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Abstract. Non-classical negations may fail to be contradictory-forming
operators in more than one way, and they often fail also to respect
fundamental meta-logical properties such as the replacement property.
Such drawbacks are witnessed by intricate semantics and proof systems,
whose philosophical interpretations and computational properties are
found wanting. In this paper we investigate congruential non-classical
negations that live inside very natural systems of normal modal logics
over complete distributive lattices; these logics are further enriched by
adjustment connectives that may be used for handling reasoning under
uncertainty caused by inconsistency or undeterminedness. Using such
straightforward semantics, we study the classes of frames characterized
by seriality, reflexivity, functionality, symmetry, transitivity, and some
combinations thereof, and discuss what they reveal about sub-classical
properties of negation. To the logics thereby characterized we apply a
general mechanism that allows one to endow them with analytic ordinary
sequent systems, most of which are even cut-free. We also investigate
the exact circumstances that allow for classical negation to be explicitly
defined inside our logics.
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1. Capturing the Impossible, and Its Dual

Denying Instead of Affirming. Many well-known subclassical logics—inclu-
ding intuitionistic logic and several many-valued logics—share the conjunc-
tion-disjunction fragment of classical logic, but disagree about the exact notion
of opposition and the specific logical features to be embodied in negation. In
contrast, modal logics are often thought of as superclassical, and are obtained
by the addition of ‘positive modalities’ � and ♦. For various well-known cases,

A preliminary and abbreviated version of the results in this paper was presented at the 11th
International Conference on Advances in Modal Logic (cf. [22]).
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such modalities fail to have a finite-valued characterization. Notwithstanding,
each m-ary connective � of a modal logic is typically congruential (with respect
to the underlying consequence relation �), in treating equivalent formulas as
synonymous: if αi � βi and βi � αi, for every 1 ≤ i ≤ m, then �(α1, . . . , αm) ��(β1, . . . , βm). To logical systems containing only such sort of connectives one
might associate semantics in terms of neighborhood frames (see ch.5 of [40]),
and the same applies if one uses 1-ary ‘negative modalities’ instead, as in [34].
The family of systems enjoying congruentiality (a.k.a. ‘replacement property’)
goes sometimes under the name of ‘classical modal logics’ (cf. [36]). As a matter
of fact, the family of ‘normal modal logics’ makes its 1-ary positive modalities
respect a stronger property: if α � β then �(α) � �(β). Such monotone
behavior may be captured by semantics based on Kripke frames, and the same
applies to the antitone behavior that characterize negative modalities, namely:
if α � β then �(β) � �(α).

Some of Our Ancestors. In [11] an investigation of negative modalities is
accomplished on top of the ∧∨�⊥- fragment of classical logic, and the same
base language had already been considered in [33] for the combination of pos-
itive and negative modalities. Typically, in studies of positive and negative
modalities the so-called compatibility (bi-relational) frames are used, and cer-
tain appropriate conditions upon the commutativity of diagrams involving
their two relations are imposed, having as effect the heredity of truth (i.e., its
persistence towards the future) with respect to one of the mentioned relations
(assumed to be a partial order). There are a number of studies (e.g. [9,38])
in which the above mentioned languages for dealing with negative modalities
are upgraded in order to count on an (intuitionistic or classical) implication,
and sometimes also its dual, co-implication (cf. [32]). If one may count on
classical implication, however, it suffices to add to it the modal paraconsistent
negation given by ‘unnecessity’ (cf. [26]), and all other connectives of normal
modal logics turn out to be definable already from such an impoverished basis
(indeed, where � is a primitive symbol for unnecessity and ⊃ represents clas-
sical implication, we have that ∼α := α ⊃ �(α ⊃ α) behaves as the classical
negation of α, and �α := ∼�α behaves as the usual positive modality box).
In the particular case of S5, an even simpler definition of necessity is within
reach (cf. [4]), namely �α := ��α.

Paraconsistency and Paracompleteness. Our basic intuition about the rela-
tion between a paracomplete (a.k.a. ‘intuitionistic-like’) negation and a para-
consistent negation is that the former would be expected to be more demanding
than the latter, while classical negation had better sit between the two (when-
ever it also turns out to be expressible). It takes indeed more effort to assert
a negated statement on constructive grounds, while such statements are more
readily asserted should some contradictions be allowed to subsist; in other
words, one could say that negations in a paracomplete logic come at a greater
cost than classical negations, while paraconsistent logics indulge on negations
in which classical logic would show greater restraint. The presence of a classical
negation, however, often makes it too easy to forget that there are two distinct
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kinds of deviations equally worth studying, concerning non-classical negation,
for one of these deviations may then be recovered in the standard way as the
dual of the other. However, duality does not presuppose definability: in the
case of the basic language for positive modal logic (cf. [10]), it is well-known
that no classical negation is definable, and that the positive modalities are not
interdefinable (cf. [6]).

A Richer Language in Which to Study Negative Modalities. Assume that ¬
is a 1-ary symbol for negation. According to the classical ‘consistency assump-
tion’, [CA], there is no state of affairs v and no formula ϕ such that [Inc]
both ϕ and ¬ϕ are satisfied in v. The dual ‘determinedness assumption’, [DA],
has it that there is no state of affairs v and no formula ϕ such that [Und]
both ϕ and ¬ϕ are left unsatisfied in v. Whenever a logic contains a negation
that behaves non-classically, at least one of the above mentioned assumptions
is bound to fail. The so-called ‘Logics of Formal Inconsistency’ (LFIs) provide
tools for recovering [CA], by offering in their language a 1-ary connective C
such that Cϕ is left unsatisfied in v whenever [Inc] happens to be the case.
Dually, the ‘Logics of Formal Undeterminedness’ (LFUs) offer a 1-ary connec-
tive D such that Dϕ is satisfied in v whenever [Und] happens to be the case.
The LFIs and LFUs investigated in the present paper are in fact a little bit
stronger than that: in them, Cϕ is left unsatisfied iff [Inc] is the case, and Dϕ
is satisfied iff [Und] is the case. The ‘adjustment’ (a.k.a. ‘restoration’) connec-
tives C and D are meant to exclude the scenarios in which negation deviates
from [CA] and [DA], and to allow for a given reasoner, if that be the case, to
recover an intended classical behavior from within a non-classical environment.

On the Availability of Classical Negation. In order to get a better grasp of the
duality between paraconsistent and paracomplete modal negations (namely,
unnecessity vs. impossibility), we here purposefully make an effort to prevent
the underlying language from being sufficiently expressive so as to allow for
the definition of a classical negation (or a classical implication)—whenever
such goal lies within reach. As we will see, in fact, all normal modal logics in
the basic language of negative modalities that happen to fail the consistency
and the determinedness assumptions also fail to be expressive enough so as to
allow for a classical negation to be defined, but in a few cases the definability
is within reach if adjustment connectives are employed. It should be noted,
though, that as a byproduct of the presence of the above mentioned adjustment
connectives truth will no longer be hereditary in our Kripke models, that is, it
will not in general be preserved for all compound formulas towards the future
—this stands in stark contrast with what happens with models of compatibility
frames.

What is to Follow. In this paper, first and foremost we will concentrate on
the logic PK, determined by the class of all Kripke frames, which has been
introduced and received a presentation as a sequent system in [8], against a
theoretical background of definitions situated at the level of abstract conse-
quence relations. We show here that this logic can be reintroduced in terms
of a so-called ‘basic sequent system’, which allows one to take advantage of
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general techniques developed in [21], including a method for proving soundness
and completeness with respect to the Kripke semantics of PK (given in [8]), as
well as a uniform recipe for semantic proofs of cut-admissibility or analyticity.
After that we apply a similar strategy to the study of several extensions of PK
that happen to validate principles distinctive of classical negation, and next we
also investigate the explicit definability of classical negation within our logics.
Before devoting ourselves to that task, though, the next section shall adopt
a semantical perspective to explain the circumstances in which our study is
developed.

2. On Negative Modalities

We briefly recall the now standard components of a Kripke semantics. A frame
is a structure consisting of a nonempty set W (of ‘worlds’) and a binary (‘acces-
sibility’) relation R on W . A(n ordinary) model M = 〈F , V 〉 is based on a
frame F = 〈W,R〉 and on a valuation V : W × L → {f, t} that assigns
truth-values to worlds w ∈ W and sentences ϕ of a propositional language L
generated over a denumerable set of propositional variables P. The valuations
must satisfy certain conditions that are induced by the fixed interpretation of
the connectives of the given language. When V (w,ϕ) = t we say that V satis-
fies ϕ at w, and denote this by M, w � ϕ; otherwise we write M, w �� ϕ and
say that V leaves ϕ unsatisfied at w. The connectives from the positive frag-
ment of classical logic receive their standard boolean interpretations locally,
world-wise, by recursively setting:

[S�] M, w � �
[S∧] M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ
[S∨] M, w �� ϕ ∨ ψ iff M, w �� ϕ and M, w �� ψ

Given formulas Γ∪Δ of L, and given a class of frames E , we say that Γ entails Δ
in E , and denote this by Γ |=E Δ, if for each model M based on a frame F ∈ E
and each world w of M we have either M, w �� γ for some γ ∈ Γ or M, w � δ
for some δ ∈ Δ. The assertion Γ |=E Δ will be called a consecution; when such
assertion happens to be true we may also say about each frame in E that it
validates the given consecution. In the next section we will extend the notion
of entailment so as to cover sequents instead of formulas. The subscript E shall
be omitted in what follows whenever there is no risk of ambiguity.

In the following subsections we extend the above language with con-
nectives whose modal interpretations will be useful for the investigation of
negations in a non-classical congruential setting.

2.1. Adding Negations

Our first extension of the above language proceeds by the addition of a 1-ary
connective �, to be interpreted non-locally (that is, its satisfaction depends
on accessible worlds) as follows:

[S�] M, w � �ϕ iff M, v �� ϕ for some v ∈ W such that wRv
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Accordingly, a formula �ϕ is said to be satisfied at a given world of a model
precisely when the formula ϕ fails to be satisfied at some world accessible
from this given world. In the following paragraph we will show that � respects
some minimal conditions to deserve being called a ‘negation’, namely, we will
demonstrate its ability to invert truth-values assigned to certain formulas (at
certain worlds).

Let # represent an arbitrary 1-ary connective, and let #j abbreviate a
j-long sequence of #’s. The least we will demand from # to call it a negation
is that, for every p ∈ P and every k ∈ N:

�falsificatio� #kp �|= #k+1p �verificatio� #k+1p �|= #kp

To witness �falsificatio�, some sentence ϕ is to be satisfied while the sentence
#ϕ is not simultaneously satisfied; for �verificatio� some sentence ϕ is to be
left unsatisfied while at the same time #ϕ is satisfied. To check that the
connective � fulfills such requisites, it suffices for instance to build a frame in
which W = {wn : n ∈ N} and wRv iff v = w++ (by which we mean that v is
the successor of w), and consider a valuation V such that V (wn, p) = t iff n is
odd.

It is very easy to see that our connective � satisfies global contraposition
in the sense that α |= β implies �β |= �α. Indeed, assume α |= β and suppose
that M, w � �β for some world w of an arbitrary model M. Then, [S�]
informs us that there must be some world v in M such that wRv and M, v �� β.
By the definition of entailment, we conclude thus from the initial assumption
that M, v �� α. Using again [S�] it follows that M, w � �α. As a byproduct of
this, if one defines an equivalence relation ≡ on L by setting α ≡ β whenever
both α |= β and β |= α, then an easy structural induction on L establishes
that ≡ is not only compatible with � but also with the other connectives that
are used in constructing the algebra of formulas. This means that ≡ constitutes
a congruence relation on L.

