].
Conversely, by using the rule of elimination of diagrammatic objects we

get Dmax � D.

Case-ii:
D has only one diagrammatic object.
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Sub case-(a):
D has a x-sequence in a region.
Then Dmax is the diagram obtained by all possible extensions of x-

sequence put together.
Let D1, D2, . . ., Dn be the extensions of the x-sequence.
So, Dmax = Uni(D, D1, D2, . . ., Dn).
Now D � Di, i= 1, 2,. . ., n [by the rule of extension of x-sequence].
∴ D � Dmax [by the rule of unification].
Conversely, by using the rule of elimination of diagrammatic objects we

get Dmax � D.

Sub case-(b):
D has shading in a minimal region.
Then Dmax is the diagram obtained by (i) introducing ā in the shaded

minimal region for all a, (ii) introducing a x-sequence such that each minimal
region of D has a node of this sequence, (iii) erasing the node of the x-sequence
introduced in (ii) which falls in the shaded region, (iv) putting together the
diagrams obtained in (i), (ii), and (iii).

∴ D � D1 [by the rule of introduction of ā].
∴ D1 � D2 [by the rule of introduction of x-sequence].
∴ D2 � D3 [by the rule of elemination of part of x-sequence].
Now Dmax is the diagram Uni (D1, D2, D3).
So, D � Dmax by the rule of unification.
Conversely, by using the rule of elimination of diagrammatic objects we

get Dmax � D.

Sub case-(c):
D has an a- sequence in a region.
Then Dmax is the diagram obtained by introducing x-sequence in the

same region where a-sequence is present and ā in all other minimal regions
(where nodes of the a-sequence are not present). Also all possible extensions
of a and x are put together in Dmax(for all constants a).

Now using the rule of introduction of x-sequence we get D � D1 (say).
Then using the rule of introduction of ā we get D1 � D2 (say).
D2 has a x-sequence in the same region of D where there is an a-sequence

and ā in all other minimal regions.
By D2i, i, i = 1, 2,. . ., n we denote all possible extensions of the x-sequence

and the a-sequence in D2.
So, D2 � D2i.
Hence, D2 � Uni(D2, D21, D22, . . ., D2(n−1), D2n) ≡ Dmax.
Hence,D � Dmax.
By using the rule of elimination of diagrammatic objects we get Dmax � D.

Sub case-(d):
D has a ā in a minimal region.
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Then Dmax is the diagram obtained by introducing x-sequence such that
each minimal region of D has a node of this sequence.

∴ D � Dmax [by introduction of x-sequence].
By using the rule of elimination of diagrammatic objects we get Dmax � D.

Case-iii:
D has more than one diagrammatic object.
D � D1 (elimination rule if required).
D1 � Dmax, follows from the unification rule.
∴ D � Dmax [by transitivity]
Conversely, by using the rule of elimination of diagrammatic objects we

get Dmax � D.
Let D be a type-III diagram.
Without loss of generality we can assume that D is the diagram D1 −D2.

Then Dmax is the diagram D1max − D2max.
Now by using the above arguments we get D1 � D1max.
∴ D1 � D1max − D2max [by the rule of introduction of components].
Similarly, D2 � D1max − D2max.
∴ D � Dmax [by the rule of construction].
Again by using the rule of elimination of diagrammatic objects we get

D1max � D1.
∴ D1max � D1 − D2 [by the rule of introduction of components].
Similarly, D2max � D1 − D2.
∴ Dmax � D [by the rule of construction].
Thus D � Dmax and Dmax � D. �

The notions Tautologous minimal region and Dmax have been used in
completeness proof.

5. Semantics

Definition 5.1 (Model).
We define a model to be a triple (U, I, h), where

(i U is a non-empty set,
(ii) I is a function assigning subsets of U to all regions of all wfds such that
1. I(r) = U, whenever r is a basic region enclosed by a rectangle,
2. I(r) = I(s), whenever r and s are two basic regions that are labeled by

the same label,
3. if r and s are regions of a diagram D, then I(r + s) = I(r) ∪ I(s),
4. if r and s are two regions of a diagram D, then I(r · s) = I(r) ∩ I(s),
5. if r and s are regions of a diagram D, then I(r − s) = I(r)\I(s),

(iii) h is a partial function assigning objects h(a) of U to the names of
individuals a. Since h is a partial function h(a) may not be defined for
some a.
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It follows from 5 and (2.3) that I(−r) = U\I(r).

Definition 5.2 (True in a model).
Let M = (U, I, h) be a model. We say that a type-I/II diagram D is True

in M (denoted by M � D) if and only if the following conditions are satisfied.

(i) If r is shaded then I(r) = φ (null set).
(ii) If r (≡ m1 + m2 + · · · + mn) has x-sequence then I(r) �= φ [I(m1) �= φ or

I(m2) �= φ or . . .or I(mn) �= φ] (or being inclusive).
(iii) If r (≡ m1 + m2 + · · · + mn) has an a then h(a) is an element of the

universe and h(a) ∈ I(r) [h(a) ∈ I(m1) or h(a) ∈ I(m2) or . . . or h(a) ∈
I(mn)] (or being exclusive).

(iv) If ā is in r then either h(a) does not exist in U or if h(a) exists in U
then h(a) /∈ I(r) i.e. h(a) ∈ U\I(r).

If D is a type-III diagram and let D ≡ D1 − D2 − · · · − Dn. Then M � D
if and only if M � Di for at least one of the components Di.

Definition 5.3 (Logical consequence).
Let Δ be a set of diagrams and D be a diagram. We say that D is a

Logical Consequence of Δ and write Δ |= D if and only if D is true in every
model in which every member of Δ is true.

A rule is sound if and only if for every instance D � D
′

of the rule, D
|= D

′
holds.

Soundness

Theorem 5.4 (Soundness Theorem) For any set Δ ∪ {D} of diagrams, if Δ �
D then Δ |= D.

Proof. We prove the theorem by using Lemmas 5.5 and 5.6.

Lemma 5.5. All the transformation rules are sound.

The proof is added in the Appendix.

Lemma 5.6. A tautology is true in all interpretations.

Proof.
(1) Suppose D is a type-I/II tautology, then there is no diagrammatic object
in D. Then vacuously D is true in any model.

(2) Any diagram which is syntactically equivalent to a Tautology is a
Tautology. �

Let us consider a diagram D which is syntactically equivalent to a Tau-
tology D1.

i.e. D � D1 and D1 � D where D1 is a type-I/II tautology.
But D1 is a tautology, so D1 is true in every model. Since D1 � D, we get

because of soundness of the rules D1 |= D. Thus D is true in every model. �
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Proof of Soundness Theorem
Let Δ � D.
Then there is a sequence of diagrams D1, D2, . . ., Dn (≡ D) such that

each diagram is either a member of Δ or is obtainable from earlier diagrams
in the sequence by one of the rules of transformation.

Since all the transformation rules are sound, Δ |= D is established by
induction on the length of the sequence D1, D2, . . ., Dn.
Note: In soundness theorem Δ need not be finite.

6. Completeness

The ultimate objective of this section is to establish completeness of the dia-
gram system developed with respect to the semantics as stated in Sect. 5, i.e.
Δ |= D implies Δ � D where Δ is a finite collection of diagrams and D is a
single diagram.

Before proceeding to the completeness theorem proper, we prove an im-
portant result (Theorem 6.1) which will be used in the completeness proof.

Theorem 6.1. If D is a consistent type-I/II diagram then D is true in some
model.

Proof. Case-1: D is a Tautology. Then D is true in every model (see Lemma 5.6).
Case-2: D is a consistent diagram other than tautology.
A model for the diagram shall be obtained through the following steps:

1. Enumerate all the minimal regions of diagram D.
2. Assign null set(φ) to the minimal regions with shading.
3. Mark the minimal regions with ā but not falling in category-2. Similarly

mark for other symbols b̄, c̄, . . .
4. Consider the minimal regions with a node of a-sequence. Take the least

numbered minimal region that do not fall within categories 2 and 3.
Assign an element h(a) to that region and to no other region h(a) is to
be assigned. Similarly for the other constants.

5. Consider the x-sequence and mark the minimal regions with a node
of x-sequence. Assign elements x1, x2, . . . (all distinct) to the minimal
regions not falling in category-2.

