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Inconsistency-Adaptive Dialogical Logic
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Abstract. Even when inconsistencies are present in our premise set, we
can sensibly distinguish between good and bad arguments relying on these
premises. In making this distinction, the inconsistency-adaptive approach
of Batens strikes a particularly nice balance between inconsistency-
tolerance and inferential strength. In this paper, we use the machinery
of Batens’ approach to extend the paraconsistent approach to dialogical
logic as developed by Rahman and Carnielli. In bringing these frameworks
closer together, we obtain a dynamic mechanism for the systematic study
of dialogues in which two parties exchange arguments over a central claim,
in the possible presence of inconsistencies.
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1. Introduction

In classical logic (CL) a contradiction trivializes any premise set. Yet many
have argued that we regularly face inconsistencies in our argumentative prac-
tices [11,15,16,20,21], and we do not just stop arguing in the face of an
inconsistency. Rather, we reason on despite the presence of inconsistencies,
relying on the remaining information at hand. A wide variety of logics have
been devised for representing such reasoning in the presence of inconsistencies.
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They are characterized by the invalidation of the Ex Falso Sequitur Quodlibet
(EFSQ) principle, according to which any formula ψ is derivable from two
formulas ϕ and ¬ϕ. These logics are called paraconsistent logics.

We are interested here in two particular frameworks in which a number of
paraconsistent logics have been defined: dialogical logic and adaptive logic. Our
aim is to bring both frameworks closer together by combining some of their key
features into a new system. The framework of dialogical logic we refer to has its
roots in the work of Lorenzen and Lorenz [18,19], and more recently the work
of Rahman and his collaborators, see e.g. [12–14,17,22,25]. Dialogical logic is
an alternative semantics that is neither model-theoretic nor proof-theoretic.
Rather, the meaning of the logical connectives is given in terms of their use
in argumentative practices. Dialogical logic is conceived as a game between a
Proponent and an Opponent. The Proponent asserts an initial thesis, which the
Opponent attacks. If the Proponent is able to defend her thesis irrespective of
the attacks made by the Opponent, then the Proponent has a winning strategy
in the dialogical game and her thesis is valid. We explain the basics of dialogical
logic in Sect. 2.

In recent years, dialogical logic has taken a pluralist turn. In [23] for
instance, Rahman and Carnielli present two paraconsistent dialogical logics
obtained by modifying the manner in which players can attack negated state-
ments in dialogues. The first of these logics, called L − D, is only partially
successful in avoiding the validity of EFSQ: inconsistencies between complex
formulas still cause explosion in L − D. The second paraconsistent dialogical
logic, called D+, fares better in this respect. However, both logics are rather
weak in terms of inferential power. For instance, even in the absence of incon-
sistencies they invalidate applications of rules such as Disjunctive Syllogism
(DS), Contraposition (CP), and Modus Tollens (MT).

As observed by Van Bendegem and Rahman [27,30] the unconditional
invalidity of the likes of DS, CP, and MT is a high price to pay for tolerating
inconsistencies. A remedy anticipated by Batens and Van Bendegem [7,30] is
to incorporate techniques from the adaptive logics framework within the dia-
logical semantics. Adaptive logics are tools for modeling defeasible reasoning.
We are particularly concerned with inconsistency-adaptive logics, which were
originally developed for representing reasoning in the presence of inconsisten-
cies [3]. Using methods stemming from the adaptive logics framework, we show
how the paraconsistent dialogician can have her cake and eat it too by defining
a system weak enough to successfully avoid logical explosion in the presence
of inconsistencies, yet strong enough to validate applications of DS, DP, MT
and the like in the absence of inconsistencies. The result is a system called
inconsistency-adaptive dialogical logic (IAD).