It is straightforward to check that any 1-ary connective # satisfying
global contraposition is such that, given p, q ∈ P:

(DM1.1#) #(p ∨ q) |= #p ∧ #q (DM2.1#) #p ∨ #q |= #(p ∧ q)

If # also respects the following consecutions, then it is said to be a full type
diamond-minus connective:

(DM2.2#) #(p ∧ q) |= #p ∨ #q (DT#) #� |= p

Note that our negation � is a full type diamond-minus connective. To check
that � satisfies (DM2.2#), indeed, suppose that M, w � �(p ∧ q) for some
arbitrary world w of an arbitrary model M. By [S�] we know that there is
some world v such that wRv and M, v �� p∧q. It follows by [S∧] that M, v �� p
or M, v �� q. Using [S�] again we conclude that M, w � �p or M, w � �q and
[S∨] gives us M, w � �p∨�q. In addition, to check that � satisfies (DT#) one
may invoke [S�] and [S�]. Note that satisfying (DT#) means that the nullary
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connective ⊥ taken as an abbreviation of #� is interpretable by setting, for
every world w of every model M:

[S⊥] M, w �� ⊥

Given a negation #, we call the logic containing it #-paraconsistent if
the following consecution fails, for p, q ∈ P:

�#-explosion� p,#p |= q

This means that there must be valuations that satisfy both some sentence ϕ
and the sentence #ϕ while not satisfying every other sentence. It is worth
noticing that ��-explosion� holds good in frames containing exclusively worlds
that are accessible to themselves, and to themselves only (such worlds will be
called ‘narcissistic’) and worlds that do not access any other world (such worlds
will be called ‘dead ends’): in the former case, it is impossible to simultaneously
satisfy both ϕ and �ϕ; in the latter case, the sentence �ϕ is never satisfied.
Note moreover that in the class of all narcissistic frames (those containing only
narcissistic worlds) the connective � happens to behave like classical negation,
i.e., it behaves like the symbol ∼ in the following semantic clause:

[S∼] M, w � ∼ϕ iff M, w �� ϕ

In contrast, in the class of all frames whose worlds are all dead ends the con-
nective � does not respect [verificatio], and cannot be said thus to constitute
a negation.

We now make a further extension of the above language by adding a 1-ary
connective �, non-locally interpreted as follows:

[S�] M, w � �ϕ iff M, v �� ϕ for every v ∈ W such that wRv

It is not difficult to check that again we have a connective that qualifies as a
negation, and satisfies global contraposition.
To reinforce the meta-theoretical duality between the latter negation and the
negation introduced above through [S�], we will henceforth refer to the pre-
vious interpretation clause in the following equivalent form:

[S�] M, w �� �ϕ iff M, v � ϕ for some v ∈ W such that wRv

A full type box-minus connective is a 1-ary connective # that respects:

(DM1.2#) #p ∧ #q |= #(p ∨ q) (DF#) p |= #⊥

One may easily check that � is indeed a full type box-minus connective.
Given a negation #, we call the logic contaning it #-paracomplete if it

fails the following consecution, for p, q ∈ P:

�#-implosion� q |= #p, p
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Such failure will clearly be the case for # = � as soon as we entertain frames
that contain worlds that are neither dead ends nor narcissistic. Otherwise, we
see that � will behave either like classical negation (if all worlds are narcissis-
tic) or like � (if all worlds are dead ends).

In the following sections, unless noted otherwise, we will no longer con-
sider classes of frames containing only frames with worlds that are either dead
ends or narcissistic—accordingly, we will only consider entailment relations
that are �-paraconsistent and �-paracomplete, for the negative modalities
� (assumed to be full-type diamond-minus) and � (assumed to be full-type
box-minus).

2.2. Recovering Negation-Consistency and Negation-Determinedness

In what follows we will call a model dadaistic when it contains some world in
which all formulas are satisfied, and call it nihilistic if it leaves all formulas
unsatisfied at some world. It is straightforward to see that the language based
on ∧∨��, with the above interpretations, admits dadaistic models, while the
language based on ∧∨⊥� admits nihilistic models.

Recall that a #-paraconsistent logic allows for valuations that satisfy cer-
tain formulas ϕ and #ϕ while leaving some other formula ψ unsatisfied (at
some fixed world). There might be reasons for disallowing this phenomenon
to occur with an arbitrary ϕ, or for restricting to certain formulas ψ but not
others. A particularly useful way of keeping a finer control over which ‘inconsis-
tencies’ of the form ϕ and #ϕ are to be acceptable within non-dadaistic models
is to mark down the formula thereby involved so as to recover a ‘gentle’ version
of �#-explosion�. Concretely, for us here, a 1-ary ‘adjustment connective’ #©
that strongly internalizes the meta-theoretic consistency assumption at the
object language level will be such that:

[SC#] M, w � #©ϕ iff M, w �� ϕ or M, w �� #ϕ

It is easy to check that any connective #© respecting [SC#] is such that:

(C1#) #©p, p,#p |= (C2#) |= p, #©p (C3#) |= #p, #©p

Note in particular that (C1#) guarantees that there are no valuations that
satisfy (at a fixed world) both p and #p if these are put in the presence of
#©p. Thus, in case # fails �#-explosion� we may look at the latter formula
involving #© as guaranteeing that a weaker form of explosion is available. On
these grounds we shall call the connective #© an adjustment companion to #:
it allows one to recover explosion from within a non-#-explosive (i.e., para-
consistent) logical context, and adjust the consecutions of the underlying logic
so as to allow for the simulation of the consecutions that would otherwise
be justified by reference to �#-explosion�. Semantically, the presence of such
connective also guarantees that dadaistic models are not admissible over the
language based on ∧∨����, with the above interpretations. This is because
a formula of the form ��ϕ ∧ (ϕ ∧ �ϕ) is equivalent to a formula ⊥ respecting
[S⊥].
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Dually, a #-paracomplete logic allows for valuations that leave the for-
mulas ϕ and #ϕ both unsatisfied (at some fixed world), while satisfying some
other formula ψ. A particular way of keeping a finer control over which ‘inde-
terminacies’ of the form ϕ and #ϕ are to be acceptable within non-nihilistic
models is to allow for a ‘gentle’ version of �#-implosion�, where a 1-ary con-
nective #© internalizes the meta-theoretic determinedness assumption at the
object language level, in such a way that:

[SD#] M, w �� #©ϕ iff M, w � ϕ or M, w � #ϕ

Clearly, any connective #© respecting [SD#] is such that:

(D1#) |= #p, p, #©p (D2#) #©p, p |= (D3#) #©p,#p |=

Note that a formula of the form (ϕ ∨ �ϕ) ∨ ��ϕ is equivalent to a for-
mula � respecting [S�]. Note, moreover, that whenever it turns out that a
connective # respects �#-explosion� and at the same time its adjustment
companion #© respects [SC#], then the formula #©ϕ is equivalent to �. In
an analogous way, whenever a connective # respects �#-implosion� and at the
same time its adjustment companion #© respects [SD#], the formula #©ϕ is
equivalent to ⊥. This stresses the fact that the adjustment connectives with
which we deal in this subsection are of more interest when they accompany
the respective non-classical negations to whose meaning they contribute.

At this point we have finally finished constructing the richest language
that will be used throughout the rest of the paper: It will contain the connec-
tives ∧∨�⊥������, disciplined by the corresponding [S#] conditions above.
In the following subsection we will explain precisely when a classical negation,
that is a 1-ary connective ∼ subject to condition [S∼], is definable with the
use of our language. Fixed such language, the logic characterized over it by
the class E of all frames will be called PK; the logic characterized by the
class ED of all serial frames (the frames with serial accessibility relations) will
be called PKD; the logic characterized by the class ET of all reflexive frames
will be called PKT ; the logic characterized by the class EFun of all frames
whose accessibility relations are total functions will be called PKF ; the logic
characterized by the class EB of all symmetric frames will be called PKB; the
logic characterized by the class E4 of all transitive frames will be called PK4;
and by PKD4 and PKDB we will refer to the logics characterized by the
classes of all frames whose accessibility relations enjoy a combination of the
two obvious associated properties, in each case.

2.3. Around Classical Negation

According to the intuitions laid down at Sect. 1, one could expect that in
general (a) �α � ∼α and (b) ∼α � �α. It is easy to see, for instance, that these
consecutions are indeed sanctioned by PKT , for the classical negation ∼ that
may be defined by setting ∼ϕ := �ϕ ∧ ��ϕ (alternatively, one may set ∼ϕ :=
�ϕ ∨ ��ϕ). Indeed, suppose on the one hand that M, w � �α for a world w of
a model M of a reflexive frame. By reflexivity and [S�] we must have M, w ��
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α, and this is equivalent to M, w � ∼α by [S∼]. On the other hand, given
M, w �� α, by reflexivity and [S�] we immediately conclude that M, w � �α.

Meanwhile, in the deductively weaker logic PKD one cannot in general
prove neither (a) nor (b), even though a classical negation may be defined in
this logic by setting ∼ϕ := (�ϕ∧��ϕ)∨��ϕ. However, one can still easily prove
in PKD that (c) �α � �α. Indeed, suppose that M, w � �α. By seriality and
[S�] we conclude that M, v �� α for some world v such that wRv. But then,
by [S�] it follows that M, w � �α. In the logic PKF , deductively stronger
than PKD (but neither stronger nor weaker than PKT ) one may also prove
the converse consecution, (d) �α � �α. Indeed, suppose that M, w � �α.
There is, by the fact that the accessibility relation is a total function, a single
world v such that wRv. Then M, v �� α, by [S�]. For a similar reason, invoking
now [S�] we conclude that M, w � �α. Note that (c) and (d) together make
our two modal non-classical negations indistinguishable from the viewpoint of
PKF , yet one should not for this reason imagine, as we will see, that they
collapse into classical negation.

The situation concerning classical negation and its relation to its non-
classical neighbours gets even more interesting after one acknowledges that
no classical negation is definable in PK, the weakest of our logics, and also
that no classical negation is definable in the fragment of PKT without neither
of the adjustment connectives, nor in the fragment of PKF (or PKD) without
either one of the adjustment connectives, nor in PKB or in PK4. Detailed
proofs concerning the mentioned results about (non)definability of classical
negation in the modal logics that constitute our present object of study may
be found in Sect. 6.

Notice that in PKD and its extensions there are no negated formulas
that happen to be true or false at a given world just because there are no
worlds accessible from it. Note also that the logic PKT is: paraconsistent
but not paracomplete with respect to the connective �; paracomplete but not
paraconsistent with respect to � (adapting the result in [3], it may be shown
that this logic is indeed the least extension of the positive implicationless
fragment of classical logic with the latter mentioned properties). In all the
other logics mentioned above, in contrast, both non-classical negations behave
at once as paracomplete and paraconsistent negations (recall, though, that
each negation is associated to a different adjustment connective). We take the
cases among these in which no classical negation is available to be particularly
attractive for the task of revealing the ‘uncontamined’ nature of non-classical
negation. Establishing well-behaved proof theoretical counterparts for such
logics, as we shall do in what follows, is meant to allow for them to be even
better understood and dealt with.

3. A Proof System for PK

A sequent calculus for PK, that we denote by PK, was introduced in [8], and
consists of the following rules:
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[id]
p ⇒ p

[cut]
Γ, ϕ ⇒ Δ Γ ⇒ ϕ,Δ

Γ ⇒ Δ

[W⇒]
Γ ⇒ Δ

Γ, ϕ ⇒ Δ
[⇒W ]

Γ ⇒ Δ
Γ ⇒ ϕ,Δ

[⊥⇒]
Γ,⊥ ⇒ Δ

[⇒�]
Γ ⇒ �,Δ

[∧⇒]
Γ, ϕ, ψ ⇒ Δ

Γ, ϕ ∧ ψ ⇒ Δ
[⇒∧]

Γ ⇒ ϕ,Δ Γ ⇒ ψ,Δ
Γ ⇒ ϕ ∧ ψ,Δ

[∨⇒]
Γ, ϕ ⇒ Δ Γ, ψ ⇒ Δ

Γ, ϕ ∨ ψ ⇒ Δ
[⇒∨]

Γ ⇒ ϕ,ψ,Δ
Γ ⇒ ϕ ∨ ψ,Δ

[�⇒]
Γ ⇒ ϕ,Δ

�Δ,�ϕ ⇒ �Γ
[⇒�]

Γ, ϕ ⇒ Δ
�Δ ⇒ �ϕ,�Γ

[��⇒]
Γ ⇒ ϕ,Δ Γ ⇒ �ϕ,Δ

Γ,��ϕ ⇒ Δ
[⇒��]

Γ, ϕ,�ϕ ⇒ Δ
Γ ⇒ ��ϕ,Δ

[��⇒]
Γ ⇒ ϕ,�ϕ,Δ
Γ,��ϕ ⇒ Δ

[⇒��]
Γ, ϕ ⇒ Δ Γ,�ϕ ⇒ Δ

Γ ⇒ ��ϕ,Δ

Above, sequents are taken to have the form Σ ⇒ Π where Σ and Π are finite
sets of formulas, and given a unary connective # and Ψ ⊆ L, by #Ψ we denote
the set {#ψ | ψ ∈ Ψ}. We write S �PK s to say that there is a derivation in
PK of a sequent s from a set S of sequents. That establishes a consequence
relation between sequents. A consequence relation between formulas is defined
by setting Γ �PK ϕ if �PK Γ′ ⇒ ϕ for some finite subset Γ′ of Γ. The over-
loaded notation �PK will always be resolved by the pertinent context. More-
over, using a straightforward induction, it is easy to verify that we have ϕ ⇒ ϕ
for every formula ϕ, and not just for atomic formulas. This property, called
‘axiom-expansion’ in [1] and ‘id-inductivity’ in [17], is sometimes considered
important, when designing sequent systems, for a unique characterization of
the connectives by a collection of rules. It is worth pointing out, nevertheless,
that various sequent systems for paraconsistent logics—e.g., the systems in
[2]—do not enjoy this property.