6. Assign distinct new objects y1, y2, . . . to all other minimal regions that
are yet unassigned (there may be some minimal regions in category-3,
category-4 and minimal regions with no diagrammatic objects).

7. Take a basic region. It is split into minimal regions. Take the union of
the assignments to all such minimal regions. This is the set-assignment
to the basic region taken. Similarly, assign sets all the basic regions
(including the rectangle).

�

Note: The above procedure gives one model of an arbitrary diagram, but there
may be other models also of this same diagram.
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Example 6.1. Let us consider the consistent diagram D (vide Fig. 78).
A model for the diagram D shall be obtained through the following steps:

1. We first enumerate all the minimal regions of diagram D (vide Fig. 79)
viz. 1–8.

2. We assign null set(φ) to the minimal regions with shading. i.e. I(1) = φ
and I(5) = φ.

3. We Mark the minimal region viz.3 with ā but not falling in category-2.
4. Consider the minimal regions viz. 2 and 6 with a node of a-sequence.

We take the least numbered minimal region that do not fall within
categories 2 and 3. Assign an element h(a) to that region.i.e. h(a) ∈
I(2).

Similarly, for b we have h(b) ∈ I(7).
5. Consider the x-sequence and mark the minimal regions viz. 1,8,7 and 3

with a node of x-sequence. Assign elements x1, x2, . . . (all distinct) to
the minimal regions not falling in category-2 i.e. x1 ∈ I(3), x2 ∈ I(7)
and x3 ∈ I(8).

6. We assign distinct new objects y1, y2, . . . to all other minimal regions
that are yet unassigned i.e. y1 ∈ I(4) and y2 ∈ I(6).

7. We take a basic region A and split it into minimal regions. Take the
union of the assignments to all such minimal regions. Thus set-assignment
to the basic region A is I(A)= I(1) ∪ I(2) ∪ I(5) ∪ I(6). i.e. I(A)= {h(a),
y2}.
Similarly, I(B)= I(2) ∪ I(3) ∪ I(4) ∪ I(5) = {h(a), x1, y1}.
I(C) = I(6) ∪ I(5) ∪ I(4) ∪ I(7) = {y2, y1, x2, h(b)}.
And for the region enclosed by rectangle we have I(U) = I(1) ∪ I(2) ∪
I(3) ∪ I(4) ∪ I(5) ∪ I(6) ∪ I(7) ∪ I(8) = {h(a), h(b), x1, x2, x3, y1, y2}.

We shall first establish a special case of completeness theorem.

Lemma 6.2. If |= D then � D holds.

Figure 78.

Figure 79.
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Proof. Case-1:
Let D be a type-I/II diagram and |= D holds i.e. D is true in every model.

We want to show that either- (i) D does not have any diagrammatic object in
any region r or (ii) D has an lcc spread over the whole rectangle.

If not, then either shades or lci or ā or lcc (which is not spread over the
whole rectangle) shall occur in a region r.

If shading occurs in a region r, we can construct an model M = (U, I,
h) such that I(r) �= φ, so that D is not true in M, a contradiction to our
assumption.

Similarly for a lcc or lci or ā we can construct a model M such that D is
not true in M, contradicting our assumption.

Thus either D does not have any diagrammatic object in any region r or
D has an lcc spread over the whole rectangle.

If D does not have any diagrammatic object in any region r then � D
holds (by definition of � D).

If D has an lcc spread over the whole rectangle, we can get a D
′
with no

diagrammatic object just by elimination of the lcc.
Conversely, from that particular D

′
we get D by the rule of introduction

of x-sequence [see note below].

Case-2:
Let D be a type-III diagram such that D ≡ D1 − D2 − · · · − Dn and |= D

holds.
Then we can show that either
(i) there is a component Di such that |= Di holds.

or (ii) D is syntactically equivalent to a type-III diagram D
′

such that
for at least one diagrammatic object in D there exists a tautologous pair (D

′
i,

D
′
j) in D

′
and having no other diagrammatic object in D

′
i and D

′
j .

If not, then we can construct a model M such that D is not true in M,
contradicting our assumption [see demonstration below, Example 6.4].

In both the cases we now show that � D holds.

Case-1:
Suppose, there is a component Di in D such that |= Di holds. Thus � Di

holds (already proved in case-1).
So, D � Di holds [by Proposition 4.2].
Also, Di � D holds [by the rule of extension of components].
Thus D is syntactically equivalent to Di.
Hence, � D holds by the definition of tautology.

Case-2:
Suppose, D is syntactically equivalent to a type-III diagram D

′
such that

for at least one diagrammatic object in D there exists a tautologous pair (D
′
i,

D
′
j) in D

′
and having no other diagrammatic object in D

′
i and D

′
j .
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Let us consider a type-I/II diagram D
′′

such that—(i) D
′′

has all the
basic regions of D

′
i and D

′
j and (ii) there is no diagrammatic object in D

′′
.

∴ D
′′ � D

′
i − D

′
j (by rule of excluded middle).

∴ D
′′ � D

′
(by rule of extension of component).

∴ D
′′ � D (by transitivity as D

′ � D).

Again, � D
′′

holds because D
′′

is a type-I/II diagram and there is no
diagrammatic object in D

′′
.

Thus D � D
′′

[by Proposition 4.2].
Thus D is syntactically equivalent to D

′′
and � D holds by the definition

of tautology. �

Note: Suppose, D have an lcc spread over the whole rectangle. Let D
′
be any

type-I/II diagram such that D
′
does not have any diagrammatic object. Then

D is syntactically equivalent to D
′
.

Then, D � D
′
holds by steps (i) to (iii).

(i) Elimination of diagrammatic objects in D.
(ii) Introduction of closed curves in D which are in D

′
and not in D.

(iii) Elimination of closed curves from D which are not in D
′
.

Again, D
′ � D holds by steps (i) to (iii).

(i) Introduction of x-sequence in D
′
.

(ii) Introduction of closed curves in D
′
which are in D and not in D

′
.

(iii) Elimination of closed curves from D
′
which are not in D.

Thus D is syntactically equivalent to D
′

and � D holds by transitivity
(� D

′
holds because D

′
is a type-I/II diagram and there is no diagrammatic

object in D
′
).

Example 6.2. A type-III diagram D is interpreted by inclusive or of the com-
ponents.

So, one possibility for |= D is that one component is a tautology (i.e.
without any diagrammatic objects) e.g. the Fig. 80.

The other possibility is that two of the components together are true in
all interpretations and thus making this pair a tautologous one, e.g. Fig. 81.

Figure 80.
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Figure 81.

Here the 1st and 3rd components are tautologous. Although the 2nd and
3rd components are also tautologous this pair can not be considered since one
of them, the second one, has other diagrammatic objects.

We now proceed towards the schema of completeness theorem. A par-
ticular construction of a diagram D+ from a diagram D will be required to
develope this schema. So we define D+ as below.

Definition 6.3. D+

Let D |= D
′
. Where D is a type-I/II diagram we define D+ as follows:

Case-1: Let D
′
be a type-I diagram. Then D+ ≡ D.

Case-2: Let D
′

be a type-II diagram. Then D+ is the diagram obtained by
introducing closed curves to D that enclose basic regions of D

′
of

which there are no counterparts in D.
Case-3: Let D

′
be a type-III diagram where D

′ ≡ D
′
1 − D

′
2− . . . − D

′
m and

there is at least one component D
′
i of D

′
such that D |= D

′
i holds (1

≤ i ≤ m). Then D+ is the diagram obtained by introducing closed
curves to D that enclose the basic regions of D

′
i of which there are

no counterparts in D [The diagram D+ is obtained w.r.t component
D

′
i such that D |= D

′
i. There can be more than one components D

′
i

and D
′
j such that D |= D

′
i and D |= D

′
j . So there can be two different

diagrams D+ w.r.t D
′
i and D

′
j ].

Example 6.3. Let us consider the two diagrams D and D
′

(≡ D
′
1 − D

′
2) (vide

Fig. 82).
Here D |= D

′
1. Then D+ (vide Fig. 83) is the diagram obtained by intro-

ducing closed curves to D that enclose the basic regions of D
′
1 of which there

are no counterparts in D.

