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Abstract. In this paper, with reference to relationships of the traditional
square of opposition, we establish all the relations of the square of opposi-
tion between complex sentences built from the 16 binary and four unary
propositional connectives of the classical propositional calculus (CPC).
We illustrate them by means of many squares of opposition and, corre-
sponding to them—octagons, hexagons or other geometrical objects.
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1. Introduction: Basic Definitions

For any sentences o, B, ¢, I of CPC we assume the following definitions:

a, B are contrary iff a/p is a tautology of CPC, where the stroke/is the

Sheffer’s connective;

¢, U are subcontrary iff @V is a tautology of CPC, where V is the

disjunction connective;

a entails ¢ iff a — @ is a tautology of CPC, where — is the implication

connective;

a and U are contradictory iff (a Al) V (~a A~ 1) is a counter-tautology

of CPC, i.e. @ and ¥ never agree in truth-values.

We will illustrate the above relationships between sentences a, B, ¢, ¥ in
a square of opposition graphically in a non-standard way' by means of Fig. 1,
where the dotted lines indicate contradictory sentences and the downward
arrows the implication.

1 First logicians who tried to organize or ‘structure’ the connectives of CPC in a systematic
way were [3,5,7,11]. A description of the paper by [5] is given by Beziau [2]: http://cahiers.
kingston.ac.uk/synopses/syn10.7.html.
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FIGURE 1. Scheme of square of opposition

2. Connectives: both ...and...; ...unless...; not...because...;
neither ...nor...?2

Among the 16 binary classical sentence-forming connectives there are only four
for which sentences that are built by means of them are true only in one case
(see Table 1). They are the following:

both...and...,...unless..., not...because..., neither...nor... (binega-
tion /).

We define them by means of variables p, q and the classical connectives:
the conjunction A (or implication —) and negation ~ as follows:

both p and q =4¢ p A q;

p unless g =qf ~(p —q) = p A~q;

not p because q (or not p though q) =4t~ (q — p) = ~p A q;

neither p nor q (p / q) =atr ~p A ~q.

The third connective is also called the dual implication: d(p — q) =ar
~ (q — p) (see [16,17]) and the last one is known as binegation /.

The truth-value table for these connectives is the following:

TABLE 1. The truth-value table for conjunctive sentences

P 4 pPANq PA~q ~pAq ~pPA~q
1 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 O 0 0 1

The above conjunctive sentences (conjunctions) are pairwise contrary, i.e.
the Sheffer’s disjunction of two sentences of each of the six pairs of the above

2 These connectives of natural language fulfill in sentences not only a logical, descriptive
(communicative) role but also an expressive one (expressing psychical states of a speaker).
Defining these connectives by means of well-known logical connectives of CPC, we omit of
course their expressive functions in composed propositions.
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conjunctions is true (is a tautology), so the sentences can never both be true,
but can both be false.

To each of the 6 pairs of contrary conjunctions from the following:
(i) PAd, PA~G ~pAd, ~pA~q
there exists a pair of contradictory implications from the following pairwise
subcontrary implications:
(ii) p— a4, p = ~q, ~p = q, ~p = ~q
so the sentences that can both be true, but cannot both be false, i.e. the
disjunction of which is true. The implications (ii), of course, are true in three
cases depending on the truth value of sentences p and q.
Each pair of (ii), together with the suitable pair of contrary conjunctions

of (i), creates one of the 6 squares of opposition for complex sentences of
classical logic. The squares are given below (see Squares 1-6).

A / A~ A / ~
PAq ‘P q P"l P/\q PAQ | ~pA~q
e, o S of
0... ”’ K ’.”’ ”’3 ”0. "‘0
’.. ’. * ” R ’0 0” R ’0
J 5, { { 2 {
o . K ., R .
o . o . o i
0. ”0 ‘00 ”0’ ..0. ”0”
P—>q v pP—>~q ~p - v 5~
p= P2~ ~poq v  po~q
Square 1.
q Square 2. Square 3.

pa~q |/ ~pPAq pA~q / ~pA~] ~PAQ I ~pA~q

o, 0 ., Q 4
0”‘ ” ‘0 0... ” ‘0 ””’ ” ’0
..0. ’0” ..0. ’0” ”0’ ’0”
' n ! U I ! v
0. .0 0. ’0 0. ’0
.0.. “0. .0.. ”0’ 0... ”’0
o . o e A *
P>~q v P—>q ~p—>q v p—>q ~P—>q v ~poq
Square 4. Square 5. Square 6.