We utilize in what follows the general mechanisms and techniques applica-
ble to the so-called ‘basic systems’ of [21] in order to prove soundness, complete-
ness and cut-admissibility. Actually, we note that the aforementioned “axiom
expansion” can be also proven using these techniques, however, a simple induc-
tion suffices for the particular systems in the present paper. In [21] one may
also find a sufficient condition for a semantic framework to define the same
logic as a given basic system. So, instead of using induction on derivations in
PK for checking soundness, and constructing a canonical model and a maximal
theory for completeness, we just write PK as a basic system, and verify that
our models from Sect. 2 satisfy this condition.

The viewpoint of basic sequent systems enforces the usual distinction
between side formulas and principal formulas in sequents. Thus, each sequent is
seen as a combination of a ‘main sequent’ (that includes the principal formula)
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and a ‘context sequent’ (that includes the side formulas). For an example, in
[⇒∨], the main sequent of the premise is ⇒ ϕ,ψ; the main sequent of the
conclusion is ⇒ ϕ ∨ ψ; and the context sequent of both is Γ ⇒ Δ. Note that
in the rules for � and �, the context sequent of the premise is different from
the context sequent of the conclusion. Accordingly, [21] introduces the notion
of a basic rule. Each premise in a basic rule takes the form 〈s;π〉, where s
is a sequent that corresponds to the main sequent of the premise, and π is a
relation between singleton-sequents (that is, sequents of the form ϕ ⇒ or ⇒ ϕ),
called a context relation, that determines the behavior of the context sequents.
The sequent calculus PK may be naturally regarded as a basic system that
employs two context relations, namely: π0 = {〈q1 ⇒ ; q1 ⇒〉 , 〈⇒ q1 ; ⇒ q1〉},
and π1 = {〈q1 ⇒ ; ⇒ �q1〉 , 〈⇒ q1 ; �q1 ⇒〉}. The rules of PK may then be
presented as particular instances of basic rules. For example, the following are
the basic rules for ∧,�,� and ��:

[⇒∧] 〈⇒ p1; π0〉 , 〈⇒ p2; π0〉/⇒ p1 ∧ p2 [∧⇒] 〈p1, p2 ⇒; π0〉/p1 ∧ p2 ⇒
[�⇒] 〈⇒ p1; π1〉/�p1 ⇒ [⇒�] 〈p1 ⇒; π1〉/⇒ �p1

[��⇒] 〈⇒ p1; π0〉 , 〈⇒ �p1; π0〉/��p1 ⇒ [⇒��] 〈p1, �p1 ⇒; π0〉/⇒ ��p1

The system PK employs only one context relation besides π0, and this context
relation uses only one atomic formula q1. Moreover, each rule employs exactly
one of the context relations. In fact, all systems that we explore in this paper
satisfy this property, and their additional context relation is a superset of π1

(the only exception being PKF, below, in which this is only true after � and �
are identified). We therefore actually use only a fraction of the full generality
[21] provides. We shall now use adapted definitions and results that follow
from the latter paper, with the terminology refurbished for this special case
that we are in.

In general, a singleton-sequent x will be said to relate to a singleton-
sequent y with respect to a context relation π if there are singleton sequents x′

and y′ such that x is obtained from x′ and y is obtained from y′ by replacing
q1 with some formula ϕ. By extension, a sequent will be said to relate to
another sequent with respect to π if both sequents can be written as unions of
singleton-sequents that appropriately relate to one another with respect to π.

In applications of [⇒��], the context sequent is left unchanged, as two
sequents relate to each other with respect to π0 iff they are the same. In
contrast, applications of [�⇒] are based on π1. Note that a sequent Γ1 ⇒ Δ1

relates to a sequent Γ2 ⇒ Δ2 with respect to π1 iff Γ2 = �Δ1 and Δ2 = �Γ1.
Basic systems are endowed with a Kripke semantics. The notion of sat-

isfaction from Sect. 2 is extended to sequents by setting M, w � Γ ⇒ Δ if
M, w �� γ for some γ ∈ Γ or M, w � δ for some δ ∈ Δ; in a similar fashion we
may talk now about valid sequents. In the general case, each context relation is
associated with a certain accessibility relation in frames. For the case of π0, we
take here the trivial relation that consists solely of loops. Actually, this is done
implicitly. We simply define the semantic constraints that are associated with
this relation locally in each world. For π1, on the other hand, we associate the
usual accessibility relation found in the models of our frames. We stress that
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the full power of [21], that goes far beyond what we need here, would require
more than one accessibility relation in a single frame. —to wit, the condition
[RRr′ ] (presented below) would need to be verified for each accessibility rela-
tion that is associated with the context relations that it employs; furthermore,
the condition [RCπ] (also presented below) would need to be verified for each
context relation that occurs in the rules.

For a given basic system G that employs only one context relation π in
addition to π0, Definitions 4.5 and 4.12 of [21] impose what we will call here
a ‘G-legal model’. A model is said to be G-legal if it ‘respects’ the basic rules
and context relations that constitute G, where:

[RRr] respecting a basic rule r that utilizes only π0 amounts to guar-
anteeing that in each world the main sequent of the conclusion of r is
satisfied whenever all main sequents of the premises of r are satisfied;
[RRr′ ] respecting a basic rule r′ that utilizes only some π �= π0 amounts
to guaranteeing that in each world the main sequent of the conclusion
of r′ is satisfied whenever all main sequents of the premises of r′ are
satisfied at all accessible worlds; and
[RCπ] respecting a context relation π means that the satisfaction of a
singleton sequent x at a world u implies the satisfaction of a singleton
sequent y at a world w whenever u is accessible from w and x relates to y
with respect to π.
For an example, [RR[�⇒]] induces the condition: “if M, v � ⇒ ϕ for

every world v such that wRv, then M, w � �ϕ ⇒”, and this is equivalent to:
“If M, w � �ϕ then M, v �� ϕ for some v ∈ W such that wRv”. This amounts
to half of clause [S�], from Sect. 2. Furthermore, [RCπ1 ] induces an additional
semantic condition: “if wRv then M, w � ⇒ �ϕ whenever M, v � ϕ ⇒”.
This amounts to the other half of clause [S�], namely: “M, w � �ϕ whenever
M, v �� ϕ for some v ∈ W such that wRv”. Systematically applying this
semantic reading to all rules and all context relations of PK, we obtain the
class of all models 〈F , V 〉, where F is an arbitrary frame and each valuation
V : W × L → {f, t} respects the following conditions, for every w ∈ W and
ϕ,ψ ∈ L:

[T�] Tw(�)
[F⊥] Fw(⊥)
[T∧] if Tw(ϕ) and Tw(ψ), then Tw(ϕ ∧ ψ)
[F∧] if Fw(ϕ) or Fw(ψ), then Fw(ϕ ∧ ψ)
[T∨] if Tw(ϕ) or Tw(ψ), then Tw(ϕ ∨ ψ)
[F∨] if Fw(ϕ) and Fw(ψ), then Fw(ϕ ∨ ψ)
[T�] if Fv(ϕ) for some v ∈ W such that wRv, then Tw(�ϕ)
[F�] if Tv(ϕ) for every v ∈ W such that wRv, then Fw(�ϕ)
[T�] if Fv(ϕ) for every v ∈ W such that wRv, then Tw(�ϕ)
[F�] if Tv(ϕ) for some v ∈ W such that wRv, then Fw(�ϕ)
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[T��] if Fw(ϕ) or Fw(�ϕ), then Tw(��ϕ)
[F��] if Tw(ϕ) and Tw(�ϕ), then Fw(��ϕ)
[T��] if Fw(ϕ) and Fw(�ϕ), then Tw(��ϕ)
[F��] if Tw(ϕ) or Tw(�ϕ), then Fw(��ϕ)

where we take ‘Tu(α)’ as abbreviating ‘V (u, α) = t’, and ‘Fu(α)’ as abbrevi-
ating ‘V (u, α) = f ’. If alternatively one just rewrites V (v, α) = t as M, v � α
and V (v, α) = f as M, v �� α, where M = 〈〈W,R〉 , V 〉, what results thereby
is a collection of conditions that are essentially identical to the [S#] clauses
introduced in our Sect. 2. Thus, every model is PK-legal.

Fix in what follows a model M = 〈〈W,R〉 , V 〉. We say that w, v ∈ W
agree with respect to the formula α, according to V , if either (both Tw(α)
and Tv(α)) or else (both Fw(α) and Fv(α)). We say that M is differentiated
if we have w = v whenever w and v agree with respect to every α ∈ L,
according to V. Now also fix a basic system G that employs only π0 and some
other context relation π. We say that a G-legal model M is G-strengthened if
the converse of [RCπ] holds for V. It is worth stressing that the accessibility
relation of a G-strengthened model is uniquely determined by the underlying
collection of worlds and valuation of this model.

In the case of PK, we note that PK-strengthened means that wRv if and
only if: (i) Fv(ϕ) implies Tw(�ϕ) and (ii) Tv(ϕ) implies Fw(�ϕ).

Theorem 3.1 (Corollary 4.26 in [21]). Every basic system G that employs the
context relation π0 and some context relation π such that π1 ⊆ π is sound and
complete with respect to any class of G-legal models that contains all differen-
tiated G-strengthened models.

Since the class of PK-legal models is the same as the class of models, we
have in particular that the class of models is a class of PK-legal models that
includes all differentiated PK-strengthened models. The following result from
[8] comes as a byproduct:

Corollary 3.2. Γ |=E ϕ iff Γ �PK ϕ for every Γ ∪ {ϕ} ⊆ L, where E denotes
the class of all frames.

Indeed, Theorem 3.1 provides a mechanism that will be conveniently reutilized
in the Sect. 5, when we consider extensions of PK.

Two brief comments are in order here. First, our valuation functions
assign truth-values to every formula in every world. However, as the values
of compound formulas are uniquely determined by the values of their sub-
formulas, we could have rested content above with assigning truth-values to
propositional variables. Second, given that for the above valuations Tu(α) is
the case iff Fu(α) fails to be the case, the semantic conditions [T#] and [F#],
for each connective #, are clearly the converse of each other. In setting the
two conditions apart, we have just given them directionality, pointing from
less complex to more complex formulas, and have separated between condi-
tions induced by rules from those induced by context relations.

While neither of these manoeuvres are very useful here, they will allow
us to more easily relate, in Sect. 4, valuations to ‘quasi valuations’ that have
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non-truth-functional semantics. In what follows we will first show that PK is
proof-theoretically very well-behaved, and have a look next at the extensions
of PK.

4. (Almost) Free Lunch: Cut-Admissibility and Analyticity

In this section we make further use of the powerful machinery introduced in [21]
to prove that PK enjoys strong cut-admissibility, in other words, we show that
S �PK s implies that there is a derivation in PK of the sequent s from the set
of sequents S such that in every application of the cut rule the cut formula ϕ
appears in S. In particular, �PK s implies that s is derivable in PK without
any use of the cut rule.

Cut-admissibility in sequent calculi is traditionally proved ‘through syn-
tactical means’, using induction on the derivation length and the complexity
of the cut formulas (see, e.g., [13]). However, such proofs are usually tedious
and error-prone. One of the major contributions of [21], that is used here as a
substitute of a ‘syntactic proof’, is a semantic criterion for cut-admissibility,
that allows for a smoother semantic proof of cut-admissibility. Moreover, the
modularity of the semantic approach will make it straightforward to adapt the
results of the present section to other variants of PK, that are investigated in
the subsequent section.