Figure 82.
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Case-4: Let D
′
be a type-III diagram where D

′ ≡ D
′
1−D

′
2− . . .−D

′
m and there

is no component in D
′

such that D |= D
′
i holds (1 ≤ i ≤ m) then D+ is the

diagram obtained by introducing closed curves to D that enclose all the basic
regions of D

′
i (1 ≤ i ≤ m) of which there are no counterparts in D.

Example 6.4. Let us consider the two diagrams D and D
′

(≡ D
′
1 − D

′
2) (vide

Fig. 84).
Here D |= D

′
. There is no component in D

′
such that D |= D

′
i holds (i

= 1,2). Then D+ (vide Fig. 85) is the diagram obtained by introducing closed
curves to D that enclose all the basic regions of D

′
i (i = 1, 2) of which there

are no counterparts in D.

For the proof of Completeness we shall adopt the following strategy.
First, we prove completeness for single-premise i.e. if D |= D

′
then D � D

′

where D and D
′
are single diagrams.

This consists of sub cases, the complete picture of which is shown in
Fig. 86. Broadly there are the following divisions,

(i) either of D or D
′

is tautology, (ii) either of D or D
′

is inconsistent,
(iii) both of D and D

′
are consistent type-I/II diagrams other than tautology,

Figure 83.

Figure 84.

Figure 85.
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(iv) D is type-I/II diagram and D
′

is type-III diagram other than tautology
and (v) D is type-III diagram and D

′
is any diagram other than tautology.

To prove (iii) we have obtained necessary conditions on diagrams D and
D

′
that hold when D |= D

′
, given that D has counterparts of all the regions

in D
′
. Then we extend D to Dmax and show that Dmax � D

′
. Since D � Dmax

we get D � D
′
.

If D does not have counterparts of some of the basic regions of D
′

then
we extend D to D+. For definition of D+ given D |= D

′
, see def 6.2. D+ is an

extension of D by introducing all closed curves of D
′
which are not in D. Since

D+ |= D by elemination rule, we have D+ |= D
′
and by the previous sub case

we get D+ � D
′
and hence D � D

′
.

Then the remaining cases when either of the diagrams D or D
′

is of
type-III are dealt with.

Finally the completeness theorem is obtained by employing unification
rule on the diagrams in the premise set when it contains more than one dia-
gram.

Schema of Completeness Theorem

Figure 86.
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Theorem 6.4. If any one of the diagrams D or D
′
is a tautology and D |= D

′

hold then D � D
′
holds.

Proof. We can prove the theorem by using the following two lemmas (Lem-
mas 6.5 and 6.6).

Lemma 6.5. If D |= D
′
and D

′
is a tautology then D � D

′
holds.

Proof. D
′

is a tautology i.e. � D
′
. Thus D � D

′
holds for any D (Proposi-

tion 4.2). �

Lemma 6.6. If D is a tautology and D |= D
′
then D

′
is a tautology and D � D

′
.

Proof. Let D be a tautology and D |= D
′
.

Since D is tautology, D is true in every model (cf. Lemma 5.6). So, D
′
is

true in every model.
Thus D

′
is a tautology [by Lemma 6.2].

Since D
′
is a tautology thus for any D, D � D

′
(Proposition 4.2). �

Thus, when any one of the diagram D or D
′

is a tautology and D |= D
′

holds, then D � D
′
holds. �

Theorem 6.7. If any one of the diagram D or D
′
is inconsistent and D |= D

′

holds then D � D
′
holds.

Proof. We can prove the theorem by using the following two lemmas (Lemmas
6.8 and 6.9).

Lemma 6.8. If D
′
is inconsistent and D |= D

′
then D is inconsistent and D

� D
′
.

Proof. Let D
′
be inconsistent and D |= D

′
.

If possible let D be consistent.
Then D is true in some model (Theorem 6.1). But since D

′
is false in

every model,we face a contradiction to D |= D
′
.

Thus D is inconsistent.
Thus for any D

′
, D � D

′
holds by inconsistency rule. �

Lemma 6.9. If D |= D
′
and D is inconsistent then D � D

′
.

Proof. D is inconsistent implies D � D
′
. This holds because of inconsistency

rule. �

Thus, when any one of the diagram D or D
′
is inconsistent and D |= D

′

holds, then D � D
′
holds. �

Lemma 6.10 gives necessary conditions that should hold for the diagram
D given some conditions for D

′
and such that D

′
is a semantic consequence of

D. This lemma will be used in Theorem 6.11 in which completeness theorem
will be established in a special case.
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Lemma 6.10. Let D and D
′
be both type-I/II consistent diagrams other than

tautology and D |= D
′
and for every region r of D

′
there is a counterpart region

c(r) in D then the following hold:

(1) If m is a minimal region in D
′
such that m is shaded then c(m) in D is

shaded.
(2) If r is a region in D

′
such that r has a x-sequence then

(i) c(r) can contain any diagrammatic object if r spreads over the whole
rectangle.

(ii) c(r) has a part of a x-sequence or an a-sequence or c(− r) has shading
if r is a proper part of rectangle.

(3) If r is a region in D
′
such that r has an a-sequence then c(r) has a part

of an a-sequence.
(4) If m is a minimal region in D

′
such that m has ā then

either c(−m) in D has a part of the a-sequence,
or c(m) is shaded,
or c(m) has ā.

Proof. Let D
′
contain only one diagrammatic object.

Proof of (1): Let m be a minimal region in D
′
such that m is shaded.

Now c(m) should be shaded.
For if not, it may be blank, may contain part of a x-sequence, part of an

a-sequence or ā.
In any case we can find a model M such that D is true in M and I(c(m))�=

φ.
So there is an model M such that M � D but M � D

′
.

This contradicts D |= D
′
.

Proof of (2): Let r be a region in D
′
such that r has a x-sequence.

Case-(i):
r is spread over the whole rectangle. Since there is only one diagrammatic

object in this case a x-sequence and it is spread over the whole rectangle, D
′

is a tautology. So, D |= D
′

for any D. Thus c(r) can have any diagrammatic
object.

Case-(ii):
r is a proper part of rectangle then c(r) has a part of x-sequence or an

a-sequence or c(− r) has shading.
If not, c(r) is either shaded or blank or contain ā and c(− r) can have

any diagrammatic object other than shading.
In any case we can find a model M such that D is true in M and I(c(r))=

φ.
So there is an model M such that M � D but M � D

′
.

This contradicts D |= D
′
.

Proof of (3): Let r be a region in D
′
such that r has an a-sequence.

Then c(r) has a part of an a-sequence.
If not, c(r) is either shaded or blank or contains a x-sequence or ā.
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Then we can find a model M such that D is true in M and h(a)/∈ I(c(r)).
So there is an model M such that M � D but M � D

′
.

This contradicts D |= D
′
.

Proof of (4): Let m be a minimal region in D
′
such that m has ā.

Then either c(− m) has part of a-sequence or c(m) has shading or has ā.
If not then c(− m) has no a-sequence and c(m) has no shading or ā.
Then we can find a model M such that D is true in M and h(a)∈ I(c(m)).
So there is an model M such that M � D but M � D

′
.

This contradicts D |= D
′
.

Let D
′
contain more than one diagrammatic object.

Now we can say that D
′
is the diagram Uni(D

′
1, D

′
2, . . ., D

′
n) where each

D
′
i contains only one diagrammatic object of D

′
.

Since D |= D
′

thus D |= D
′
i, for all i [since Uni(D

′
1, D

′
2, . . ., D

′
n) is the

conjunction of D
′
1, D

′
2, . . ., D

′
n].

Now the conditions 1–4 already hold for each D
′
i.

Thus these will also hold for D
′
. �

Theorem 6.11. If D and D
′
are both type-I/II consistent diagrams other than

tautology such that for every region r of D
′
there is a counterpart region c(r)

in D and D |= D
′
then D � D

′
.

Proof. We first consider the case when D
′

contains only one diagrammatic
object.

We know that D � Dmax (Proposition 4.5).
Since for every region in D

′
there exists an counterpart region in D, then

all the conditions of Lemma 6.10 holds.
(1) Let in D

′
there be only one minimal region m which is shaded, then

c(m) in D is shaded (by Lemma 6.10).
Since we did not eliminate any shading in the construction of Dmax, c(m)

in Dmax is also shaded.
Thus Dmax � D

′
[by possible application of rule of elimination other than

this particular shading].
(2) Let in D

′
there be only one x-sequence in a region r.