In preparation of IAD we define a simple basic paraconsistent dialog-
ical logic, LLD, inspired by Rahman and Carnielli’s L − D (Sect. 3). Next,
we strengthen LLD by allowing for conditional moves in dialogues, which are
subject to further justification. The resulting inconsistency-adaptive dialogi-
cal logic, IAD, is defined and illustrated in Sect. 4. In Sect. 5, we compare
IAD with existing approaches to paraconsistency in dialogical logic (Sect. 5.1)



Vol. 10 (2016) Inconsistency-Adaptive Dialogical Logic 101

and in adaptive logic (Sect. 5.2). An important technical result is shown in
Sect. 5.2, namely the correspondence—at least as far as finite premise sets are
concerned—between IAD and the inconsistency-adaptive logic CLuNr from
[8–10]. We end the paper with some further illustrations of how adaptive logi-
cians and dialogical logicians can mutually benefit from a closer collaboration
(Sect. 6).

2. Dialogical Logic

In this section we provide a basic introduction to dialogical CL. We begin by
presenting some basic definitions (Sect. 2.1). There are two kinds of rules for
dialogical logic: particle rules and structural rules. The particle rules, which
we give in Sect. 2.2, describe how players can attack and defend earlier moves,
depending on the logical form of the formulas asserted in the dialogue. The
structural rules, given in Sect. 2.3 for CL, subject plays in dialogical games
to further conditions. In order to define a dialogical notion of validity, we also
need the concept of a winning strategy in a dialogical game. This concept is
defined in Sect. 2.4.1

2.1. Basic Definitions

Let L be a propositional language, defined as follows:
ϕ ::= ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ¬ϕ
Lower case letters p, q, r, . . . refer to atomic formulas in L. We use lower

case Greek letters ϕ,ψ, χ . . . to refer to L-formulas, and upper case Greek
letters Γ,Σ,Δ, . . . to refer to finite sets of L-formulas.2 To define the structural
rules, we will make use of two labels, P and O, standing for the players of the
games, the Proponent and the Opponent respectively. The identities of P and
O are not relevant at the local level.3 That is why to define the particle rules
we will make use of player variables X and Y (with X �= Y).

Dialogues are defined by means of two kinds of speech-acts: assertions
and requests. We will use force symbols ‘!’ for assertions and ‘?’ for requests.
A move is an expression of the form X - e where X is a player variable and e
is either an assertion or a request.

We use n := ri and m := rj with ri, rj ∈ N
∗ for the utterance of the

rank the players choose according to the rule [SR0] given in Sect. 2.3. Ranks
are positive integers bounding the number of attacks and defences the players
can perform in a play.

A play is a sequence of moves which complies with the game rules. In
the dialogues we present, the initial thesis ψ[ϕ1, . . . , ϕn] amounts to the claim

1 Throughout Sect. 2 we rely on the definitions of [12], although we sometimes make some
minor notational changes for the sake of uniformity. For a less dense introduction to dialogical
CL, see [25].
2 In Sect. 6.3 we show how countably infinite premise sets can also be dealt with within our
framework.
3 The identities of P and O will be defined by means of the structural rule [SR0] given in
Sect. 2.3.
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that there is a winning strategy for the conclusion ψ given the concession of
ϕ1, . . . , ϕn. The premises ϕ1, . . . , ϕn are referred to as the initial concessions.
In case the premise set is empty, the initial thesis is simply ψ. The dialogical
game for a claim ψ[ϕ1, . . . , ϕn] (respectively ψ) is the set D(ψ[ϕ1, . . . , ϕn])
(respectively D(ψ)) of all the plays with ψ[ϕ1, . . . , ϕn] (respectively ψ) as the
initial thesis.4

For every move M in a given sequence S of moves, pS(M) denotes the
position of M in S. Positions are counted starting with 0. We will also use a
function F such that the intended interpretation of FS(M) = [m′, Z] is that
in the sequence S, the move M is an attack (if Z = A) or a defence (if Z = D)
against the move of previous position m′.