The proof is done in two steps. First, we present an adequate semantics
for the cut-free fragment of PK. Second, we show that a countermodel in this
new semantics entails the existence of a countermodel in the form of a Kripke
model as defined in the previous section. This, together with Corollary 3.2,
entails that PK is equivalent to its cut-free fragment.

Step 1. Semantics for Cut-Free PK
Semantics for cut-free basic systems may be obtained through the use of ‘quasi
valuations’. Models based on quasi valuations differ from ordinary models in
two main aspects: (a) the underlying interpretation is three-valued; (b) the
underlying interpretation is non-deterministic—the truth-value of a compound
formula in a given world is not always uniquely determined by the truth values
of its subformulas in the collection of worlds of the underlying frame.

Concretely, given a basic system G with a context relation π, and a
frame F = 〈W,R〉, a quasi valuation over F is a function QV : W × L →
{{f} , {t} , {f, t}}. We call 〈F , QV 〉 a quasi model. We say that QV satisfies ϕ
at w, and denote this by M, w � ϕ if t ∈ QV (w,ϕ) (instead of QV (w,ϕ) = t,
that we would have had in case this was an ordinary model). 〈F , QV 〉 is G-legal
if it respects all rules of G and respects π. This amounts to conditions [RRr]
and [RCπ], while taking into account the refined notion of satisfation. The
notions of a differentiated quasi model and of a G-strengthened quasi model
are defined as before, but using the new notion of satisfaction.

To be sure, in the case of PK, this means satisfying precisely the same
semantic conditions laid down in Sect. 3, where we now take ‘Tu(α)’ as abbre-
viating ‘t ∈ V (u, α)’, and ‘Fu(α)’ as abbreviating ‘f ∈ V (u, α)’. Whenever we
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need to distinguish between a semantic condition on a tuple 〈w,ϕ〉 as con-
straining a valuation V or a quasi valuation QV, we will use Xw(ϕ) for the
former and XQ

w(ϕ) for the latter, where X ∈ {T,F}.

Step 2. Semantic Proof of Cut-Admissibility

The next step is to show that the existence of a countermodel in the form
of a G-strengthened differentiated quasi model implies the existence a coun-
termodel in the form of a G-legal model (which, in the case of PK simply
means an ordinary model). For this purpose we define an instance of a quasi
model QM = 〈〈W,R〉 , QV 〉 as any model of the form M = 〈〈W,R′〉 , V 〉
such that XQ

w(ϕ) whenever Xw(ϕ), for every X ∈ {T,F}, every w ∈ W and
every ϕ ∈ L. Note that a quasi model and its instances may have different
accessibility relations.

Indeed, from [21] we have:

Theorem 4.1 (Corollary 5.48 of [21]). For every basic system G, if every G-
strengthened differentiated quasi model has a G-legal instance, then G enjoys
strong cut-admissibility.

And in particular:

Corollary 4.2. If every PK-strengthened differentiated quasi model satisfying
the semantic conditions [T#] and [F#] from Sect. 3 has an instance (that
satisfies the same conditions), then PK enjoys strong cut-admissibility.

Do note that the latter corollary uses the notion of satisfaction both for quasi-
models and for ordinary models. In what follows, the construction of appropri-
ate instances is done by a recursive definition over the following well-founded
relation ≺ on the set of formulas: α ≺ β if either (i) α is a proper subformula
of β; (ii) α = �γ and β = ��γ for some γ ∈ L; or (iii) α = �γ and β = ��γ
for some γ ∈ L. In what follows, α � β abbreviates α ≺ β ∨ α = β.

Lemma 4.3. Every quasi model has an instance.

Proof. Let QM = 〈F , QV 〉 be a quasi model based on a frame F = 〈W,R〉.
We set up now an appropriate valuation V : W ×L → {f, t}. For every world w
and formula ϕ, the valuation V is inductively defined (with respect to ≺) on ϕ
as follows: (R1) if TQ

w(ϕ) fails for QV, we postulate Fw(ϕ) to be the case
for V ; (R2) if FQ

w(ϕ) fails for QV, we postulate Tw(ϕ) to be the case for V ;
(R3) otherwise both TQ

w(ϕ) and FQ
w(ϕ) hold good for QV, and in this case we

postulate Tw(ϕ) to be the case for V if one of the following holds:

(M1) ϕ is a propositional variable or ϕ is �
(M2) ϕ = ϕ1 ∧ ϕ2, and both Tw(ϕ1) and Tw(ϕ2)
(M3) ϕ = ϕ1 ∨ ϕ2, and either Tw(ϕ1) or Tw(ϕ2)
(M4) ϕ = �ψ, and Fv(ψ) for some v ∈ W such that wRv
(M5) ϕ = �ψ, and Fv(ψ) for every v ∈ W such that wRv
(M6) ϕ = ��ψ, and either Fw(ψ) or Fw(�ψ)
(M7) ϕ = ��ψ, and both Fw(ψ) and Fw(�ψ)
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Otherwise, we postulate Fw(ϕ) to be the case for V. Obviously, Xw(ϕ) implies
XQ

w(ϕ) for every w ∈ W, every ϕ ∈ L and every X ∈ {T,F}. It is a routine task
to verify that 〈F , V 〉 is a model. We show here that the semantic conditions
for � and �� hold:

[Case of �] Let ψ ∈ L. Suppose first that Fv(ψ) is the case for some v ∈ W
such that wRv. Then FQ

v (ψ). Since QM is PK-legal, then TQ
w(�ψ) is the case.

If, on the one hand, FQ
w(�ψ) fails, then we must have Tw(�ψ), by (R2). If, on

the other hand, neither TQ
w(�ψ) nor FQ

w(�ψ) fail, we are in case (R3). Since
we have Fv(ψ) and wRv we conclude by (M4) that Tw(�ψ) must be the case.
Suppose now that Tv(ψ) is the case for every world v such that wRv. Then
we have TQ

v (ψ) for every such world. Since QM is PK-legal, it follows that
FQ

w(�ψ) is the case. If, on the one hand, TQ
w(�ψ) fails, then we must have

Fw(�ψ), by (R1). If, on the other hand, neither TQ
w(�ψ) nor FQ

w(�ψ) fail, we
are in case (R3). Since we have Tv(ψ) for every world v such that wRv we
conclude that none of (M1)–(M7) applies, thus Fw(�ψ) is to be the case.

[Case of ��] Let ψ ∈ L. Suppose first that either Fw(ψ) or Fw(�ψ) are the
case for some w ∈ W . Then either FQ

w(ψ) or FQ
w(�ψ). Since QM is PK-legal,

it follows that TQ
w(��ψ). If, on the one hand, FQ

w(��ψ) fails, then we must have
Tw(��ψ), by (R2). If, on the other hand, neither TQ

w(��ψ) nor FQ
w(��ψ) fail,

we are in case (R3) and we conclude by (M6) that Tw(��ψ) must be the case.
Suppose now that both Tw(ψ) and Tw(�ψ) are the case for some w ∈ W .
Then TQ

w(ψ) and TQ
w(�ψ). Since QM is PK-legal, then FQ

w(��ψ). If, on the
one hand, TQ

w(��ψ) fails, then we must have Fw(��ψ), by (R1). If, on the other
hand, neither TQ

w(��ψ) nor FQ
w(��ψ) fail, we are in case (R3) and Fw(��ψ) is

to be the case because none of (M1)–(M7) applies. �
Since the class of all PK-legal quasi models contains the PK-strengthened

differentiated quasi models, it follows that:

Corollary 4.4. PK enjoys strong cut-admissibility.

Given a basic system G and a relation � on its set of formulas, we say
that a derivation in G of a sequent s from a set S of sequents is a �-analytic
derivation if every formula ϕ that occurs in the derivation satisfies (ϕ � ψ) ∨
(ϕ = ψ) for some ψ in S∪{s}. We then say that G is �-analytic if whenever s is
derivable from S in G there actually is some �-analytic derivation of s from S
in G. In case ϕ � ψ we may also say that ϕ is a proper �-subformula of ψ.

In view of Corollary 4.4, the inner structure of the rules in PK implies
that:

Corollary 4.5. PK is ≺-analytic.

Proof. By induction on the length of the derivation of s from S in PK: In all
rules except for (cut), the premises include only formulas that already appear
in the conclusion or are proper ≺-subformulas of formulas that appear in the
conclusion. �

Note that the ≺-analyticity of PK immediately implies its decidability :
Given a finite set S of sequents and a sequent s, we do not need to search for
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an arbitrary derivation of s from S, but it suffices to search for a ≺-analytic
derivation. Clearly, the set of ≺-analytic derivations whose set of premises is S
is finite, and can be easily computed.

5. Some Special Classes of Frames

In this section we investigate several natural deductive extensions of PK.
Given a property X of binary relations, we call a frame 〈W,R〉 an X frame
if R enjoys X. A (quasi) model 〈F , V 〉 is called an X (quasi) model if F is
an X frame. In addition, and similarly to what we did in the case of PK, for
every proof system Y we write S �Y s if there is a derivation of s from S in Y .

5.1. Seriality

Let PKD be the system obtained by augmenting PK with the following rule:

[D]
Γ ⇒ Δ

�Δ ⇒ �Γ

This rule may be formulated as the basic rule: 〈⇒ ; π1〉/⇒. Since its premise
is the empty sequent, the semantic condition it imposes (following [21]) is seri-
ality: indeed, respecting [D] in a world w of a model M based on a frame
〈W,R〉 means that if M, v � ⇒ for every world v such that wRv, then also
M, w � ⇒. Since the empty sequent is not satisfied at any world, this condi-
tion would hold iff for every world w there exists a world v such that wRv.
In addition, it is easy to see that every serial model satisfies this semantic
condition.

As in Corollary 3.2, we obtain a completeness theorem for PKD with
respect to serial models:

Corollary 5.1. Γ |=ED
ϕ iff Γ �PKD ϕ for every Γ ∪ {ϕ} ⊆ L, where ED is the

class of serial frames.

It would now be straightforward to use rule [D] together with the latter
result to see that (DT�) and (DF�) hold good in the logic PKD (recall from
Sect. 2.1 that (DT�) and (DF�) hold good for all extensions of PK).

Additionally, we may prove cut-admissibility also for the system PKD,
going through serial quasi models.

Lemma 5.2. Every serial quasi model has a serial instance.

Proof. The proof is the same as the proof of Lemma 4.3. Note that no property
of the accessibility relation was assumed, and the constructed instance has the
same accessibility relation as the original quasi model. �

Corollary 5.3. PKD enjoys cut-admissibility and is ≺-analytic.

5.2. Reflexivity

Let PKT be the system obtained by augmenting PK with the following rules:

[T1]
Γ, ϕ ⇒ Δ

Γ ⇒ �ϕ,Δ
[T2]

Γ ⇒ ϕ,Δ
Γ,�ϕ ⇒ Δ
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These rules may be formulated as the basic rules: 〈p1 ⇒ ; π0〉/ ⇒ �p1 and
〈⇒ p1 ; π0〉/�p1 ⇒ . It should be clear that PKT allows thus for the derivation
of the consecutions representing ��-implosion� and ��-explosion�.

Semantically, they impose reflexivity not on all models, but only on PKT-
strengthened models. Indeed, since the underlying context relation is π0, for
every model M = 〈F , V 〉 based on a frame F = 〈W,R〉 that respects [T1]
and [T2], and every world w, if M, w � ϕ ⇒ then M, w � ⇒ �ϕ and if
M, w � ⇒ ϕ then M, w � �ϕ ⇒. To put it otherwise, if Fw(ϕ) then Tw(�ϕ),
and if Tw(ϕ) then Fw(�ϕ). Clearly, every reflexive model satisfies the latter
conditions. To show that every PKT-strengthened model that satisfies them is
reflexive, consider an arbitrary such model M = 〈〈W,R〉 , V 〉. Then for every
world w ∈ W we have that for every formula ϕ, (Tw(ϕ) implies Fw(�ϕ)) and
(Fw(ϕ) implies Tw(�ϕ)), which in PKT-strengthened models means precisely
that wRw. We therefore have that every reflexive model is PKT-legal, and
every PKT-strengthened model is reflexive. We obtain thus a completeness
theorem for PKT with respect to reflexive models, relying on Theorem 3.1:

Corollary 5.4. Γ |=ET
ϕ iff Γ �PKT ϕ for every Γ ∪ {ϕ} ⊆ L, where ET is the

class of reflexive frames.