Case-(i):
If r spread over the rectangle then D

′
is a tautology.

Dmax � D
′
[Proposition 4.2].

Case-(ii):
If r is a proper part of the rectangle then either c(r) has a part of x-

sequence or an a-sequence or c(− r) has shading (Lemma 6.10).
If c(r) has a part of x-sequence or an a-sequence then c(r) in Dmax has

all possible extensions of x-sequence or a-sequence.
Thus Dmax � D

′
[by possible application of rule of elimination other than

this particular sequence].
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If c(− r) has shading then the region c(r) + c(− r) and the region c(r)
both have x-sequences in Dmax as per construction of Dmax.

Thus Dmax � D
′
[by possible application of rule of elimination other than

this particular sequence].
(3) If r is a region in D

′
such that m has an a-sequence, then c(r) has a

part of an a-sequence.
Then c(r) in Dmax has all possible extension of x-sequence and a-sequence

and also ā.
Thus Dmax � D

′
[by possible application of rule of elimination other than

this particular sequence].
(4) Let there be only one ā in D

′
such that m has ā then

either c(− m) in D has a part of a-sequence,
or c(m) is shaded,
or c(m) has ā.
If c(− m) in D has a part of a-sequence then c(m) in Dmax has ā.
Thus Dmax � D

′
[by possible application of rule of elimination other than

this ā].
If c(m) in D has shading then c(m) in Dmax has shading and ā.
Thus Dmax � D

′
[by possible application of rule of elimination other than

this ā].
If c(m) in D has ā then c(m) in Dmax has ā.
Thus Dmax � D

′
[by possible application of rule of elimination other than

this ā].
Thus in any case Dmax � D

′
.

So, because D � Dmax we get D � D
′
[by transitivity].

Let us consider the case when D
′

contain more than one diagrammatic
object.

We can say that D
′

is the diagram Uni(D
′
1, D

′
2, . . ., D

′
n) where each D

′
i

contains only one diagrammatic object of D
′
.

Now the conditions 1–4 already hold for each D
′
i.

Thus D � D
′
i (already proved in the previous case).

∴ D � D
′

[since Uni(D
′
1, D

′
2, . . ., D

′
n) is the conjunction of D

′
1, D

′
2, . . .,

D
′
n]. �

We now consider the general case when the existence of counterpart con-
dition is dropped.

Theorem 6.12. If D and D
′
are both type-I/II consistent diagrams other than

tautology and D |= D
′
then D � D

′
.

Proof. We have D � D+ [by the rule of introduction of closed curves of D
′
for

which there are no counterparts in D].
Again D+ � D [by the rule of elimination of closed curves].
Thus D+ |= D [by soundness].
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∴ D+ |= D
′
[by transitivity, since D |= D

′
by assumption].

Now for every region in D
′

there exists counterpart region in D+ and
both of them are type-I/II diagrams. Also, D+ |= D

′
.

∴ D+ � D
′
[by Theorem 6.11].

∴ D � D
′
[by transitivity].

�

We now take D
′

as a type-III diagram. First we put some restrictions
on D and D

′
and finally the general case will be established. Lemma 6.13 is

similar to Lemma 6.10 giving necessary conditions that holds when certain
similar restrictions are imposed on D and D

′
.

Lemma 6.13. Let

(i) D |= D
′
where D

′ ≡ D
′
1 − D

′
2 − · · · − D

′
n,

(ii) D |= D
′′
do not hold for any proper part D

′′
of D

′
and

(iii) for every region r in D
′
there exist a counterpart region c(r) in D.

Then the conditions 1–4 hold:

(1) If m is a minimal region of D
′
and m is shaded then exactly one of the

following holds.
(i) c(m) is shaded.
(ii) c(m) contains no diagrammatic object and D

′
is tautologous at m w.r.t

x or tautologous at m w.r.t some a.
(iii) c(m) contains ā and D

′
is tautologous at m w.r.t x or w.r.t some b(�=

a).
(iv) c(m) contains one node of a (non-degenerate) x-sequence or a-sequence.
(2) If r is a region in D

′
such that r has a x-sequence then one of the

following holds.
(i) c(r) has a part of x-sequence or an a-sequence.
(ii) A part of c(r) has no diagrammatic object.
(iii) A part of c(r) contains ā.
(3) If r is a region in D

′
such that r has an a-sequence then exactly one of

the following holds.
(i) c(r) has a part of an a-sequence.
(ii) There exists a minimal region m in r such that c(m) contains no dia-

grammatic object and D
′
is tautologous at m w.r.t a.

(iii) There exists a minimal region m in r and c(m) contains a part of x-
sequence and D

′
is tautologous at m w.r.t a.

(4) If m is a minimal region of D
′
and m has ā then exactly one of the

following holds.
(i) Either part of c(− m) in D has a-sequence,

or c(m) is shaded,
or c(m) has ā.

(ii) c(m) contains no diagrammatic object.
(iii) c(m) contains one nodes of a (non-degenerate) x-sequence or a-sequence.
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(iv) c(m) contains a part of x and D
′
is tautologous at m w.r.t a.

The proof of (1) is by showing that if none of the conditions (i)– (iv)
holds then D � D

′
. Similarly (2), (3) and (4) are also established. However, we

are giving some demonstrations of the cases that will make things transparent.

Example 6.5. Let us consider the two diagrams D and D
′
(≡ D

′
1 − D

′
2 − D

′
3)

(vide Fig. 87).
Here D |= D

′
, but there is no component in D

′
such that D |= D

′
i holds

(i = 1, 2, 3).
Let us consider the component D

′
1, in D

′
1 the minimal region ((− A) · (−

B)) has ā, the minimal region (A · (− B)) has shading and D
′

is tautologous
at (A · (− B)) w.r.t x, the minimal region (A · B) has ā and the minimal
region ((− A) · B) has a. Now, in diagram D, c((− A) · (− B)) contains no
diagrammatic object, c(A · (− B)) has ā, c(A · B) has shading and c((− A) ·
B) has a.

Let us consider the component D
′
2, in D

′
2 the minimal region ((− A) · (−

B)) has shading and D
′
is tautologous at ((− A) · (− B)) w.r.t x, the minimal

region ((A · (− B)) · (B · (− A))) has x-sequence and the minimal region (A
· B) has ā. Now, in diagram D, c((− A) · (− B)) contains no diagrammatic
object, c((A · (− B)) · (B · (− A))) has a part of a-sequence and c(A · B) has
shading.

Let us consider the component D
′
3, in D

′
3 the minimal region ((− A) ·

(− B)) has x, the minimal region (A · (− B)) has ā the minimal region (A ·
B) has shading and the minimal region ((B · (− A)) · ((− A) · (− B))) has
x-sequence. Now, in diagram D, c((− A) · (− B)) contains no diagrammatic
object, c((A · (− B))) has ā, c(A · B) has shading and c((B · (− A)) · ((− A)
· (− B))) has a part of a-sequence.

So, all the conditions of Lemma 6.13 are verified.

Theorem 6.14. If D is a type-I/II diagram and D
′
is a type-III diagram and

both of them are consistent diagrams other than tautologies such that for every
region r of D

′
there is a counterpart region c(r) in D and D |= D

′
then D � D

′

(where D
′ ≡ D

′
1 − D

′
2 − · · · − D

′
n).

Proof. Case-1:
There is at least one component in D

′
, say D

′
i, such that D |= D

′
i holds.

Figure 87.
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For every region in D
′
i there exists an counterpart region in D and D

|= D
′
i holds.
∴ D � D

′
i [by Theorem 6.11].

Now D
′
i � D

′
1 − D

′
2 − · · · − D

′
i − · · · − D

′
n [by the rule of introduction of

components ].
∴ D � D

′
1 − D

′
2 − · · · − D

′
n [by transitivity].

That is D � D
′
.

Case-2:
D |= D

′′
does not hold for any proper part D

′′
of D

′
.

We split the cases into two sub cases.

Sub case-(i):
There is no ā in D.
In this case D contains at least one non-degenerate x-sequence or at least

one non-degenerate a-sequence or at least one blank region.
We now follow the following steps.
D � D1 say, (by all possible application of rule of splitting sequence).
Then we obtain D1 � D2 say, (by possible multiple application of rule of

excluded middle-(a) till there is no region left without a diagrammatic object).
Then we obtain D2 � D� say, (by possible multiple application of rule of

excluded middle-(b) that is adding a or ā in the minimal regions having a x
till each of the regions having x have an a or ā).