To each of the 6 pairs of contrary conjunctions from the following:
(i) PAd, PA~G ~pAd, ~pA~q
there exists a pair of contradictory Sheffer’s disjunctions (denial alternatives)

from the following pairwise subcontrary Sheffer’s disjunctions, i.e. the disjunc-
tion of which is true:

(iii) p/ag, p/~a, ~p/q, ~p/~q.
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Each pair of (iii) together with the suitable pair of conjunctions of (i),
creates one of the six squares of opposition for complex sentences of classical

logic (see Squares 1'-6').3
To each of the six pairs of contrary conjunctions from (i) there exists also
a pair of contradictory disjunctions from the following pairwise subcontrary

disjunctions, i.e. the disjunction of which is true:

(iv) pVa,pV ~q, ~p Vg, ~pV ~q.
Each pair of (iv), juxtaposed with the suitable pair of conjunctions from
(i), creates also one of the six the squares of opposition for complex classical

/

sentences (see Squares 17-6").%

Squares 1’-6" and 1”-6" are given below:
PAq / PA~q  PpPAq / ~pAq PAq
O K ‘e, K o, o
”’0 0.. ”’0 0.. ..0 0..
" ’. ’0 0. .0 0.
‘0 ‘. .0 0‘ ’0 0.
%, LR CRER
\ Ko { i S i ! % )
o K o8 o,
K ‘e K4 ’0.. o *,
.0”’ ...0 ’0”’ ..0’ .0.. ..0.
p/~q p/q ~p/q v P/q ~p/~q v p/q
Square 1°. Square 2’. Square 3.
PA~a [ ~PAG pA~q | ~PANML ~PAQ | ~PANY
" \d . ‘0 0‘
.0 * ’. 0. ’. .’
.0 0. .0 0.. * ..
.0”’ ’..0. 0”’ ...0 ’0“. ...0
8 l ! S ' A v
0“ ‘.0 0" “’ 0" ..0
0.. ..0 0.. ..0 .0.. ..0’
~p/q v Pl~a ~plrq v P/~4  ~pi~q v ~P/4
Square 4°. Square 5°. Square 6°.

3 Squares 1’-6' are formed with the suitable Squares 1-6 by replacing in them implications

4 Squares 16", are formed with the suitable Squares 1-6 (resp. Squares 1’~6’) by replacing

by equivalent Sheffer’s disjunctions.
in them implications (resp. Sheffer’s disjunctions) by equivalent disjunctions.
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PA(q [ ~PA~q
pPAq / pA~q PAq / ~pAq - -
. s . K
5 K o
”0” .0. ’0 ” ..0 0.. “0
e, o" *e o LR
o 0 I I
1 A I A
B4 ‘e 0 e, O e,
K X . . . .,
0... ...0 ’0”’ ..0. 0”’ ..0
.0 0. .0 ”
~pPVvq V.o ~pVv~(q p v~q v P Vv~(q PVvVq v PV ~q
2
Square 1" Square 2. Square 3.
pA~q I ~pPAq PA~q / ~pPA~q ~pAq I ~pAn~q
CQ’ .‘ ” .. “. .‘0
., o ‘. o ‘e o
., .,0 ‘e o ‘. o
".00 Q”. "..0 0"“ .”0 0”’.
S &3 { \’ KX { \ o, \
‘0’ ‘0’ '0 0’ .‘ ’Q’
” . K o8 .,’ .,
K . . . K .
K3 . B4 ’0. o e,
..0 0.’ ‘0’ 0. .. ...
PV~q V. ~pVvd PVvq v ~pPVvq pvq v pv~q
Square 4°°. Square 5. Square 6.

As it turns out, at least one of them, Square 3”:

~pA~q

pAq /

pPv q v

~pv~q

was known much earlier (see [4,7,11-13,19,21],% [8].

So, if we have, for example, p &~ John is a scientist, q ~ John is a priest,
then their conjunction: John is a scientist and John is a priest s contrary to
their binegation: neither John is a scientist nor John is a priest; their disjunc-
tion: John is a scientist or John is a priest s subcontrary to the disjunction
of their negations; their conjunction s contradictory to the disjunction of
their negations and their binegation ¢s contradictory to their disjunction;

5 A fragment of the book of Zarnecka Bialy (pp. 65—66) devoted to the theory of opposition
and to Petrus Hispanus (Pope John XXII, in 13th century) suggests that the square was
known to him. However, as Wojciech Suchon informed me, in Petrus Hispanus’s Summulae
logicales there is no reference to the square of opposition for complex sentences, although it
contains some material that allows for such digressions (cf. my abstract in [18]).
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from their conjunction follows their disjunction and from their binegation
follows disjunction of their negations.