Such semantics for PKT allows one to easily confirm that the full type
diamond-minus connective � fails (DM1.2#), and that the full type box-minus
connective � fails (DM2.2#). Such failures transfer to the weaker logics PKD
and PK, of course.

Cut-admissibility for PKT may be obtained using arguments similar to
those used in proving Lemma 4.3. It follows thus that:

Lemma 5.5. Every reflexive PKT-strengthened quasi model has a reflexive
instance.

Corollary 5.6. PKT enjoys cut-admissibility and is ≺-analytic.

5.3. Functionality

In this section we address functional frames, that is, frames whose accessibility
relations are total functions. In every model 〈〈W,R〉 , V 〉 of a functional frame
and world w ∈ W , we have Tw(�ϕ) iff Tw(�ϕ). Hence � and � are indistin-
guishable. Accordingly, here we consider a restricted language, without �.

Let PKF be the system obtained from PK by substituting � for � in rules
[⇒��] and [��⇒], and replacing both rules [⇒�] and [�⇒] with the single rule:

[Fun]
Γ ⇒ Δ

�Δ ⇒ �Γ
It is straightforward to see that rule [Fun] may be formulated as the fol-

lowing basic rule: 〈⇒ ; π2〉/ ⇒, for π2 = {〈q1 ⇒ ; ⇒ �q1〉 , 〈⇒ q1 ; �q1 ⇒〉}.
Note that π2 is obtained from π1 by identifying � and �. The latter rule and
context relation impose functionality on differentiated models. Indeed, respect-
ing the basic rule [Fun] corresponds to seriality, similarly to the case of the rule
[D]. Additionally, the context relation π2 forces the accessibility relation to be
a partial function: Respecting π2 in a world w of a model M = 〈〈W,R〉 , V 〉
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means that for every v1, v2 ∈ W such that wRv1 and wRv2, and every for-
mula ϕ, Tv1

(ϕ) iff Fw(�ϕ) iff Tv2
(ϕ). When M is differentiated, this implies

that v1 = v2. Now, every functional model satisfies [RRFun] and [RCπ2 ] and
every differentiated model that satisfies them is functional. We thus obtain
a completeness result for PKF with respect to functional models, relying on
Theorem 3.1:

Corollary 5.7. Γ |=EFun
ϕ iff Γ �PKF ϕ for every Γ ∪ {ϕ} ⊆ L, where EFun is

the class of functional frames.1

It should be clear that PKF extends PKD, but does not extend PKT.
Moreover, in contrast with what was the case for PKT, within the semantics
for PKF there are no longer countermodels for (DM1.2�) or for (DM2.2�).

Going through quasi models we may prove cut-admissibility also for PKF.
However, unlike in previous cases, considering functional quasi models will
not suffice. Indeed, there exist PKF-strengthened differentiated quasi models
whose accessibility relation is not a total function. Nonetheless, it can be veri-
fied that every PKF-legal quasi model that is based on a frame F = 〈W,R〉 is
serial, and for every w, v ∈ W such that wRv we have, for every ϕ ∈ L, both
(FQ

v (ϕ) implies TQ
w(�ϕ)) and (TQ

v (ϕ) implies FQ
w(�ϕ)). Thus although the

accessibility relation in PKF-legal quasi models may not be a total function,
we are still able to extract a functional model from it:

Lemma 5.8. Every PKF-legal quasi model has a functional instance.

Proof. Let QM = 〈F , QV 〉 be an PKF-legal quasi model based on a frame
〈W,R〉. Since QM is PKF-legal, we have in particular that R is serial. There-
fore, there exists some R′ : W → W such that R′ ⊆ R. Let F ′ = 〈W,R′〉. We
define an appropriate valuation V : W × L → {f, t} as in Lemma 4.3, while
disregarding (M5), and using the following two instructions in place of (M4)
and (M7):

(M4�) ϕ = �ψ, and FR′(w)(ψ)
(M7�) ϕ = ��ψ, and Fw(ϕ) and Fw(�ϕ)

The proof then carries on in a similar fashion to the proof of Lemma 4.3. �
Corollary 5.9. PKF enjoys cut-admissibility and is ≺′-analytic, where ≺′ is
the restriction of ≺ to the �-free fragment of L, with an additional clause
according to which �ϕ ≺ ��ϕ.

We include a brief comment concerning a decision procedure for this logic.
It is easy to see that � and � may be defined using the customary presentation
of the modal logic K by �ϕ := ∼�ϕ and �ϕ := �∼ϕ. When considering only
functional frames (like in PKF), we get a translation to KF—the ordinary
modal logic of functional Kripke models. For the ����-free fragment of this

1 We note here that we do not have actual set-inclusion of π2 in π1. However, the language
that we consider here identifies � and �, and this suffices for our version of the general
results from [21].
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logic, we may apply the general reduction to SAT proposed in [23], which in
particular means that the derivability problem for it is in co-NP.

5.4. Symmetry

Let PKB be the system obtained from PK by replacing [�⇒] and [⇒�] with
the following rules:

[B1]
Γ,�Γ′, ϕ ⇒ Δ,�Δ′

�Δ,Δ′ ⇒ �ϕ,�Γ,Γ′ [B2]
Γ,�Γ′ ⇒ ϕ,Δ,�Δ′

�Δ,Δ′,�ϕ ⇒ �Γ,Γ′

These correspond to the following basic rules: 〈p1 ⇒ ; π3〉/ ⇒ �p1 and
〈⇒ p1 ; π3〉/�p1 ⇒, for the context relation

π3 = π1 ∪ {〈�q1 ⇒ ; ⇒ q1〉 , 〈⇒ �q1 ; q1 ⇒〉} .

This relation satisfies the following property: s1 π3 s2 iff s2 π3 s1, where (⇒ ϕ)
denotes (ϕ ⇒) and (ϕ ⇒) denotes (⇒ ϕ). By Proposition 4.28 of [21],
PKB-strengthened models are symmetric. In addition, every symmetric model
respects these rules, as well as the context relation π3: [RRB1 ] and [RRB2 ]
are shown similarly to the case of PK. As for [RCπ3 ], suppose wRu in some
symmetric model M based on a frame F = 〈W,R〉. If V, u � �ϕ ⇒ then
V (u,�ϕ) = 0. Since M is symmetric, we have uRw as well, and since it is a
model, it follows that V (w,ϕ) = 1, which means that V,w � ⇒ ϕ. Similarly,
if V, u � ⇒ �ϕ then V,w � ϕ ⇒ . Based on Theorem 3.1, we see that:

Corollary 5.10. Γ |=EB
ϕ iff Γ �PKB ϕ for every Γ ∪ {ϕ} ⊆ L, where EB is the

class of symmetric frames.

Symmetric frames are also relevant from the viewpoint of sub-classical
properties of negation. They validate, for instance, the consecutions ��p |= p
and p |= ��p. Table 5 (Sect. 7), collects these and also many other consecu-
tions representing forms of De Morgan rules that are validated by symmetric
frames. It is also worth noting that Table 1 (Sect. 7), contains some global
inference rules that are made valid by the demand of symmetry. To check rule
�ϕ |= ψ
�ψ |= ϕ , for instance, assume �ϕ |= ψ and suppose that M, w � �ψ at a
world w of a model M of some symmetric frame. By [S�] we know that there

Table 1. Forms of global contraposition

Rule Negation Frame property
ϕ |= ψ

−ψ |= −ϕ − as either � or � [any]
−ϕ |= ψ
−ψ |= ϕ − as � [sym]
ϕ |= −ψ
ψ |= −ϕ − as � [sym]
�ϕ |= ψ
�ψ |= ϕ [ref]
ϕ |= �ψ
ψ |= �ϕ [ref]
�ϕ |= �ψ

ψ |= ϕ [ref] or [ser+sym]
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must be some world v such that wRv and M, v �� ψ. From the assumption
it follows that M, v �� �ϕ. Given that R is symmetric, we know that vRw,
thus we can conclude that M, w � ϕ, as we intended to. Rule ϕ |= �ψ

ψ |= �ϕ may be
checked in an analogous way. Paraconsistent logics based on symmetric (and
reflexive) frames are also studied in [3], a paper that investigates in detail a
conservative extension of the corresponding logic, obtained by the addition of
a classical implication (but without primitive � and ��), and offers for this
logic a sequent system for which cut is not eliminable.

Quasi models for PKB are not necessarily symmetric, making it harder to
convert them into instances in the form of symmetric models. Hence, the par-
ticular question of cut-admissibility for our system PKB goes beyond the reach
of our approach, and is left open as a matter for further research. However, it
can still be shown that PKB is ≺-analytic. Unlike we did for the above sys-
tems, the latter result is not to be obtained as a corollary of cut-admissibility,
but will be shown directly, using a similar technique.

As we did before for cut-admissibility, ≺-analyticity may also be shown
in two steps: First, we present an adequate semantics for analytic derivations
in PKB; second, we show that a countermodel in the new semantics entails the
existence of a countermodel in the form of a Kripke model, as defined in Sect. 3.
Rather than using quasi valuations, for this purpose we use ‘partial valuations’.
Models based on partial valuations are very similar to the usual Kripke models.
The only difference is that the underlying interpretation is partial—that is, not
defined over all formulas of the language. The exact same semantic conditions
read off the derivation rules is imposed on partial valuations. Concretely, given
a frame F = 〈W,R〉, a partial valuation over it is a partial function PV from
W ×L to {f, t} satisfying precisely the same semantic conditions laid down in
Sect. 3, where each condition is restated so as to apply only to formulas that
are assigned a truth value. We denote the set of formulas that are assigned
a value by a partial valuation PV in a world w of F by dom(PV,w). For
example, [T�] now reads as: if Fv(ϕ) for some v ∈ W such that wRv and
�ϕ ∈ dom(v, w), then Tw(�ϕ).

A partial model is a structure PM = 〈F , PV 〉, where PV is a partial
valuation over F . The notions of a differentiated partial model and of a PKB-
strengthened partial model are defined as before. When dom(PV,w) = X for
every world w of F , we call PM a partial X-model.

Now, Proposition 4.28 of [21] is generalized there (Proposition 5.21) to
cover partial X-models, for any set X of formulas, and thus symmetry is
imposed also on partial models that respect [RCπ3 ].

Theorem 5.11 (Corollary 5.48 of [21]). Let G be a basic system. If, for every
finite set X that is closed under ≺, it holds that every differentiated G-
strengthened partial X-model can be extended to a G-legal model, then G is
≺-analytic.

And in particular:

Corollary 5.12. If, for every finite set X that is closed under ≺, it holds that
every differentiated PKB-strengthened partial X-model satisfying the semantic
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conditions [T#] and [F#] from Sect. 3 can be extended to a symmetric model,
then PKB is ≺-analytic.

To establish ≺-analyticity, it suffices to show that:

Lemma 5.13. Let X ⊆ L be closed under ≺. Every symmetric PKB-strength-
ened partial X-model can be extended to a symmetric model.

Proof. The proof is very similar to the proof of Lemma 4.3. There, we provided
a recursive procedure to eliminate the value {t, f} from a model. Here, instead
of having formulas that are assigned {t, f}, we have formulas that do not
receive any assignment (as the model is partial). We then treat such unassigned
formulas as formulas that have been assigned the value {t, f}. More concretely,
the condition (R3) from the proof of Lemma 4.3 is replaced from “both TQ

w(ϕ)
and FQ

w(ϕ) hold good” to “neither TQ
w(ϕ) nor FQ

w(ϕ) hold good”. Then the
proof carries on similarly, following the same procedure induced by (M1)–
(M7). �

Thus, using Corollary 5.44 of [21], we conclude that:

Corollary 5.14. PKB is ≺-analytic.

Note that ≺-analyticity for PKB was established directly, not through
cut-admissibility. For this reason, the inner structure of the rules (that does
not enjoy a local ≺-subformula property) did not matter here, but only the
fact that partial models can be appropriately extended.