2.2. Particle Rules

The particle rules for propositional dialogical logic are defined in the following
table:

Assertion Attack Defence
X -!ϕ ∧ ψ Y - ?∧L X - !ϕ

or or
Y - ?∧R X - !ψ respectively

X - !ϕ ∨ ψ Y - ?∨ X - !ϕ or X - !ψ
X - !¬ϕ Y - !ϕ − − −

No Defence
X - !ϕ → ψ Y - !ϕ X - !ψ
X - !ψ[ϕ1, . . . , ϕn] Y - !ϕ1 X - !ψ

. . .
Y - !ϕn

Particle rules are abstract descriptions consisting of sequences of moves
such that the first member of that sequence is an assertion, the second is an
attack and the third is a defence against the attack (except in the case of
negation, for which there is no possible defence). They are abstract because
they are defined independently of any specific context of argumentation and
independently of the players’ identities. When a player asserts a conjunction,
she (X) is committed to give a justification for both conjuncts. That is why
the attacker (Y) is allowed to perform a request by means of which she chooses
which conjunct (left or right) to defend. In the case of a disjunction it is the
defender (X) who chooses. Indeed, an agent uttering a disjunction is committed
to give a justification for (at least) one of the disjuncts. An attack may be a
request or an assertion (in the case of the negation) or even a composite speech-
act (in the case of the conditional or a formula of the form ψ[ϕ1, . . . , ϕn]).

4 This notational device, suggested to us by an anonymous referee, has its roots in construc-

tive type theory, where the use of hypotheses is indicated between brackets to the right of

the claim. For more details on the relation of dialogical logic to constructive type theory,

see [24]. Where Σ = {ϕ1, . . . , ϕn}, we will sometimes write [Σ] instead of [ϕ1, . . . , ϕn], for
the sake of presentation.
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Throughout the paper, we will denote the absence of possible defences with
dashes, like in the table above.

2.3. Structural Rules

The structural rules we now define provide the global or structural level of
semantics specifying the context of argumentation:

[SR0][Starting rule]. [ (i) If the initial thesis is of the form ψ[ϕ1, . . . , ϕn],
then for any play P ∈ D(ψ[ϕ1, . . . , ϕn]) we have:
(a) pP(P - !ψ[ϕ1, . . . , ϕn])= 0
(b) pP(O - n := r1)= 1 and pP(P - m := r2)= 2.

(ii) If the initial thesis is of the form ψ, then for any play P ∈ D(ψ) we
have:
(a’) pP(P - !ψ)= 0
(b’) pP(O - n := r1) = 1 and pP(P - m := r2) = 2.]

Clause (a) (respectively (a’)) warrants that every play in D(ψ[ϕ1, . . . , ϕn]) (re-
spectively D(ψ)) starts with P asserting the thesis ψ[ϕ1, . . . , ϕn] (respectively
ψ). In clause (b) (respectively (b’)) the players choose their respective repe-
tition ranks5 among the positive integers. We recall that a rank is a positive
integer bounding the number of attacks and defences which the players can
perform in a play. For strategic reasons it is sufficient to consider the case in
which the Opponent chooses rank 1 and the Proponent rank 2 (see Sect. 2.4).

[SR1][Classical development rule]. [For any move M in P such that pP(M)
> 2 we have FP(M) = [m′, Z], where Z ∈ {A, D} and m′ < pP(M).
Let r be the repetition rank of player X and P ∈ D(ψ[ϕ1, . . . , ϕn])
(respectively D(ψ)) such that:

– the last member of P is a Y-move,
– M0 ∈ P is a Y-move of position m0,
– there are n moves M1, . . . , Mn of player X in P such that FP(M1) =

FP(M2) = · · · = FP(Mn) = [m0, Z] with Z ∈ {A, D}.
Let N be an X-move such that FP�N (N) = [m0, Z]. Then P � N ∈
D(ψ[ϕ1, . . . , ϕn]) (respectively D(ψ)) if and only if n < r.6]

[SR1] ensures that after the repetition ranks have been chosen, every
move either attacks or defends against a previous move made by the other
player; players move alternately, and the number of attacks and defences they
can perform in reaction to a same move is bounded by their repetition ranks.