We may illustrate each of the six squares of opposition: Squares 1-6
(resp. Squares 1’-6" or Squares 1”—6"), and properly corresponding to them
six rectangles of opposition, in one of the octagons of opposition: Octagon
1 (resp. Octagon 2 or Octagon 3). For Squares 1”-6" we have Octagon 3 in
which, for clarity, we omitted the doted, diagonal lines indicating contradictory
sentences.

pA~q ~pAq

pAq ~pA~q

pPvq ~pv~q

Pv~q v ~pvq

Octagon 3.

This octagon is another representation of the so called logical cube (well
known in literature) which constitutes the central part of bigger 3D represen-
tations which unite all 14/16 formulas of CPC. It occurs in [8,9,13,14].

For Squares 1-6 and 1’-6" we obtain Octagon 1 and Octagon 2 in which
disjunctions of (iv) are either replaced by equivalent implications from (ii) or
by equivalent Sheffer’s disjunctions from (iii), respectively.

Among the 16 connectives of the set F'16 of the all binary connectives of
classical logic we may find six which form true sentences in two cases and one
which forms a true sentence in four cases. We will consider them in the next
sections.
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3. Connectives: ...even if...; even if...,...; ...if and only
if...; either...or...

3.1. The six binary classical sentence-forming connectives that form true sen-
tences in two cases are defined as follows:

pevenif q (p <|q) =ar qV ~q — p =p; ~pevenif ~q (~p <| ~q)
=darqV ~q— ~p = ~D;

even if p, q (p |7 q) =ar pV ~p — q=gq; evenif ~p, ~q (~p |7 ~q)
=4t PV ~Dp— ~q =g

pifand only if q (p =q) =ar (P A q) V (~p A ~q); eitherporq (p L
q) =ar ~ (p = q)-

We see that sentences in the same line on the right side and on the left
side are contradictory.

The connective L (VV,V) is well known as the strong or exclusive dis-
junction connective. The sentence: even if p, q (p |~ q) can be read: even if p
then q, and the sentence: even if ~p, ~q (~p |” ~ q) can be read: even if not
p then not q.

The truth-value table for the connectives <|,|~, = and L is the following
(see Table 2)%:

TABLE 2. The truth-value table for connectives: < |,| >,=, L

P 4 pSlga ~pS[~q pl"q ~p|”~q p=q plgqg
T 1 1 0 1 0 1 0
1 0 1 0 0 1 0 1
010 1 1 0 0 1
000 1 0 1 1 0

In every two successive columns with composed propositions we have two
contradictory sentences. For each pair of contradictory sentences in Table 2
we can build four squares of opposition and two hexagons of opposition corre-
sponding to them.

The idea of constructing hexagons built from the squares of oppositions
(rectangles of opposition corresponding to them) differs from the main idea of
Blanché’s hexagon (1966) presented clearly by Béziau [1] and based on putting
together two triangles of opposition: the triangle of contrariety and the triangle
of subcontrariety.

6 The sentence ~p <| ~q can be replaced by the sentence ~p <| q and the sentence
~p |> ~q—Dby the sentence p|~ ~q.
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3.2. For p <| q and ~p <| ~q (~p <| q) we have Squares 7 and 8 and Hexagon
1 (in which Square 6" is also illustrated) and Squares 7/ and 8" and Hexagon
1’ (in which Square 1” is illustrated).

~pAq |/ pTq pilq ~pA~q
“‘o o’.. ”0 . ‘0’.
* 4 * *
0..... “" ‘0 0”" “‘ ‘0
d 28 d N L J
...0 0“‘ ....‘ 0“‘
* * *
.."0 * "“. ..' " 0““

~p~q Vv pVv~q PVq v ~Pl~q

Square 7. Square 8.
plq
\ /
/
~pAq ~pA~q
V) \
\ \
N y
Pvq Pv~q
\Y%
\% \%
~p°l~q
Hexagon 1.