So D� is a type-III diagram D�
1 −D�

2 −· · ·−D�
n where each component has

only conjunctive information and there is no region without any diagrammatic
objects.

Again, D � D� (by transitivity).
Then D�

max is the diagram D�
1max − D�

2max − · · · − D�
nmax.

Now D�
1 � D�

1max (Proposition 4.5).
D�

1 � D�
1max − D�

2max − · · · − D�
nmax. (by extension of components).

Similarly for D�
2 etc.

Hence by rule of construction we have D� � D�
max.

Thus D � D�
max (by transitivity).

Since for every region in D
′

there exists a counterpart region in D, then
all the conditions of Lemma 6.13 hold.

(1) If m is a minimal region of D
′
and m is shaded then exactly one of the

following holds
(i) c(m) is shaded.
(ii) c(m) contains no diagrammatic object and D

′
is tautologous at m w.r.t

x or tautologous at m w.r.t some a.
(iii) c(m) contains ā and D

′
is tautologous at m w.r.t x or w.r.t some b(�=

a).
(iv) c(m) contains one node of a(non-degenerate) x-sequence or a-sequence.

In case (i), c(m) is shaded and hence c(m) in each D�
imax for all i this

region is also shaded, as we did not eliminate any shading.



188 R. Bhattacharjee et al. Log. Univers.

In case (ii), c(m) contains no diagrammatic object and D
′
is tautologous

at m w.r.t x. Hence the region m in some of the components D
′
1, D

′
2, . . ., D

′
k

has shading and m in the remaining components D
′
k+1, D

′
k+2, . . ., D

′
n has a x.

But D� is obtained by rule of excluded middle, so c(m) has shading in
some of the components of D� and c(m) has x in some of the components
of D�. Thus D�

max also has the same diagrammatic objects in the respective
counterpart regions.

c(m) contains no diagrammatic object and D
′

is tautologous at m w.r.t
some a. Hence the region m in some of the components D

′
1, D

′
2, . . ., D

′
k has

shading and m in the remaining components D
′
k+1, D

′
k+2, . . ., D

′
n has a a or

ā.
This case can be dealt with similarly as above.
Case (iii) is not applicable here since D has no ā.
In case (iv), c(m) contains one node of a (non-degenerate) x-sequence or

a-sequence. But D� is obtained by rule of splitting sequences followed by rule
of excluded middle.

So c(m) in D�
1max, D�

2max, . . ., D�
kmax has shading and c(m)in D�

k+1max,
D�

k+2max, . . ., D�
nmax has a x.

Hence we see that in D�
max the diagram D

′
is embedded. So we get D�

max �
D

′
[by suitable application of rule of elimination and rule of construction].

Similarly, for any other diagrammatic object in D
′

we can show that
D�

max � D
′
.

Thus D � D
′
(by transitivity) (vide Example 6.6).

Sub case-(ii):
There is ā in some minimal regions in D.
Let there be ā in m1, m2, . . ., mn of D.
Corresponding to each minimal region mi we construct DTmi

(i=1, 2,. . . ,n)
such that

(i) DTmi
is a type-III diagram D1Tmi

− D2Tmi
.

(ii) D1Tmi
, D2Tmi

, for all i = 1, 2, . . . ,n have the same basic regions as D.
(iii) c(mi) has shading in one of the components and x in the other compo-

nent.
(iv) DTmi

has no other diagrammatic objects.

Now we unite D with DTm1
, DTm2

, . . ., DTmn
.

∴ D � Uni(D, DTm1
, DTm2

, . . ., DTmn
)(by rule of unification).

Now, Uni(D, DTm1
, DTm2

, . . ., DTmn
) � D1 say,(by all possible applica-

tions of rule of splitting sequence).
D1 � D2 say, (by possible multiple applications of rule of excluded middle-

(a) till there is no region without diagrammatic object left).
D2 � D� say,(by possible multiple applications of rule of excluded middle-

(b) till each of the regions having x have an a or ā).
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So D� is a type-III diagram D�
1 −D�

2 −· · ·−D�
n where each component has

only conjunctive information and there is no region without any diagrammatic
objects.

Then D�
max is the diagram D�

1max − D�
2max − · · · − D�

nmax.
Now D�

1 � D�
1max (Proposition 4.5).

D�
1 � D�

1max − D�
2max − · · · − D�

nmax (by extension of components).
Similarly for D�

2 etc.
Hence by rule of construction we have D� � D�

max.
Thus D � D�

max (by transitivity).
We can show that D�

max � D
′
, by using the similar methods used in sub

case-(i).
Thus D � D

′
(by transitivity) (vide Example 6.7). �

Example 6.6. Let us consider the following two diagram D and D
′
(vide Fig. 88).

Here, D |= D
′
. But, there is no component in D

′
for which D |= D

′
i (i=1,2)

holds.
We use the rule of excluded middle. The resultant diagram is D� (vide

Fig. 89).
Now from D� we construct D�

max (vide Fig. 90).
we can get the diagram D

′
1 from D�

1max by using the elimination rule.
And from D�

2max we get the diagram D
′
2.

∴ D�
1max � D

′
[by rule of extension of components].

Similarly, D�
2max � D

′
.

Figure 88.

Figure 89.

Figure 90.
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Thus, D�
max � D

′
[by rule of construction].

∴ D � D
′
.

Example 6.7. Let us consider the following two diagram D and D
′
(vide Fig. 91).

Here, D |= D
′
. But, there is no component in D

′
for which D |= D

′
i

(i = 1, 2, 3, 4) holds.
Now we first unite the diagram D with a type-III diagram DTm1

(vide
Fig. 92).

The resultant diagram is Uni(D, DTm1
) (vide Fig. 93).

Now we unite the diagram D with a type-III diagram DTm2
(vide Fig. 94).

The resultant diagram is Uni(D, DTm1
, DTm2

) (vide Fig. 95).
We use the rule of splitting sequence. The resultant diagram is D1 (vide

Fig. 96).
We use the rule of excluded middle-(a) till there is no region without

diagrammatic object left. The resultant diagram is D2 (vide Fig. 97).
Then we use the rule of excluded middle-(b) till all the regions having x

has an a or ā. The resultant diagram is D� (vide Fig. 98).

Figure 91.

Figure 92.

Figure 93.

Figure 94.
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Figure 95.

Figure 96.

Figure 97.
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Figure 98.
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Figure 99.

Now from D� we construct D�
max. In Fig. 99 we show a few components

of D�
max obtained from D�

1 , D�
2 , D�

13 and D�
18 respectively from the Fig. 98.

We can get the diagram D
′
1 from D�

1max by using the elimination rule.
And from D�

2max we get the diagram D
′
4. Also, from D�

13max and D�
18max we

get the diagram D
′
3 and D

′
2 respectively.

Similarly, from other components of D�
max we get components of D

′
.

∴ D�
imax � D

′
(i=1, 2,. . . , 30) [by rule of extension of components].

Thus, D�
max � D

′
[by rule of construction].

∴ D � D
′
.

Theorem 6.15. If D is a type-I/II diagram and D
′
is a type-III diagram, both

of them are consistent diagrams other than tautology and D |= D
′
then D � D

′
.

Proof. Case-1:
There is at least one component in D

′
, say D

′
1, such that D |= D

′
1 holds.

Now D
′
1 is a type-I/type-II diagram, such that D

′
1 may have some basic

regions counterparts of which are not present in D. Then D+ is the diagram
obtained by introducing closed curves to D such that these curves enclose basic
regions of D

′
1 of which there are no counterparts present in D.

Thus D � D+ [by rule of introduction of closed curve].
Again D+ � D [by the rule of elimination of closed curves].
Thus D+ |= D [by soundness].

∴ D+ |= D
′
1 [by transitivity].

Now for every region in D
′
1 there exists a counterpart region in D+ and

both of them are type-I/II diagrams and D+ |= D
′
1.

∴ D+ � D
′
1 [by Theorem 6.11].

∴ D � D
′
1 [by transitivity].

Now D
′
1 � D

′
1−D

′
2−· · ·−D

′
n [by the rule of introduction of components].