5 A move M ′ performed by X in a dialogue is a repetition of a previous move M if (i) M
and M ′ are two attacks performed by X against the same move N performed by Y, or (ii)
M and M ′ are two defences performed by X in response to the same attack N performed
by Y.
The ranks guarantee the finiteness of plays by limiting the repetitions allowed in a dialogue.
We follow the rule formulated by Clerbout in [12, p. 788] in which the rank chosen by the

players applies uniformly to the whole dialogue, and for defences as well as for attacks.

By contrast, in Lorenz [18], players may choose different ranks for attacks and defences
respectively.
6 “P � N” denotes the extension of P with N .
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[SR2][Formal rule]. [The sequence S is a play only if the following condition
is fulfilled: if N = P - !ψ is a member of S, for any atomic sentence ψ,
then there is a move M = O - !ψ in S such that pS(M) < pS(N).]

This rule means that P can assert an atomic sentence ψ only if O previously
asserted the same atomic sentence ψ. To define the last structural rule, we
need the following definition:

[D1][X-terminal]. [Let P be a play in D(ψ[ϕ1, . . . , ϕn]) (respectively D(ψ))
the last member of which is an X-move. If there is no Y-move N such
that P�N ∈ D(ψ[ϕ1, . . . , ϕn]) (respectively D(ψ)) then P is said to be
X-terminal.]

[SR3][Winning rule for plays]. [Player X wins a play P ∈ D(ψ[ϕ1, . . . , ϕn])
(respectively D(ψ)) if and only if P is X-terminal.]

According to [SR3], X wins a play if it is Y’s turn to play and no move is
available to Y.

2.4. Strategy and Validity

The rules of the game do not say anything about validity or how to play.
Dialogical validity is grasped at the strategic level. The thesis of P is valid if
and only if P has a winning strategy according to the following definition:

[D2][Strategy]. [A strategy of a player X in D(ψ[ϕ1, . . . , ϕn]) (respectively
D(ψ)) is a function sx which assigns a legal X-move to every non terminal
play P ∈ D(ψ[ϕ1, . . . , ϕn]) (respectively D(ψ)) the last member of which
is a Y-move.
A X-strategy is winning if it leads to X’s win no matter how Y plays.]

On the basis of the definition of winning strategy, we can define the notion
of consequence for dialogical CL; that is, a dialogical logic respecting [SR0]–
[SR3], the so-called CL-rules:

[D3][CL-consequence]. [Σ �CL ϕ (respectively �CL ϕ) iff according to the
CL-rules, there is a P-winning strategy for the thesis ϕ[Σ] (respectively
ϕ).]

Before we turn to an example, one more comment is in order. Clerbout [12,
p. 791] showed that there is a P-winning strategy when O chooses rank 1 if
and only if there is a P-winning strategy for any other choice of O. Moreover,
if O chooses rank 1 then if there is a P-winning strategy, P never has to choose
a rank higher than 2 in order to win a dialogue. In some cases, P needs rank 2
because she needs the concession of both conjuncts of a conjunction asserted
by O in order to win. By contrast, if there is an O-winning strategy, then O
can win already by picking rank 1. (This is linked to the fact that O always
chooses her rank first and that she does not play under the formal restriction.)
For these reasons, we will use ranks 1 and 2 for O and P respectively for all
illustrations in Sects. 2 and 3.

Let us now show that there is a P-winning strategy for q[p,¬p], an in-
stance of (EFSQ). In the following table, representing a dialogue, the numbers
of moves are indicated in the outer columns. The numbers in the inner columns
indicate which moves are attacked. The O-moves are in the O-column and the
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P-moves in the P-column. For reasons of transparency, we will systematically
omit the force symbol ‘!’ in our examples.