We obtain Hexagon 1 by composition of Squares 7 and 8. The crucial
difference between this Hexagon and the classical one from [4] is that two
triangles of contrariety and subcontrariety do not overlap, and that all entail-
ment relations are systematically pointed downwards, all contraries relations
are shown in its upper triangle and all subcontriaries relations on its bot-
tom triangle. Hexagon 1 is a simple graphical variant of the standard Blanche
hexagon which is obtained by flipping the vertical diagonal of contradiction
upside down.”

7 T owe this remark to the reviewer of my paper.
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Hexagon 1’ is obtained here by composition of the above mentioned
Squares 7/ and &'

<
PAQ /I ~p~q ~Pl~a | pa~q
J, KN ! ! ) L
plq v ~PVv~q ~pvq v plq
Square 7°. Square 8’.
~p°|~q
\ /
/
PACq pPA~q
V) N
3 A2
N J
~pvq ~pV~q
\
\ A\
plq
Hexagon 1°.

Let us return to the first square of the series of squares. Let us con-
sider an example of using Square 7 with contradictory sentences p <| q and
~p <| ~q.

Let p be a sentence: He goes for a walk, and q a sentence: It rains. Then

e the sentence p <| q : He goes for a walk even if it Tains-
is contrary to
the sentence ~ p A q: He does not go for a walk because (and) it rains;

e the sentence p <| q : He goes for a walk even if it rains

is contradictory to
the sentence ~p <| ~q: He does not go for a walk even if it does not rain;
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e the sentence ~ p A q: He does not go for a walk because (and) it rains

is contradictory to
the sentence p V ~q: He goes for a walk or it does not rain;

e the sentence p <| q: He goes for a walk even if it rains

tmplies the sentence p V ~q: He goes for a walk or it does not rain;
e the sentence ~ p A q: He does not go for a walk because (and)it rains

implies the sentence ~p <| ~q: He does not go for a walk even if it does not
rain;

e the sentence p V ~q: He goes for a walk or it does not rain and
the sentence ~p <| ~q: He does not go for a walk even if it does not rain

are subcontrary.

3.3. For contradictory sentences p |~ q and ~p |~ ~q (p |~ ~q) we have
Squares 9 and 10 and Hexagon 2, and also Squares 9’ and 10’ and Hexagon 2’.
Below we have Squares 9 and 10:

> >
pA~q |/ plq Pl q I ~pA~q
* * . -
* “ ..0 * . .0
* *
* * * *
* * S *
*, * - *
* *
‘. ,‘ ’0 0’
. * * *
N 1 N N 3 N
* *
* *
R . ‘,‘ ‘,.
* 4 * -
* * * *
* * .
o . ',‘ O
* *
* » \d *

~pl~q v P24  ~pogq v ~pl~q

Square 9. Square 10.

Let us consider an example of using Square 9 with contradictory sentences
p |7 q and ~p |~ ~q. Let us recall that the sentence: p unless q =q¢~ (p —
q) = p A ~ q. And let p be a sentence: The reviewer rejected this paper, and
q a sentence: It will be published.
Then
e the sentence p |~ q : Even if the reviewer rejected this paper, it will be
published
is contrary to

the sentence p A ~ q (p unless q, ~ (p — q)): It is not truth that if the
reviewer rejected this paper it will be published,
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e the sentence p |~ q : Even if the reviewer rejected this paper, it will be
published,
is contradictory to
the sentence ~p |~ ~q: Fven if the reviewer did not reject this paper, it
will not be published,

e the sentence p A ~ q: The reviewer rejected this paper unless it will be
published
ts contradictory to
the sentence p — q : If the reviewer rejected this paper then it will be
published, a

e the sentence p |~ q: Even if the reviewer rejected this paper, it will be
published

tmplies the sentence p — q: If the reviewer rejected this paper then it will be
published,;

e the sentence p A ~ q: The reviewer rejected this paper unless it will be
published
implies the sentence ~p |~ ~q: Even if the reviewer did not reject this paper,
it will not be published,
e the sentence p — q: If the reviewer rejected this paper then it will be
published, and the sentence ~p |7 ~q: Even if the reviewer did not reject
this paper, it will not be published, are subcontrary.