∴ D � D
′
1 − D

′
2 − · · · − D

′
n [by transitivity].

∴ D � D
′
.

Case-2:
D |= D

′′
does not hold for any proper part D

′′
of D

′
.

D+ is the diagram obtained by introducing basic regions of D
′
1, D

′
2, . . .,

D
′
n to D of which there were no counterparts present in D.
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Thus D � D+ [by rule of introduction of closed curve].
Again D+ � D [by the rule of elimination of closed curves].
Thus D+ |= D [by soundness].

∴ D+ |= D
′
[by transitivity].

Now for every region in D
′
there exists an counterpart region in D+ and

D+ |= D
′
.

∴ D+ � D
′
[by Theorem 6.14].

∴ D � D
′
[by transitivity].

�

Remark 6.16. Let
(i) D |= D

′
where D

′ ≡ D
′
1 − D

′
2 − · · · − D

′
n − · · · − D

′
n+m and

(ii) D |= D
′
1 − D

′
2 − · · · − D

′
n.

Then D � D
′
1 − D

′
2 − · · · − D

′
n+m.

Proof. Now from Theorem 6.15, we get D � D
′
1 − D

′
2 − · · · − D

′
n. So, by

application of rule of extension of components we get D � D
′
1 − D

′
2 − · · · −

D
′
n+m. �

Theorem 6.17. If D is a type-III diagram and D
′
is any diagram,both of them

are consistent diagrams other than tautology and D |= D
′
then D � D

′
.

Proof. We take D ≡ D1 − D2 − · · · − Dn.

Case-1:
Let D

′
be a type-I/II diagram.

Since D |= D
′
, Di |= D

′
holds for all Di (1 ≤ i ≤ n). Otherwise if say

D1 � D
′
, then there is a model M such that M � D1 and M � D

′
.

Then M � D but M � D
′
, a contradiction.

Now for any Di, Di |= D
′
holds and both of them are type-I/II diagrams.

∴ Di � D
′
[by Theorem 6.12].

∴ D � D
′
[by rule of construction].

Case-2:
Let D

′
be the type-III diagram D

′
1 − D

′
2 − · · · − D

′
m.

Since D |= D
′
, Di |= D

′
holds for all Di (1 ≤ i ≤ n).

Now for any Di, Di |= D
′

holds and Di is a type-I/II diagram and D
′

is
a type-III diagram.

∴ Di � D
′
[by Theorem 6.15].

∴ D � D
′
[by rule of construction].

�

Theorem 6.18 (Completeness theorem). For any finite set Δ of diagrams and
any diagram D, if Δ |= D then Δ � D.
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Proof. Case-1:
Let Δ = φ. Then |= D i.e. D is true in every model. Thus � D holds (by

Lemma 6.2).

Case-2:
Let Δ �= φ. Then we obtain a diagram D

′
from the diagram Δ by the

rule of unification.
Thus Δ � D

′
.

Since D
′

is obtained from Δ by the rule of unification, all the diagram-
matic objects and closed curves of each diagram of Δ are included in D

′
.

Thus D
′ � D∗ for all D∗ ∈ Δ [by rule of elimination and construction

(whenever necessary)].
Thus by soundness we have D

′ |= D∗ for all D∗ ∈ Δ.
Since Δ |= D, therefore D

′ |= D.
Thus D

′ � D (by Theorems 6.4 to 6.17).
∴ Δ � D (by transitivity). �

7. Concluding Remarks

We indicate below some of the basic differences of the diagram system pre-
sented in the paper with some other systems.

1. This system is non-classical in the following sense. From the Fig. 100a,
b does not follow.
Semantically it means that absence of a in A does not necessarily imply
locating its presence in the complement −A. In the introduction the
motivation behind this assumption has been discussed.
Syntactically the above fact obtains because of there not being any
introduction rule for constants [cf. Sect. 3.1.3, note]. In the classical
context, for any constant a and closed curve A, the following diagram
would be obtained (vide Fig. 101) as h(a) should belong to I(A) or in
its complement. So, there should have been a rule of introduction of the
constant a by taking an a-sequence spreading over the whole rectangle
with one node in every minimal region (vide Fig. 102).
Thus according to the classical position, it is required that if there is
the name of an individual in the language, its referent must be present
somewhere in the universe whereas in our case it is not so. Our system
admits empty-terms.

(a) (b)

Figure 100.
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Figure 101.

Figure 102.

2. In our diagram system there are additional primitive symbols (diagram-
matic objects) viz. names of individuals a, their absence ā, line connect-
ing a’s (being interpreted by disjunctive or).

3. The blank rectangle is not a well-formed diagram in this system. We
have followed the standard predicate logic system that requires at least
one predicate symbol. It is to be noted that while in Shin [15, page no:
142, footnote] and Hammer the universe may be empty, ours is not.

4. Naturally, we have needed introduction and elimination rules for other
diagrammatic objects. In fact there are introduction rules for closed
curve (as in other systems) and additionally of ā and x. Also we needed
elimination rules for lci and ā additionally.

5. Elimination rules for closed curved may be specially mentioned [c.f.
Sect. 3.3.4]. In order to formulate this rule we have introduced the notion
of normal form of a Venn diagram. For this, we had to make a little
modification in the definition of Venn diagrams [c.f. Sect. 2.2].

6. Similarly, modifications and extensions of other rules have been re-
quired.

7. The notion of tautology is syntactic here. We have also introduced a
notion called tautologous minimal region [c.f. Sect. 4, Definition 4.4].

Towards future directions of our work, we may mention the following:
(1) building diagram systems for standard classical logic. This system will

be different from those of Shin and Hammer in that firstly there shall
be representations of presence and absence of an individuals and hence
our results will be different. Secondly this system will be obtained by
incorporating a rule of introduction of individuals which is not present
in the current system.

(2) We shall develope the diagram system with open universe i.e. there shall
not be the bounding rectangle in the diagrams. A first attempt in this
direction was made in [5]. Our studies would be to bridge the gaps in
this effort and established completeness theorem rigorously following
the technique of the present paper.
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Appendix A. All the Transformation Rules are Sound

The proof is obtained by dealing with all the transformation rules one by one.
(i) If D � D

′
by introduction of a new curve then D |= D

′
.

Proof. (a) Suppose a minimal region m in D is shaded. Let D be true in a
model M. Thus I (m) = φ.

Let D
′

be obtained from D by introduction of a curve B. Then shading
occurs in the minimal regions m − B and m · B [as m is divided into two
parts].

Now I(m − B) ∪ I(m · B) = I((m − B) + (m · B)) = I(m) = φ.
Thus I(m − B) = φ and I(m · B) = φ.
∴ M � D

′
.

(b) Let a x-sequence occur in a region r in D, where r = m1+m2+· · ·+mk.
Each of m1, m2, . . ., mk contains one node of the x-sequence.
Let D be true in an arbitrary model M. Thus

⋃k
i=1 I(mi) �= φ.

Let D
′

be obtained from D by introduction of a curve B. Then we get
new regions mi− B and mi· B for each i. Because of the rule x is added in mi·
B for each i and these new x’s are successively joined by line with one end of
the existing x-sequence.

Now I(mi− B) ∪ I(mi· B) = I((mi− B) + (mi· B)) = I(mi).⋃k
i=1 (I(mi− B) ∪ I(mi· B)) =

⋃k
i=1 I(mi) �= φ.

∴ M � D
′
.

(c) Let a a-sequence occur in a region r in D, where r = m1+ m2+· · ·+mk.
Each of m1, m2, . . ., mk contains one node of the a-sequence.
Let D be true in an arbitrary model M. Let D

′
be obtained from D by

introduction of a curve B. Then by using the similar method used in case-(b)
we get M � D

′
.

(d) Suppose a minimal region m in D has ā.
Let D be true in an arbitrary model M.
Let D

′
be obtained from D by introduction of a curve B. Then there are

ā in the minimal regions m − B and m · B.

Case-1:
If h(a) is not in the universe U. This implies,a does not occur in D.
So, a does not occur in D

′
?.
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So M � D
′
.

Case-2:
If h(a) is in universe U, then h(a) /∈ I(m).
Now I(m − B) ∪ I(m · B) = I((m − B) + (m · B)) = I(m).
∴ h(a) /∈ (I(m − B) ∪ I(m · B)).
∴ h(a) /∈ I(m − B) and h(a) /∈ I(m · B).
∴ M � D

′
.