5.5. Transitivity

Let PK4 be the system obtained from PK by replacing [�⇒] and [⇒�] with
the following rules:

[41]
�Γ,Γ′, ϕ ⇒ �Δ,Δ′

�Γ,�Δ′ ⇒ �ϕ,�Δ,�Γ′ [42]
�Γ,Γ′ ⇒ ϕ,�Δ,Δ′

�Γ,�Δ′,�ϕ ⇒ �Δ,�Γ′

These correspond to the following basic rules: 〈p1 ⇒ ; π4〉/ ⇒ �p1 and
〈⇒ p1 ; π4〉/�p1 ⇒, for the context relation

π4 = π1 ∪ {〈�q1 ⇒ ; �q1 ⇒〉 , 〈⇒ �q1 ; ⇒ �q1〉} .

For this relation, we have π4 = π4 ◦ π4. By Proposition 4.28 of [21], the
semantic condition imposed on PK4-strengthened models is transitivity of the
accessibility relation. In addition, every transitive model respects rules [41]
and [42], and also respects the context relation π4. For example, if wRu and
V, u � �ϕ ⇒, then V (u,�ϕ) = 0. This means that there is some v such
that uRv and V (v, ϕ) = 1. By transitivity, we have also wRv and therefore
V (w,�ϕ) = 0, which means that V,w � �ϕ ⇒. Then, Theorem 3.1 gives us:

Corollary 5.15. Γ |=E4 ϕ iff Γ �PK4 ϕ for every Γ ∪ {ϕ} ⊆ L, where E4 is the
class of transitive frames.

From the viewpoint of sub-classical properties of negation, some impor-
tant consecutions validated by transitive frames are collected in Table 8
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(Sect. 7). And transitivity also has a role to play at Tables 6 and 7 (Sect. 7),
in the presence of appropriate adjustment connectives.

As for cut-admissibility, Prop. 5.21 of [21] guarantees that strengthened
quasi-models that respect [41] and [42] and π4 are transitive as well. In addi-
tion, it is easy to verify that transitive quasi models respect them. There-
fore, arguing about cut-admissibility reduces again to finding an instance to
every transitive quasi model. Now, since the properties of the accessibility
relation bore no effect on this procedure, as was demonstrated in the proof of
Lemma 4.3, we obtain:

Corollary 5.16. PK4 enjoys cut-admissibility and is ≺-analytic.

5.6. Combining Frame Properties

In some cases it is also possible to apply our machinery to provide useful
sequent systems for logics whose semantics combine more than one of the
properties studied in isolation in the previous sections. We present two illus-
trations of that in the present section. First we consider the system PKD4
obtained from PK4 by augmenting the latter with the following rule:

[D4]
�Γ′,Γ ⇒ Δ,�Δ′

�Γ′,�Δ ⇒ �Γ,�Δ′

It corresponds to the following basic rule: 〈⇒ ; π4〉/⇒, for the same context
relation π4 defined in Sect. 5.5. Similarly to what was shown in Sect. 5.1, one
may now show that every model (and in particular every transitive model) that
respects this rule is serial, and every serial model respects it. The same holds
for quasi models. Together with what we have just seen regarding transitive
(quasi) models, we note that every model that is both transitive and serial
respects [D4] and π4, and every PKD4-strengthened model that respects them
is transitive and serial. Proceeding exactly as before, we now obtain that:

Corollary 5.17. Γ |=EPKD4 ϕ iff Γ �PKD4 ϕ for every Γ ∪ {ϕ} ⊆ L, where
EPKD4 is the class of serial transitive frames. In addition, PKD4 enjoys cut-
admissibility and is ≺-analytic.

Frames which are at once serial and transitive have a role to play validat-
ing some consecutions concerning qualified forms of explosion and implosion,
found at Table 8 (Sect. 7).

Next, let PKDB be the system that augments the system PKB with the
following rule:

[DB ]
�Γ′,Γ ⇒ Δ,�Δ′

Δ′,�Δ ⇒ �Γ,Γ′

This rule corresponds to the following basic rule: 〈⇒ ; π3〉/⇒, for the relation
π3 defined in Sect. 5.4.

Similarly to what was shown in Sect. 5.1, one may now show that every
model (and in particular every symmetric model) that respects this rule is
serial, and every serial model respects it. The same holds for partial models.
Together with what we have seen in Sect. 5.4 regarding symmetric (quasi)
models, we have that every model that is both symmetric and serial respects
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[DB ] and π3, and every PKDB-strengthened model that respects them is sym-
metric and serial. Proceeding exactly as before, we obtain that:

Corollary 5.18. Γ |=EPKDB ϕ iff Γ �PKDB ϕ for every Γ∪{ϕ} ⊆ L, where EPKDB

is the class of serial symmetric frames. In addition, PKDB is ≺-analytic.

Frames which are at once serial and symmetric play a role validating some
mixed double negation consecutions found at Table 7 (Sect. 7). We leave it to
the reader to check the special form of global contraposition that is validated
by the latter frames, found at the last row of Table 1 (Sect. 7).

6. Definability of Classical Negation

In this section we investigate definability of classical negation in the modal
logics studied in this paper. Given a set C of connectives and a logic L, we
denote by L\C the C-free fragment of L, that is, the restriction of L to the
language without the connectives in C.

Theorem 6.1. 1. Classical negation is definable in the logics:
PKT \{�,��}, PKT \{�,��}, PKD, PKF , PKD4 and PKDB.

2. Classical negation is not definable in the logics:
PK, PKB, PK4, PKT \{��,��}, PKDB\{��,��},
PKD\{��}, PKD\{��}, PKF \{��}, PKF \{��},
PKD4\{��} and PKD4\{��}.

Proof. (1) For PKT \{�,��} we set ∼ϕ := �ϕ ∨ ��ϕ, for PKT \{�,��}
we set ∼ϕ := �ϕ ∧ ��ϕ, and for PKD and PKF we may set ∼ϕ :=
(�ϕ ∧ ��ϕ) ∨ ��ϕ or, dually, set ∼ϕ := (�ϕ ∨ ��ϕ) ∧ ��ϕ. It is easy to see
that ⇒ ϕ,∼ϕ and ϕ,∼ϕ ⇒ are derivable in each system for the defined
connective ∼. Using cut, one obtains the usual sequent rules for classical
negation. Figure 1 exhibits the derivations for PKT \{��,�} (the deriva-
tions for PKT \{��,�} are analogous), and Fig. 2 provides the derivations
for PKD for the first definition above (we leave the second as an exercise
for the reader). Given that PKF is a deductive extension of PKD, the
derivations in Fig. 2 are also good for PKF . The same holds for PKD4
and for PKDB, as the rule [D] is a particular instance of the rule [D4]
and also a particular instance of the rule [DB ].

(2) Let X be one of the logics listed in the statement, and suppose for the
sake of contradiction that classical negation ∼ is definable in X. Let p ∈ P
and let ϕ be ∼(p). Then both ⇒ ϕ, p and p, ϕ ⇒ are valid in X. Consider
a set W that consists of two worlds, w and v, and a valuation V such
that V (w, q) = 1 and V (v, q) = 0 for every atomic formula q (includ-
ing p). Now, for each relation RX on W , consider the model MX =
〈〈W,RX〉 , V 〉. If MX belongs to the class of models that semantically
characterize X, then we must have that MX , w � ϕ, p ⇒ and MX , v �
⇒ p, ϕ. Since in MX we have Tw(p) and Fv(p), we must then have Fw(ϕ)
and Tv(ϕ). We show that this is impossible, by structural induction on
ϕ. More precisely, we claim that if Fw(ϕ) then Fv(ϕ). To show this, we
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Figure 1. Definability of negation in PKT \{��,�}

Figure 2. Definability of negation in PKD

consider the given values for X, and define the accessibility relation RX

in each case. We divide the possible values for X into four cases:

(A) For X∈{PK,PKB,PK4} define RX = ∅. Note that for these
three logics, MX belongs to the appropriate class of models. If ϕ ∈
P, then Tw(ϕ) by the definition of the valuation, hence the claim
trivially holds. If ϕ = ϕ1 ∧ ϕ2 for some ϕ1, ϕ2 and Fw(ϕ), then by
[T∧] we must have that either Fw(ϕ1) or Fw(ϕ2). By the induction
hypothesis, we have that either Fv(ϕ1) or Fv(ϕ2), hence Fv(ϕ) by
[F∧]. If ϕ = ϕ1 ∨ ϕ2 for some ϕ1, ϕ2 then this is shown similarly.
Now, since RX = ∅, for every formula ψ we have (a) Fw(�ψ) and
(b) Fv(�ψ). In view of (b), the claim is true if ϕ = �ψ for some ψ.
By [T��], from (a) we conclude that Tw(��ψ). Thus, the claim also
holds if ϕ = ��ψ, for some ψ. Similarly, for every formula ψ we have
(c) Tw(�ψ) and (d) Tv(�ψ). In view of (c), the claim is true if
ϕ = �ψ for some ψ. By [F��], from (d) we conclude Fv(��ψ). Thus,
the claim also holds if ϕ = ��ψ, for some ψ.

(B) For X = PKT \{��,��} or X = PKDB\{��,��} define RX = W ×
W . First note that since RX is reflexive and also symmetric, MX

belongs to the appropriate class of models. If ϕ is a propositional
variable, a conjunction, or a disjunction, then the proof is analogous
to the previous case. If ϕ = �ψ for some ψ and Fw(ϕ), then Tw(ψ)
and Tv(ψ) by [T�] and the definition of RX , which implies by [F�]
and the definition of RX that Fv(ϕ). If ϕ = �ψ for some ψ and
Fw(ϕ), then by [T�] and the definition of RX it follows that either
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Tw(ψ) or Tv(ψ). Either way we conclude by [F�] and the definition
of RX that Fv(ϕ).

(C) For X∈{PKD\{��}, PKF \{��}, PKD4\{��}} set RX=
{〈w, v〉, 〈v, v〉}. Note that since RX is a total function, � and �
are indistinguishable, hence we may choose to consider � instead
of �. Moreover, since RX is also transitive, MX belongs to the
appropriate class of models. The cases where ϕ is atomic, a con-
junction, or a disjunction are immediate. If ϕ = �ψ for some ψ and
Fw(ϕ), then we must have Tv(ψ) by [T�], which implies by [F�]
that Fv(ϕ). If ϕ = ��ψ for some ψ, then Fv(ϕ) must hold good:
indeed, if on the one hand Tw(�ψ) then Fv(ψ) by [F�], and hence
Tv(�ψ) by [T�], which implies by [F��] that Fv(ϕ); if on the other
hand Fw(�ψ) then Tv(ψ) by [T�], and hence again Fv(ϕ) follows
by [F��].

(D) For X∈{PKD\{��}, PKF \{��}, PKD4\{��}} set RX =
{〈w,w〉, 〈v, w〉}. For this case also, note that since RX is both a total
function and a transitive relation, MX belongs to the appropriate
class of models. The proof then proceeds as in item (C), mutatis
mutandis.

�

Concerning the second part of the preceding proof, it is worth remarking
that in the cases in which classical negation turned out to be definable some
adjustment operator was always used for that purpose. Moreover, the proof
of case (B) actually shows that whenever all derivations in a given logic are
sound with respect to any class of models that includes this model, classical
negation is not definable without the help of �� or ��, as the same argument
applies. In particular, this includes all normal (negative) modal logics up to
(negative) S5, and indeed all the logics in which ��ϕ is not equivalent to �
(logics which are 	-paraconsistent) and ��ϕ is not equivalent to ⊥ (logics
which are 
-paracomplete).

Our next and final section will revisit the introductory comments of the
paper in the light of what we have learned so far.

7. This is Possibly Not the End

Denying Instead of Affirming. In contrast to the usual ‘positive modalities’
of normal modal logics, which are monotone with respect to the underlying
notion of consequence, we have devoted this paper to antitone connectives
known as ‘negative modalities’—specifically, to full type box-minus and full-
type diamond-minus connectives.