Below we present Squares 9" and 10:

> >
pAq I ~pl~q ~p[~q I ~paq
e o “, ,‘.
* ** » Q
* * * *
- * * *
. Q ®, \4
» * » *
- - *. o
‘e, o J, J, * *
e ) \
SR ¢ o Y
* *
B . Q »
* * * *
Q * Q »
* * 4 *
* - .0 0.
R . o e
* Y .0 *
-

plq v ~PV~q Ppv~q v plq

Square 9°. Square 10°.
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By composition of Squares 9 and 10 (resp. Squares 9’ and 10") we obtain
Hexagon 2 (resp. Hexagon 2'):

>

pl”q
\ /
/
pA~q ~pA~q
V) N
{
N v
~p—>(q P—>q
\%
\ \%
~pl~q
Hexagon 2.
~pI”’~q
\ /
/
pA ~pPAq
V) N
\’ \2
N v
Pv~q ~pv~q
A\
\Y A\
pl q
Hexagon 2°.

In Hexagon 2 and Square 5 is also illustrated, while in Hexagon 2’ and
Square 2" is presented.
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3.4. For contradictory sentences p = q and p L q we have Squares 11 and 12
and Hexagon 3 (in which Square 4 is also illustrated) and also Squares 11’ and
12’ and Hexagon 3’ (in which Square 3 is also presented).

PA~q | p=q  p=q | ~pAgq
* *
.
’o. o e '0’
S
S - . B
* * 3 *
3 . . B
. 0
. Q e N
CO . *
., ¢
¥ # J KN J
o ‘e *
K3 ., AR
* S K3 .
- . B .
* * * *
- 03 - .
- S * .
* * * *
- -

pla v po>gq ~p>~q v plgq
Square 11. Square 12.

The composition of Squares 11 and 12 is Hexagon 3:

p=q

pA~q ~pAq
A \
~p—>~q P—>q

pLq
Hexagon 3.

Let us consider an example using the relationships in Square 12. Let us
assume that the sentence p =~ This paper will be published, q ~ This paper has
good reviews. Let us also recall that the sentence: not p because q =q¢~ (q —
p) =~pAdq. So

e the sentence p = q: This paper will be published if and only if this paper
has good reviews is contrary to

the sentence ~p A q: This paper will not be published though it has good reviews;

e the sentence p = q: This paper will be published if and only if this paper
has good reviews is contradictory to

the sentence p L q: Fither this paper will be published or it has good reviews;
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e the sentence p = q: This paper will be published if and only if this paper
has good reviews tmplies the sentence q — p: If this paper has good
reviews then it will be published; o

e the sentence ~p A q: This paper will not be published though it has good
reviews

is contradictory to
the sentence q — p: If this paper has good reviews then it will be published,

e the sentence ~p A q: This paper will not be published though it has good
reviews

e mplies the sentence p L q: Either this paper will be published or it has
good reviews.

Squares 11’ and 12’ and Hexagon 3’ are given below.

pAd I plaq plq _ / ~pa~gq
\L :“:’: »L \L "‘3" i/
P=4q v p—~q ~p—>q Y pP=q
Square 11°. Square 12°.
pLdq
\ /
PAq /
~pA~q
Y, \
¢ \2
b v
~p—>q y P> ~q
v v
P=q
Hexagon 3°.

3.5. The relationships illustrated by means of Hexagons 1-3 can be shown
by means of three octahedrons of opposition, respectively. The relationships
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illustrated by means of Hexagons 1’-3’' can be also shown by means of three
other octahedrons of opposition, respectively.

In the book by [20] the relationships illustrated in Hexagon 3 are illus-
trated below by means of the so-called Osmioscian logiczny (Logical Octahe-
dron). Zarnecka—Bialy used in the octahedron a, B for p, q; dotted lines—for
indicating contradictory sentences; the sign &—for the conjunction connective
A, and the symbol V with the dot on top—for the strong disjunctive connec-
tive L. It should, however, be observed that instead of a — B there should be
B — a, and reversely.

The figure depicted as Octahedron 3 is the Zarnecka—Bialy’s original Log-
ical Octahedron picture given in our presented above changed symbolism.

P=q

rev epuBRudE dupstaadRernnadsinng]

e
.
-
*
-
»
3
-
.
.
L3
-
-
.
13
L3
.
*
-
-
.
ke
0
»
-
=
"
.
»
I
.
-
*
o

Octahedron 3.

In Octahedron 3 we have eight triangular faces: (1) A (q — p,p L q, p
—q),2APLap—9q~pAq),3)AMPA~q—=D,pLaq) @A
A~qpLa ~pAq)(5)A([PA~ P =g ~pAaq), (6)A(d—p,p A~
p=q)(NA@—ppP=qp—a),B)A(P=q~pAqp—aq).