Since M is arbitrary. For every M, if M � D then M � D
′
.

∴ D |= D
′
. �

(ii) If D � D
′
by introduction of ā then D |= D

′
.

Proof. Case-(i):
Let m be a minimal region in D such that m is shaded.
Let M � D, then I(m) = φ i.e. h(a) /∈ I(m) for any constant a.
D

′
is obtained by introducing ā in c(m) [where c(m) is the counterpart

region of m in D
′
].

Now c(m) has shading and ā.
Since I(m) = φ therefore I(c(m)) = φ.
∴ h(a) /∈ I(c(m)) for any constant a.
∴ M � D

′
.

∴ D |= D
′
.

Case-(ii):
Let m be a minimal region in D such that a portion of − m, say r, has

a-sequence.
Let M � D, then h(a) ∈ I(r).
∴ h(a) /∈ I(m).
D

′
is obtained by introducing ā in c(m) [where c(m) is the counterpart

region of m in D
′
].

Since h(a) /∈ I(m) therefore h(a) /∈ I(c(m))[as I(m) = I(c(m))].
∴ M � D

′
.

∴ D |= D
′
. �

(iii) If D � D
′
by introduction of x then D |= D

′
.

Proof. Case-(i):
Let r be a region of D containing a-sequence.
Let M � D, then h(a) ∈ I(r).
D

′
is obtained by introducing x-sequence in c(r), where c(r) is the coun-

terpart region of r in D
′
.

Since I(r) = I(c(r)).
∴ h(a) ∈ I(c(r)). Thus I(c(r)) �= φ.
∴ M � D

′
.
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∴ D |= D
′
.

Case-(ii):
Let D be any diagram.
D

′
is obtained by introducing a x-sequence in D such that each minimal

region of D has a node of the x-sequence.
Then as universe is non-empty we get D |= D

′
. �

(iv) If D � D
′
by extension rule for lcc and lci then D |= D

′
.

Proof. Case-(i):
Let r be a region in D containing a x-sequence.
Let r be the region m1+ m2 + · · · + mn−1 where each mi [1 ≤ i ≤ n − 1]

has a node of the x-sequence.
Without loss of generality we may assume that the x-sequence has been

extended to only one minimal region mn.
Let M � D.
Then I(r) �= φ.
∴ I(m1+ m2 + · · · + mn−1) �= φ.
∴ I(m1) �= φ or I(m2) �= φ or . . . or I(mn−1) �= φ.
D

′
is obtained by introducing x to a minimal region c(mn) [where c(mi)

is the counterpart region of mi in D
′
].

Since, I(mi) = I(c(mi)).
∴ I(c(m1)) �= φ or I(c(m2)) �= φ or. . . or I(c(mn−1)) �= φ.
∴ I(c(m1)+ c(m2)+ · · · + c(mn−1)) �= φ.
∴ (I(c(m1)+ c(m2)+ · · · + c(mn−1)) + I(c(mn))) �= φ.
∴ I(c(m1)+ c(m2)+ · · · + c(mn−1) + c(mn)) �= φ.

Thus M � D
′
.

∴ D |= D
′
.

Case-(ii):
Let r be a region in D containing an a-sequence.
Let r be the region m1+ m2 + · · · + mn−1 where each mi [1 ≤ i ≤ n − 1]

has a node of the a-sequence.
Let M � D. D

′
is obtained by introducing an a to a minimal region c(mn)

[where c(mi) is the counterpart region of mi in D
′
]. Then by using the similar

method used in case-(i) we get M � D
′
. �

(v) If D � D
′
by extension rule for components then D |= D

′
.

Proof. Let D
′ ≡ D −D1 − D2 − · · · − Dn.

If M � D then M � D
′
(follows directly from Definition 5.2).

∴ D |= D
′
. �

(vi) If D � D
′
by elimination of entire sequence, shading and ā then

D |= D
′
.
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Proof. Case-(a):
Let D contain only one diagrammatic object i.e. a x-sequence or an a-

sequence or shading or ā.
If D

′
is obtained from D by elimination of entire sequence or shading or

ā then D
′
does not contain any diagrammatic object.

Then vacuously D
′
is true in any model.

Thus D |= D
′
.

Case-(b):
Let D contain more than one diagrammatic object.
If D

′
is obtained from D by elimination of some diagrammatic objects

then the other diagrammatic objects of D are present in D
′

in exactly the
corresponding counterpart regions.

So if M � D then M � D
′
.

Thus D |= D
′
. �

(vii) If D � D
′
by elimination of part of sequence then D |= D

′
.

Proof. Elimination of part of a x-sequence is permitted if the eliminated nodes
fall within a shaded region r.

Case-(a):
Let m1, m2, . . ., mk, mk+1, . . ., mn be the minimal regions of D containing

all the nodes of a x-sequence such that m1+ m2 + · · · + mk ⊆ r, mk+1+
mk+2 + · · · + mn � r and let r be shaded.

Let M � D. Then I(m1+ m2 + · · · + mk + mk+1+ mk+2 + · · · + mn)) �= φ
and I(r) = φ.

Since I(r) = φ, thus I(m1+ m2 + · · · + mk) = φ and I(mk+1+ mk+2 +
· · · + mn) �= φ.

Let D
′

be obtained by elimination of nodes of x-sequence from m1, m2,
. . ., mk.

Let c(r), c(m1), c(m2),. . ., c(mn) be counterpart regions of r,m1, m2, . . .,
mn in D

′
respectively.

Then c(r) is shaded and since c(m1)+c(m2)+· · · + c(mk) ⊆ c(r) thus
c(m1), c(m2),. . ., c(mk) are shaded and c(mk+1), c(mk+2),. . ., c(mn) contains
the nodes of x-sequence.

Now I(mi) = I(c(mi)).
∴ I(c(m1)+c(m2)+· · · + c(mk)) = φ and I(c(mk+1)+c(mk+2)+· · · + c(mn))
�= φ.
∴ M � D

′
.

∴ D |= D
′
.

[see Example 3.11]
Elimination of part of an a-sequence is permitted if the eliminated nodes

fall within a shaded region r.

Case-(b):
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Let m1, m2, . . ., mk, mk+1, . . ., mn be the minimal regions of D containing
all the nodes of an a-sequence such that m1+ m2 + · · · + mk ⊆ r, mk+1+
mk+2 + · · · + mn � r and let r be shaded.

Let M � D. Then h(a) ∈ I(m1+ m2+ · · ·+mk+mk+1+ mk+2+ · · ·+mn))
and I(r) = φ.

Since I(r) = φ, thus I(m1+ m2 + · · · + mk) = φ and h(a) ∈ I(mk+1+
mk+2 + · · · + mn).

Let D
′

be obtained by elimination of nodes of a-sequence from m1, m2,
. . ., mk.

Let c(r), c(m1), c(m2),. . ., c(mn) be counterpart regions of r,m1, m2, . . .,
mn in D

′
respectively.

Then c(r) is shaded and since c(m1)+c(m2)+· · · + c(mk) ⊆ c(r) thus
c(m1), c(m2),. . ., c(mk) are shaded and c(mk+1), c(mk+2),. . ., c(mn) contains
the nodes of a-sequence.

Now I(mi) = I(c(mi)).
∴ I(c(m1)+c(m2)+· · · + c(mk)) = φ and h(a) ∈ I(c(mk+1)+c(mk+2)+· · · +
c(mn)).
∴ M � D

′
.

∴ D |= D
′
.

Case-(c):
Let m1, m2, . . ., mn be the minimal regions of D containing nodes of an

a-sequence and some of them say, mi has ā also.
Let M � D. Then h(a) /∈ I(mi) and h(a) ∈ I(m1) or h(a) ∈ I(m2) or . . . or

h(a) ∈ I(mi−1) or h(a) ∈ I(mi+1) or . . . or h(a) ∈ I(mn).
Since h(a) /∈ I(mi),
∴ h(a)∈ I(m1+ m2 + · · · + mn).
Let D

′
be obtained by elimination of a from mi.

Let c(m1), c(m2),. . ., c(mn) be counterpart regions of m1, m2, . . ., mn in
D

′
respectively.

Then c(mi) has ā and c(m1), c(m2),. . ., c(mi−1), c(mi+1),. . ., c(mn) con-
tains the nodes of a-sequence.