Be they monotone or antitone on each of their arguments, the connectives
of normal modal logics are always congruential: they treat equivalent formu-
las as synonymous. The phenomenon seems to be an exception rather than
the rule if many-valued logics with non-classical negations are involved. For
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instance, Kleene’s 3-valued logic fails to be congruential, as p ∧ ¬p is equiv-
alent to q ∧ ¬q, but their respective negations, ¬(p ∧ ¬p) and ¬(q ∧ ¬q), are
not equivalent (where ¬ is Kleene’s negation). Also, the earliest paraconsistent
logic in the literature (cf. [19]) fails to be congruential, in spite of having been
defined in terms of a double translation into a fragment of the modal logic
S5, and such failure remained undetected for decades (cf. [25]). The same
holds for the other early paraconsistent logics developed later on, contain-
ing additional ‘strong negations’ that live in the vicinity of classical negation
(cf. [7,28]). Of course, there are important ‘non-exceptions’: intuitionistic logic
and other intermediate logics constitute paracomplete logics with the replace-
ment property. For another example of the latter kind, perhaps more to the
point, consider the four-valued logic of FDE, whose semantics may be for-
mulated having as truth-values {t,b,n, f}, where {t,b} are designated, the
reflexive transitive closure of the order ≤ such that f ≤ n, f ≤ b, n ≤ t
and b ≤ t may be used to define ∧ and ∨, respectively, as its meet and
its join, while negation is defined by setting ¬〈t,b,n, f〉 := 〈f ,b,n, t〉. It is
not hard to see that this logic is congruential and by defining the operators��〈t,b,n, f〉 := 〈t,n,b, t〉 and ��〈t,b,n, f〉 := 〈f ,n,b, f〉 it gets conservatively
extended into another congruential logic that deductively extends our logic
PKF (but does not deductively extend PKT ), if we read � as ¬. It is worth
noting that the latter logic is equivalent (through a definitional translation) to
the expansion of FDE by the addition of the operator ∼〈t,b,n, f〉 := 〈f ,n,b, t〉
that plays the role of classical negation.

Still on what regards congruentiality, Table 1 illustrates how a few vari-
ants of global contraposition happen to be validated by some of our logics. We
use there ‘ser’ to refer to the class of serial frames, ‘sym’ to refer to symmetric
frames, and ‘any’ to refer to arbitrary frames.

Some of Our Ancestors. Some terminological conventions and some concepts
used in the present paper were borrowed or adapted from other fonts, some-
times without the due pause for inserting an explicit reference. For instance,
in Sect. 2, dadaistic and nihilistic models come from [26], and that paper also
introduces the connectives �� and �� of the so-called Logics of Formal Inconsis-
tency (cf. [5]) and the dual Logics of Formal Undeterminedness (cf. [26], where
the adjustment connectives are called connectives ‘of perfection’). The minimal
conditions on negation, called �falsificatio� and �verificatio�, come from [27].
The ‘strengthened models’ from Sect. 3 correspond to models with strongly-
legal valuations in the terminology of [21]. Most rules in Sects. 3 and 5 may be
seen as negative counterparts of the corresponding rules found at [12, Ch. 3],
[39], [30, Ch. 2] and [18, Ch. 6]. The rule for PKD, for instance, may be thought
of as a variation on the following well-known sequent rule for the modal logic
KD: Γ⇒�Γ⇒ . Also, the rule for PKF is a variation on the sequent rule from [20]
for the ‘Next’ operator in the temporal logic LTL, namely: Γ⇒Δ�Γ⇒�Δ . Further-
more, in Sect. 4, the trick behind using three-valued models for addressing the
admissibility of the cut rule goes at least as far back as [35].
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Table 2. Context relations

π0 {〈q1 ⇒ ; q1 ⇒〉 , 〈⇒ q1 ; ⇒ q1〉}
π1 {〈q1 ⇒ ; ⇒ �q1〉 , 〈⇒ q1 ; �q1 ⇒〉}
π2 {〈q1 ⇒ ; ⇒ �q1〉 , 〈⇒ q1 ; �q1 ⇒〉}
π3 π1 ∪ {〈�q1 ⇒ ; ⇒ q1〉 , 〈⇒ �q1 ; q1 ⇒〉}
π4 π1 ∪ {〈�q1 ⇒ ; �q1 ⇒〉 , 〈⇒ �q1 ; ⇒ �q1〉}

Paraconsistency and Paracompleteness. Let P denote the basic system
obtained from PK by deleting rules [�⇒] and [⇒�]. Table 4 summarizes all
systems investigated in the present paper, while Tables 2 and 3 summarize the
rules for � and �, as well as their context relations.

The first column of Table 5 recalls some of the basic consecutions charac-
teristic of classical negation and its interaction with ∧, ∨, � and ⊥, identifying
in the second and third columns the conditions on frames that suffice to vali-
date them. In this table, [ser], [ref], [sym], [trn] and [fun] refer, respectively, to
serial, reflexive, symmetric, transitive and functional frames, and [any] refers
to arbitrary frames.

A Richer Language in Which to Study Negative Modalities. Here is a mean-
ingful illustration of the way in which LFIs and LFUs are said to ‘recover
classical reasoning’, by the addition of appropriate assumptions to the clas-
sical inferences whose validity has been lost by the move to a non-classical
environment. Let a negation ¬ be added to positive classical logic (with ⊃ as
the symbol for implication), and consider the standard form of reductio accord-
ing to which (conc) p follows from (prem) (¬p ⊃ q) ∧ (¬p ⊃ ¬q). Such a rule
fails both when [CA] and when [DA] (namely, the ‘consistency assumption’
and the ‘determinedness assumption’ that are characteristic of classical nega-
tion, see Sect. 1) are challenged. As a matter of fact, when [CA] is not to be
presumed, one might produce a counter-example to reductio by finding a state
of affairs satisfying both q and ¬q while not satisfying p, and when [DA] is not
to be counted on, a state of affairs satisfying neither p nor ¬p would provide
a counter-example to reductio. This could be fixed if one replaced (prem) for
(prem�) Cq ∧ (¬p ⊃ q) ∧ (¬p ⊃ ¬q) and replaced (conc) for (conc�) p ∨ Dp,
adding thus a consistency assumption to the premise and a determinedness
assumption to the conclusion. It should be clear that (conc�) follows from
(prem�).

The particular languages focused upon in the present paper, of course, do
not include a primitive implication. The fourth column of Table 5 illustrates
how some other important consecutions from classical logic may be recovered
by some of the logics studied in this paper. Table 6 recalls a few of the most
important consecutions validated by LFIs introduced in the survey [5] (namely,
related to axioms dubbed (ci) and (ca)), and identify the conditions on frames
that suffice to validate them.
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Table 3. Sequent rules

Sequent rule Basic rule

[�⇒]
Γ ⇒ ϕ,Δ

�Δ,�ϕ ⇒ �Γ
〈⇒ p1;π1〉/�p1 ⇒

[⇒�]
Γ, ϕ ⇒ Δ

�Δ ⇒ �ϕ,�Γ
〈p1 ⇒;π1〉/⇒ �p1

[D]
Γ ⇒ Δ

�Δ ⇒ �Γ
〈⇒ ; π1〉/⇒

[T1]
Γ, ϕ ⇒ Δ

Γ ⇒ �ϕ,Δ
〈p1 ⇒ ; π0〉/⇒ �p1

[T2]
Γ ⇒ ϕ,Δ

Γ,�ϕ ⇒ Δ
〈⇒ p1 ; π0〉/�p1 ⇒

[Fun]
Γ ⇒ Δ

�Δ ⇒ �Γ
〈⇒ ; π2〉/⇒

[B1]
Γ,�Γ′, ϕ ⇒ Δ,�Δ′

�Δ,Δ′ ⇒ �ϕ,�Γ,Γ′ 〈p1 ⇒ ; π3〉/⇒ �p1

[B2]
Γ,�Γ′ ⇒ ϕ,Δ,�Δ′

�Δ,Δ′,�ϕ ⇒ �Γ,Γ′ 〈⇒ p1 ; π3〉/�p1 ⇒

[41]
�Γ,Γ′, ϕ ⇒ �Δ,Δ′

�Γ,�Δ′ ⇒ �ϕ,�Δ,�Γ′ 〈p1 ⇒ ; π4〉/⇒ �p1

[42]
�Γ,Γ′ ⇒ ϕ,�Δ,Δ′

�Γ,�Δ′,�ϕ ⇒ �Δ,�Γ′ 〈⇒ p1 ; π4〉/�p1 ⇒

[DB ]
�Γ′,Γ ⇒ Δ,�Δ′

Δ′,�Δ ⇒ �Γ,Γ′ 〈⇒ ; π3〉/⇒

[D4]
�Γ′,Γ ⇒ Δ,�Δ′

�Γ′,�Δ ⇒ �Γ,�Δ′ 〈⇒ ; π4〉/⇒

On what concerns the second pair of consecutions in the latter table
(related to axiom (ca)), that deal with the ‘propagation of consistency’, it
is worth noticing, in the presence of a classical implication, that ��ϕ,��ψ |=��(ϕ ⊃ ψ) is not a valid consecution in normal modal logics, but its variant��ψ |= ��(ϕ ⊃ ψ),��ϕ is validated by arbitrary frames.

On the Availability of Classical Negation. We have already pointed out in
Sect. 1 how a classical negation might be defined within the basic normal modal
logic of arbitrary frames with the help of the modal paraconsistent negation �
and an additional classical implication. Now, within the modal logic of reflexive
frames one may also define a classical negation with the help of implication
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Table 4. Sequent systems

PK P + [� ⇒] + [� ⇒]

PKD PK + [D]

PKT PK + [T1] + [T2]

PKF P + [Fun] + [� = �]

PKB P + [B1] + [B2]

PK4 P + [41] + [42]

PKDB PKB + [DB]

PKD4 PK4 + [D4]

Table 5. Some basic consecutions characteristic of classical negation

Consecution − as � − as � Derivability adjustments

−� |= [any] [ser]

|= −⊥ [ser] [any]

ϕ, −ϕ |= [ref] ��ϕ, ϕ, �ϕ |= [any]

|= −ϕ, ϕ [ref] |= �ϕ, ϕ, ��ϕ [any]

−−ϕ |= ϕ [sym] ��ϕ |= ϕ, ��ϕ [ser+trn]

ϕ |= −−ϕ [sym] ��ϕ, ϕ |= ��ϕ [ser+trn]

−ϕ ∨ −ψ |= −(ϕ ∧ ψ) [any] [any]

−ϕ ∨ ψ |= −(ϕ ∧ −ψ) [sym] ��ψ, �ϕ ∨ ψ |= �(ϕ ∧ �ψ) [ser+trn]

ϕ ∨ −ψ |= −(−ϕ ∧ ψ) [sym] ��ϕ, ϕ ∨ �ψ |= �(�ϕ ∧ ψ) [ser+trn]

ϕ ∨ ψ |= −(−ϕ ∧ −ψ) [sym] ��ϕ, ��ψ, ϕ ∨ ψ |= �(�ϕ ∧ �ψ) [ser+trn]

−(ϕ ∧ ψ) |= −ϕ ∨ −ψ [any] [fun]

−(ϕ ∧ −ψ) |= −ϕ ∨ ψ [sym] �(ϕ ∧ �ψ) |= �ϕ ∨ ψ, ��ψ [trn]

−(−ϕ ∧ ψ) |= ϕ ∨ −ψ [sym] �(�ϕ ∧ ψ) |= ϕ ∨ �ψ, ��ϕ [trn]

−(−ϕ ∧ −ψ) |= ϕ ∨ ψ [sym] �(�ϕ ∧ �ψ) |= ϕ ∨ ψ, ��ϕ, ��ψ [ser+trn]

−ϕ ∧ −ψ |= −(ϕ ∨ ψ) [fun] [any]

−ϕ ∧ ψ |= −(ϕ ∨ −ψ) [sym] ��ψ, �ϕ ∧ ψ |= �(ϕ ∨ �ψ) [trn]

ϕ ∧ −ψ |= −(−ϕ ∨ ψ) [sym] ��ϕ, �ϕ ∧ ψ |= �(ϕ ∨ �ψ) [trn]

ϕ ∧ ψ |= −(−ϕ ∨ −ψ) [sym] ��ϕ, ��ψ, �ϕ ∧ ψ |= �(ϕ ∨ �ψ) [ser+trn]

−(ϕ ∨ ψ) |= −ϕ ∧ −ψ [any] [any]

−(ϕ ∨ −ψ) |= −ϕ ∧ ψ [sym] �(ϕ ∨ �ψ) |= �ϕ ∧ ψ, ��ψ [ser+trn]

−(−ϕ ∨ ψ) |= ϕ ∧ −ψ [sym] �(�ϕ ∨ ψ) |= ϕ ∧ �ψ, ��ϕ [ser+trn]

−(−ϕ ∨ −ψ) |= ϕ ∧ ψ [sym] �(ϕ ∨ �ψ) |= �ϕ ∧ ψ, ��ϕ, ��ψ [ser+trn]

and the modal paracomplete negation �, by simply setting ∼α := α ⊃ �α.
Indeed, it is easy to see that the more general consecution |= p, p ⊃ q would
then be valid because of the meaning of classical implication, and to check
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Table 6. Some consecutions from LFIs

Consecution Property Derivability adjustment
���ϕ |= ϕ – ���ϕ |= ϕ,��ϕ [any]

���ϕ |= �ϕ [trn]

��ϕ,��ψ |= ��(ϕ ∧ ψ) [any]

��ϕ,��ψ |= ��(ϕ ∨ ψ) [any]

Table 7. Mixed negation consecutions

Consecution − as � − as �
−ϕ |= ∼ϕ [ref] –

∼ϕ |= −ϕ – [ref]

Consecution −1 as �, −2 as � −1 as �, −2 as � Derivability adjustment

−1ϕ |= −2ϕ [ser] [fun]

−1−2ϕ |= ϕ [ref] or [ser+sym] ��ϕ |= ϕ, ��ϕ [trn]

ϕ |= −1−2ϕ [ref] or [ser+sym] ��ϕ, ϕ |= ��ϕ [trn]

that p, p ⊃ �p |= is also valid one may use modus ponens and the reflexivity
of the underlying frames.