We can easily get other octahedrons of opposition: Octahedron 1 and
Octahedron 2, corresponding to Hexagon 1 and Hexagon 2, respectively, and
Octahedrons 1/, 2/, 3’ corresponding to Hexagons 1/, 2’ and 3’, respectively.
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3.6. “Degenerate” Squares

On the basis of composed formulas in Table 2 it is possible to generate three
more squares, which are “degenerate” in that they only preserve the diagonals
of contradiction, but lose all the other relations (contrariety, subcontrariety
and subalternation):

) i plq p=q p=gq plq
plq plq . . y |
*. ** * o . o
. * * *
3 0 ®, ¢ 3
- S * Q N o
- B * o - >
* o * - - R4
RS %o 0 ‘o®
RN ”, Bs)
R *e e
N4 e DS * ‘e
® Q * o4 .,
* 3 B *
Q L3 B ° 0 *
Q » . ° »
* .
o ‘e K ‘e, 04 ‘e
o ‘e K3 . N4 A
A
> < < >
~p | ~q ~p 1~q plq ~p |1~q ~p | ~q plq

This type of squares® is also called “unconnectedness square” (see [15])
and is called by Béziau the “X of oppositions” (2012).

4. Binary Connectives: verum and falsum
So far we have considered:

Four binary connectives which form true classical sentences in one case
(see Table 1; Sect. 2),

Six binary connectives which form true sentences in two cases (see
Table 2; Sect. 3).

Four implicational connectives which form sentences given in (ii)

[resp. equivalent Sheffer’s disjunctive connectives which form sentences given
in (iii) or equivalent disjunctive connectives forming propositions given in (iv)]
that form true sentences in three cases.

All these 14 connectives of the set F16 of all the binary connectives of
CPC were taken into consideration while forming some sentences which help
to establish appropriate relationships in the squares of opposition given above.

So it remains to consider what relationships are between all of the 14
distinguished connectives of the set F16 and the connectives:

It is always truth independently of p and q [symbolically: T(p, q) or
p T

and

It is always falsity independently of p and q [symbolically: F(p, q) or
p Fq]

called here binary verum and binary falsum, respectively. They are defined
in Table 3.

8 The squares were indicated by the reviewer of this paper.
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TABLE 3. The truth-value table for connectives verum T and

falsum F
p g pTq pFq
1 1 1 0
1 0 1 0
0 1 1 0
0 0 1 0

For these contradictory connectives verum T and falsum F, together with
each connective ¢ # T and ¢ # F of the set F16, we may build 14 squares of
opposition in the following form:

* *
*
‘0. ‘0
* *
* *
0’ .0
* *
* *
l *ss” J
* &
*
0. ’.0
*
0. "0
0“ "0
*

pTq v ~(pcq)

Squares for verum and falsum.

5. Square for Unary Connectives

The last squares correspond to the known square of opposition for unary con-
nectives: assertion a, falsum f, verum v and negation ~, which has the following
form:

0‘ .0
* *
0‘ .0
0’ ‘0
0. ‘0
0‘ .0
) 53 l
* &
0. ‘0
* *
0‘ .0
0’ ‘0
0‘ ’0
* *
vVp \Y ~p

Square for unary connectives
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6. Conclusion

In Sects. 2—5 we were able to consider all the squares of opposition relationships
for all sentences built from connectives of classical logic (CPC): 16 binary and
4 unary.”

In Sect. 2 we showed that on the basis of four composed sentences in
Table 1 we can built six basic squares of opposition with numbers 1-6 (so
called “balanced” squares in literature). In Sect. 3 we showed that on the
basis of Table 2 we can built 12 squares of opposition, so call “unbalanced”
squares, with numbers 7-12 and 7/-12' (and 6 hexagons with numbers 1-3
and 1-3"). Moreover, it is also possible to generate three more “degenerate”
squares (see Sect. 3.6).

Generally, we can say that on the basis of Tables 1 and 2, CPC contains
21 squares of opposition.

In Sect. 4 we considered additionally 14 squares of opposition for the
binary connectives: verum and falsum. In Sect. 5 we also present one square
of opposition for unary connectives of CPC.

As we could see, replacing categorical sentences in the traditional square
of opposition with the suitable formulas of the classical propositional calculus
(CPC) is a fully justified generalization of the idea of the logical square of op-
position. This idea was known earlier ever since Blanché and Sauriol in the lit-
erature but based on other methods presented squares of oppositions for CPC.
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