Now I(mj) = I(c(mj)).
∴ h(a) /∈ I(c(mi)) and h(a) ∈ I(c(m1) + c(m2)+· · · + c(mi−1) + c(mi+1)
+· · · + c(mn)).
∴ M � D

′
.

∴ D |= D
′
.

�

(viii) If D � D
′
by elimination of a closed curve then D |= D

′
.

Proof. Let D
′

be obtained from D by elimination of a closed curve. Then for
every region r in D

′
there is a counterpart region c(r) in D.

If possible let D � D
′
, then there exists a model M such that M � D but

M � D
′
.
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(i) Let r be a region in D
′
such that it has shading but I(r) �= φ.

Therefore, I(c(r)) �= φ.
But since any shading is not added in D

′
, it must be the case that c(r)

in D is shaded.
As M � D, I(c(r)) = φ, a contradiction.
(ii) Let r be a region in D

′
such that it has x-sequence but I(r) = φ.

Therefore, I(c(r)) = φ.
But since we did not add any x-sequence in D

′
, it must be the case that

there exists a region r
′
in D such that r

′ ⊆ c(r)and r
′
has a x-sequence.

As M � D, I(r
′
) �= φ. Hence I(c(r)) �= φ, a contradiction.

(iii)Let r be a region in D
′
such that it has a-sequence but h(a) /∈ I(r).

Therefore, h(a) /∈ I(c(r)).
But since we did not add any a-sequence in D

′
, it must be the case that

there exists a region r
′
in D such that r

′ ⊆ c(r) and r
′
has an a-sequence.

As M � D, h(a) ∈ I(r
′
). Hence h(a) ∈ I(c(r)), a contradiction.

(iv) Let m be a minimal region in D
′
such that it has ā but h(a) ∈ I (m).

Therefore, h(a) ∈ I(c(m)) [c(m) is the region in D which is the union of
two minimal regions separated by the elimination of closed curve].

But since we did not add any ā in D
′
, it must be the case that ā is in the

two minimal regions constituting c(m).
As M � D, h(a) /∈ I(c(m)), a contradiction.
Thus for all M, if M � D then M � D

′
.

Hence D |= D
′
. �

(ix) If D � D
′
by inconsistency rule then D |= D

′
.

Proof. Case-(a):
Suppose D

′
follows from D by the rule of inconsistency where D is of

type-I/II.
D |= D

′
does not holds if and only if there exists a model M such that M

� D but M � D
′
.

But since D is inconsistent, it follows from Definition 3.1 that it is false
in every model. So there is no M such that M � D.

Thus D |= D
′
(vacuously).

Case-(b):
Let D ≡ D1 − D2 − · · · − Dn, where one of the components, say Di is an

inconsistent diagram and D
′
is obtained by eliminating Di.

Thus D
′ ≡ D1 − D2 − · · · − Di−1 − Di+1 − · · · − Dn.

Let M be a model such that M � D.
∴ M � D1 − D2 − · · · − Dn i.e. at least one of D1, D2, . . ., Dn is true in

M.
But there is no M such that M � Di.
∴ at least one of D1, D2, . . ., Di−1, Di+1, . . ., Dn is true in M.
∴ M � D1 − D2 − · · · − Di−1 − Di+1 − · · · − Dn.
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∴ M � D
′
.

∴ D |= D
′
.

�

(x) If {D1, D2} � D
′
by unification rule then {D1, D2} |= D

′
.

Proof. Case-(a): For type-I/type-II diagram.
Let D1 and D2 be united in one diagram D

′
.

Let M � D1 and M � D2.
Then the counterparts of all the basic regions of D1 and D2 are present

in D
′
.
Also all the diagrammatic objects of D1 and D2 are present in D

′
main-

taining respective positions.
Thus M � D

′
.

Case-(b): For type-III diagram with type-I/type-II diagram.
Let D1 be a type-III diagram D11 − D12 and D2 be a type-II diagram.
D1 and D2 are united in one diagram D

′
.

Now D
′
is the diagram Uni(D11, D2) − Uni(D12, D2).

Let M � D1 and M � D2.
Since M � D1 then either M � D11 or M � D12.
Without loss of generality we can assume that M � D11.
Then because of the assumption that M � D2 and case-(a),M � Uni(D11,

D2).
So, M � Uni(D11, D2) − Uni(D12, D2).

Case-(c): For type-III diagram with type-III diagram.
Let D1 ≡ D11 − D12 and D2 ≡ D21 − D22 are united in one diagram D

′
.

Now D
′
is the diagram Uni(D11, D21) − Uni(D12, D21) − Uni(D11, D22)

− Uni(D12, D22).
Let M � D1 and M � D2.
Without loss of generality we can assume that M � D11 and M � D21.
So, M � Uni(D11, D21).
So,M � D

′
. �

(xi) If D � D
′
by rule of splitting sequences then D |= D

′
.

Proof. Let a region r in D have a x-sequence.
Let m1, m2, . . ., mn be the minimal regions within r, containing one node

each of the x-sequence.
Let D

′
be obtained from D by the rule of splitting sequences.

∴ D
′

is the diagram D
′
1 − D

′
2 − D

′
3− . . . − D

′
n, where the counterpart of

m1, m2, . . ., mn contains only one x.
Let M � D.

∴ I(m1) �= φ or I(m2) �= φ or . . . or I(mn) �= φ.
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∴ I(c(m1)) �= φ or I(c(m2)) �= φ or . . . or I(c(mn)) �= φ [where c(m1),
c(m2),. . ., c(mn) are counterpart regions of m1, m2, . . .,,mn in D

′
respec-

tively].
∴ M � D

′
1 or M � D

′
2 or . . . or M � D

′
n.

∴ M � D
′
.

∴ D |= D
′
.

Let a region r in D have an a-sequence.
Let m1, m2, . . ., mn be minimal regions within r, containing one node

each of the a-sequence.
Let D

′
be obtained from D by the rule of splitting sequences.

∴ D
′
is the diagram D

′
1 − D

′
2 − D

′
3− . . . − D

′
n, where the counterparts of

m1, m2, . . ., mn contain only one a each.
Let M � D. Then by using the similar method used in the previous case

we get M � D
′
.

∴ D |= D
′
. �

(xii) If D � D
′
by rule of excluded middle then D |= D

′
.

Proof. (a)Let m be a minimal region in D which has no diagrammatic objects.
Let D

′
be obtained from D by the rule of excluded middle. Thus D

′
is

the diagram D
′
1 − D

′
2. We have two cases (i) and (ii).

(i) D
′
1 and D

′
2 have all the diagrammatic objects of D except that c(m)

in D
′
1 is shaded and c(m) in D

′
2 has x [where c(m) is the counterpart of the

region m].
Let M � D.
Then I(m) is either empty or non-empty (D

′
is tautologous at m w.r.t x).

Then M � D
′
1or M � D

′
2.

∴ M � D
′
.

∴ D |= D
′
.

(ii) D
′
1 and D

′
2 have all the diagrammatic objects of D except that c(m)

in D
′
1 has a and c(m) in D

′
2 has ā [where c(m) is the counterpart of the region

m].
Let M � D.
Then I(m) has either a orā (D

′
is tautologous at m w.r.t a) [for all a].

Then M � D
′
1or M � D

′
2.

∴ M � D
′
.

∴ D |= D
′
.

(b) Let m be a minimal region in D which has x.
Let D

′
be obtained from D by the rule of excluded middle. Thus D

′
is

the diagram D
′
1 − D

′
2, where D

′
1 and D

′
2 has all the diagrammatic objects of

D except that c(m) in D
′
1 has a and c(m) in D

′
2 has ā [where c(m) is the

counterpart of the region m].
Let M � D, then I(m) �= φ.
Then I(m) has either a or ā (tautologous at m w.r.t a) [for all a].
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∴ M � D
′
.

∴ D |= D
′
.

�

(xiii) If D � D
′
by rule of construction then D |= D

′
.

Proof. Let D ≡ D1 − D2 − · · · − Dn.
We obtain D

′
by rule of construction. So, Di � D

′
(by other rules)

i=1,. . . ,n.
Let M � D.
So at least one component,say Di, is true in M, that is M � Di.
So, M � D

′
.

∴ D |= D
′
. �
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