Do the above observations still hold good if the classical implication ⊃ is
replaced by the intuitionistic implication? To comment on that, we let → be
some implication connective, and define ¬1α := α → �α, ¬2α := α → �(α →
α) and ¬3α := α → �(α → α), so as to briefly discuss in what follows the
relations that involve classical negation and its non-classical modal cousins. To
be sure, some such relations have already been mentioned in previous sections
and the corresponding consecutions are collected in Tables 5 and 7. The latter
table also contains some double negation rules in which negations of different
types interact.

To facilitate the discussion, we might hereupon say that a 1-ary connec-
tive # is contrary-forming iff it is not #-paraconsistent (that is, if it respects
�#-explosion�), and # is subcontrary-forming iff it is not #-paracomplete
(that is, if it respects �#-implosion�). Additionally, a contradictory-forming
connective is said to be a 1-ary operator that is both contrary-forming and
subcontrary-forming—corresponding to what we here have called a ‘classical
negation’. Generalizing the above, two formulas ϕ and ψ are called contrary
according to a given logic if the consecution ϕ,ψ |= holds good, and are called
subcontrary if the consecution |= ψ,ϕ holds good.

Note on the one hand that if → is classical implication all the three
negations defined above, ¬1, ¬2 and ¬3, are subcontrary-forming connectives.
On the other hand, even if we assume that → is intuitionistic, we see that
while ¬2 is contrary-forming over the logic of arbitrary frames, to obtain the
same effect with ¬3 we need to consider the logic of serial frames, while for ¬1

reflexive frames are on demand.
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The nullary connective ⊥ (or any formula equivalent to it, such as ��
over the logic of arbitrary frames, or �� over the logic of serial frames) may
be said to be the strongest contrary of any given formula (in the sense that
it entails any other contrary of that very formula), or said to be a ‘global
contrary’ (as it works uniformly as the contrary to any formula); something
analogous may be said about � as the strongest/global subcontrary of any
given formula. Note, at any rate, that if #ϕ is equivalent to ⊥, for arbitrary ϕ,
then # fails to be a negation (it does not respect the �#-verificatio� condition).
It is worth pointing out that if → is intuitionistic implication then ¬2α is the
weakest contrary to the formula α, over the logic of arbitrary frames, the
intuitionistic-like ¬3α plays the same role over the logic of serial frames, and
¬1α plays that role over the logic of reflexive frames. Both ¬2 and ¬3 may be
said then to produce a ‘local contrary’ out of a global contrary. These are all
issues discussed in [16], where the ‘basic logic of contrariety and subcontrariety’
is expected to validate the following consecutions that witness the interaction
between the two non-classical types of modal negations: (i) �ϕ |= �ϕ; (ii)
��ϕ |= ϕ; (iii) ϕ |= ��ϕ. As we have seen in the present paper, irrespective
of the presence of any kind of implication in the language, while item (i) is
validated by the class of serial frames, to validate items (ii) and (iii) one should
also impose the symmetry of the latter frames. All these facts can now be easily
checked also using the corresponding sequent systems presented above.

Finally, as another warning concerning the extension of the logics stud-
ied in the present paper by the addition of implication, it is worth noting that
in [16] it is also shown that the identification between the contrary-forming
and the subcontrary-forming negations (that happens, for instance, within the
logic of total functional frames) causes a collapse of intuitionistic implication
into classical implication. As we have seen by the study of PKF in the present
paper, however, imposing the identification between � and � does not mean
that our non-classical negations end up collapsing into classical negation, if
an implication is not available. All that having been said, it is worth noting
that the framework of basic systems [21] can be used to provide semantics for
all systems studied in this paper augmented with a classical or an intuition-
istic implication. Cut-admissibility, analyticity, and undefinability of classical
negation in the resulting extensions are left as matter for future work.

What is to Follow. The main feature of our approach in the present paper
has been to rely on theoretical technology built elsewhere and show how it
may be adapted to the present study. Our hope is that this should prove a
beneficial methodology, and that the idea of obtaining completeness and cut-
admissibility as particular applications of more general results will become
more common, rather than proceeding always through ad hoc completeness
and cut-elimination theorems.

While we have directed our attention, in the present paper, to classes
of frames that turned out to be particular significative from the viewpoint of
the relation between negative modalities of different types, we envisage several
very natural ways of extending this study. A first natural extension would be to
look at other classes of frames that prove to be relevant from the viewpoint of
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Table 8. Some other consecutions

Consecution − as � − as �
−ϕ,−−ϕ |= [euc] [ser+trn]

|= −−ϕ,−ϕ [ser+trn] [euc]

−ϕ,�−ϕ |= – [trn]

|= �−ϕ,−ϕ [trn] –

|= �−−ϕ [euc] –

�−−ϕ |= – [euc]

|= ��−ϕ – [trn]

��−ϕ |= [trn] –

sub-classical properties of negation. For instance, it is easy to see that the class
of frames with the Church-Rosser property validates ��p |= ��p, pinpointing
an interesting consecution that involves the interaction between negations of
different types. Some other classes of frames deserving study do not seem to
show the same amount of promise, from the viewpoint of paraconsistency or
paracompleteness. For instance, euclidean frames validate ��-explosion� if in
the set of formulas {�p, p} one replaces p by �r (this is explained by the
fact that formulas of the form �ϕ are consistent—in other words, formulas
of the form ���ϕ turn out to be validated), and also validate ��-implosion�
if in {�p, p} one replaces p by �r; in contrast, the transitive frames studied
in Sect. 5.5 cause a similar behavior, but swapping the roles of �r and �r in
replacing p. The latter phenomena (see the notion of ‘controllable explosion’
in [5]) is summarized in Table 8.

A second avenue worth exploring would lead us into logics containing
more than one negative modality of the same type (as it has been done for logics
with multiple paracomplete negations in [33]). One could for instance consider
not only the ‘forward-looking’ negative modalities defined by the semantic
clauses [S�] and [S�], but also ‘backward-looking’ negative modalities �−1

and �−1 defined by the clauses obtained from the latter ones by replacing
wRv by vRw (such ‘converse modalities’ have been studied in the context of
temporal logic [31], as well as in the context of the so-called Heyting-Brouwer
logic [32], and more recently have been given a treatment in terms of display
logic calculi and multi-relational frames [29]). The interaction between the
various negations would then be witnessed, in such extended language, by the
validity over arbitrary frames of ‘pure’ consecutions such as �−1�p |= p and
��−1p |= p (as well as p |= �−1�p and p |= ��−1p) and forms of global contra-
position such as ϕ |= �ψ

ψ |= �−1ϕ
and �ϕ |= ψ

�−1ψ |= ϕ
(as well as ϕ |= �−1ψ

ψ |= �ϕ and �−1ϕ |= ψ
�ψ |= ϕ ),

and by the validity over symmetric frames of ‘mixed’ consecutions such as
�−1�p |= p and ��−1p |= p (as well as p |= �−1�p and p |= ��−1p). In our
view, it seems worth the effort applying the machinery employed in the present
paper to the above mentioned systems, and still others, in order to investigate
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results analogous to the ones we have here looked at. In particular, Proposition
4.28 of [21], that was used here for symmetric and transitive frames, provides a
tool for constructing two accessibility relations that are inverse to one another,
and thus one may serve as the ‘backward-looking’ version of the other.

Yet another direction for future research is the combination of certain
frame properties. We have initiated such study in Sect. 5.6, where models that
are both transitive and serial, or both symmetric and serial were addressed.
The main challenge one would face pursuing this direction is that most basic
rules discussed in the present paper employ different context relations, and
hence, according to the semantics of basic systems, their combination charac-
terizes models that are equipped with several distinct accessibility relations. In
the case of Sect. 5.6, this was remedied by finding a different rule for seriality,
that utilizes the same context-relation as the rule for transitivity. A simi-
lar solution was implemented for the combination of symmetry and seriality
(captured in isolation by systems PKB with PKD). To deal with such a combi-
nation, we had to adapt the method for extending partial models. Combining
PKD with either PKT or PKF is of course redundant, as reflexive relations and
total functions are already serial. Also, the rules for PKT employ π0, which is
already used for the classical connectives, and thus do not require an additional
accessibility relation. Combining reflexivity with other frame properties seems
therefore more promising in the context of cut-free sequent systems, however
not if this is to involve other logics that are free of classical negation (given
that already in PKT classical negation is definable with the help of either one
of the adjustment connectives).

One aspect that laid beyond the scope for the current paper was the
prospect of using non-normal modal logics to define negative modalities. The
idea is roughly the same: on the semantic side, interpreting the negative modal
operators as impossibility and unnecessity, and on the proof-theoretic side,
converting derivation rules for non-normal modal logics into ‘negative’ ones.
From that perspective, it is worth noting that the ‘regular’ and ‘co-regular’
negations introduced in [38], yet very natural, fail to be ‘full type’ modalities.
Many proof systems for positive non-normal modal logics (e.g. all ordinary
sequent systems from [24]) are actually basic systems, thus are amenable to
an analysis similar to the one proposed here. We also note that positive and
negative modalities within non-distributive logics are investigated in [15] from
an algebraic point of view, and in [14] the algebraic study of such logics is also
complemented by proof-theoretical presentations in terms of display calculi.

At last, it is also worth stressing some specific problems that were
left open in the present paper. For instance, an analytic proof system for
negative modalities over euclidean frames (corresponding to the logic K5)
was not presented here. The sequent rule for K5 from [37] may indeed
be adapted to the study of negative modalities; however, unlike what hap-
pens with the other cases studied here, the framework of basic systems
falls short to handle this logic, as some of its strengthened models are not
euclidean. As another example, it was established in Sect. 6 that classical
negation is definable in full PKDB, but not without �� and ��. Whether
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only one of the latter adjustment connectives suffices for such a defini-
tion is left as matter for further research, as the methods developed here
for attacking this question seem to leave it unanswered. Indeed, the defini-
tions of classical negation for PKT fail in PKDB, and the countermodels
presented for ��-free and ��-free logics are not suitable for it. Finally, cut-
admissibility of our system PKB is currently left open. Note that for the
situation in which the ����-fragment of PKB is augmented with an implica-
tion connective, [3] includes an example of a derivable sequent that has no
cut-free proof. However, the languages that we considered here, and in par-
ticular, the language of PKB, do not include a native implication connec-
tive.

Acknowledgements

Open access funding provided by Max Planck Society. The authors acknowl-
edge partial support by CNPq, by The Israel Science Foundation (Grant
No. 817-15), by the Marie Curie project GeTFun (PIRSES-GA-2012-318986)
funded by EU-FP7, and by the Humboldt Foundation. They also take the
chance to thank Elaine Pimentel, Heinrich Wansing, Alessandra Palmigiano,
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