O P
q[p,¬p] 0

1 n := 1 m := 2 2
3.1 p 0
3.2 ¬p

− − − 3.2 p 4

Explanation We start the dialogue in with [SR0]. In move 3, O attacks P’s
initial thesis. P cannot defend herself against this attack because she is not
allowed to assert q, an atomic sentence, if O did not concede q before (see
[SR2]). The only move available to P is to counter-attack the move 3.2, which
is what P does in move 4. After this move, there is no more possible move for
O, and P wins the dialogue.

There is also a P-winning strategy for q[p ∨ q,¬p], an instance of DS:

O P
q[p ∨ q,¬p] 0

1 n := 1 m := 2 2
3.1 p ∨ q 0 (q) (6)
3.2 ¬p
5 p (q) 3.1 ?∨ 4

− − − 3.2 p 6

Explanation To see that P has a winning strategy for this inference, we need
to take into account two possible plays. Either O answers P’s attack in move
4 by asserting p in move 5, or O answers P’s attack in move 4 by asserting q
in move 5. In the first case, P next attacks the formula ¬p asserted by O in
move 3.2, which she does in move 6. In the second case (indicated in between
brackets), P replies to O’s attack in move 3 by asserting q in move 6. In both
cases, P wins the play, so there is a P-winning strategy for the inference from
p ∨ q and ¬p to q.

3. Paraconsistent Dialogical Logic

In the introduction, we argued that there are good reasons for defining argu-
mentative contexts in which the apparition of inconsistencies does not system-
atically cause explosion. Non-explosive logics are usually called paraconsistent
logics. To get a paraconsistent dialogical logic, it is sufficient to add a restric-
tion with respect to the use of the particle rule for negation by P. The idea is
that P should not be allowed to attack a negation if O did not attack the same
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negated sentence before.7 Such a modification occurs at the structural level.
Indeed, the local meaning of negation is still the same, what is changed is the
application of that rule in the particular context of paraconsistent dialogical
logic. The other structural rules remain the same.

[SR4.1][Negation rule]. [The sequence S is a play only if the following con-
dition is fulfilled: If there is a move N1 =P - !ψ in S such that:

1. pS(N1) = n1

2. FS(N1) = [m1, A] and
3. m1 = pS(M1) such that M1 =O - !¬ψ.

Then, there is a move M2 =O - !ψ in S such that:
1. pS(M2) = m2 and m2 < n1,
2. FS(M2) = [n2, A] and
3. n2 = pS(N2) such that N2 =P - !¬ψ.]

[SR4.1] ensures that P is allowed to attack a sentence of the form ¬ϕ if and only
if O has already attacked the same sentence ¬ϕ before. Consequently there is
no P-winning strategy for q[p,¬p], as is shown in the following dialogue:

O P
q[p,¬p] 0

1 n := 1 m := 2 2
3.1 p 0
3.2 ¬p

Explanation With the standard rules, P won with an attack on the negation
asserted by O in move 3.2. This move is not available to P anymore because
according to [SR4.1] she is not allowed to attack an assertion of ¬p if O did
not attack the same formula before. So, the last move is an O-move and P
cannot do anything. O wins.

A further consequence of [SR4.1] is that P has no winning strategy for
q[p ∨ q,¬p] either:

O P
q[p ∨ q,¬p] 0

1 n := 1 m := 2 2
3.1 p ∨ q 0
3.2 ¬p
5 p 3.1 ?∨ 4

7 The idea is due to [23] although our approach is somewhat different. Our LLD (Lower Limit
Dialogic) is different from Rahman and Carnielli’s L-D (Literal Dialogues). In the latter, P
is not allowed to challenge a negative literal (i.e., the negation of an atomic formula) if
O has not previously challenged an occurrence of the same negative literal. P is allowed to
challenge a complex negative formula even if O has not previously challenged any occurrence
of the same complex negative formula. As a result, both systems have a slightly different set
of theorems. See Sect. 5.1 for more details.
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Explanation According to [SR4.1], P is not allowed to attack the negation
asserted by O in move 3.2 and O wins. Notice that only one play is relevant
to see that there is a winning strategy for O. In the dialogue for the same
inference in CL (see Sect. 2.4) we showed that no matter the choices made by
O, P would win. Here, choosing q in defence to move 4 would not have been
optimal because it would have offered P the means to win.8

For reasons which will be clear in the next section, we call the dialogical
logic enriched by means of [SR4.1] Lower Limit Dialogic (LLD).

[D4][LLD-consequence]. [Σ �LLD ϕ (respectively �LLD ϕ) iff according to
the LLD-rules there is a P-winning strategy for the thesis ϕ[Σ] (respec-
tively ϕ).]

In view of the LLD-validity of Modus Ponens (MP), the deduction theorem
holds for LLD. That is, if Σ �LLD ϕ, then �LLD

∧
Σ → ϕ. In Sect. 5.2, we

show that, for finite premise sets, LLD-consequence corresponds to CLuN-
consequence (see Theorem 1). The latter logic is a well-known paraconsistent
logic devised by Batens.

As it stands, LLD is very weak. Indeed, while it invalidates EFSQ, it
invalidates DS, Modus Tollens (MT), Contraposition (CP), Double Negation
Elimination (DNE), Double Negation Introduction (DNI), as well as all other
schemes of the following list, even if no inconsistency is involved:

p,¬p �LLD q (1)

p,¬p ∨ q �LLD q (2)

¬¬p �LLD p (3)

¬(p ∧ q) �LLD ¬p ∨ ¬q (4)

¬(p ∨ q) �LLD ¬p ∧ ¬q (5)

¬(p → q) �LLD p ∧ ¬q (6)

p �LLD ¬¬p (7)

¬p ∨ ¬q �LLD ¬(p ∧ q) (8)

¬p ∧ ¬q �LLD ¬(p ∨ q) (9)

p ∧ ¬q �LLD ¬(p → q) (10)

p → q �LLD ¬q → ¬p (11)

¬q → ¬p �LLD p → q (12)

p → q,¬q �LLD ¬p (13)

Van Bendegem [30] argues that the restriction added in [SR4.1] is too
strong, and that the dialogical approach to paraconsistency should be defined
in a more flexible way. Following this line of thought, we propose a more

8 Strictly speaking, since P chose rank 2, she is allowed to attack the disjunction in move

3.1 once more. Clearly, that wouldn’t change much, since O can simply defend by stating
p once more. The attack and defence would be identical to the ones already performed in
moves 4 and 5. For reasons of space and transparency, we opted to leave such redundant
moves out of the dialogue, and will continue doing so in the remainder of this paper.
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dynamical approach in the next section, relying on the tools of inconsistency-
adaptive logic.

4. Inconsistency-Adaptive Dialogical Logic

4.1. Reliable Formulas

In the possible presence of inconsistencies the question of whether or not a
given inference rule is valid is not a simple yes/no question. In CL all of DS,
MT, CP, DNE, and DNI are valid, and the result is a logic in which any
premise set containing some inconsistency trivializes the consequence set. In
LLD these rules are invalid, but the result is a logic that is too weak to capture
how we actually reason. We need to find a middle way if we want to end up
with a logic that is neither too weak nor too strong.

One way to end up in this Goldilocks zone of inconsistency-tolerant logics
is to make the application of some rules of inference dependent on the behavior
of the formulas to which we apply them. Consider, for instance, the following
two applications of DS:

p,¬p ∨ q � q (14)

p,¬p,¬p ∨ q � q (15)

In (14) the premises p and ¬p ∨ q behave consistently. In (15) the premises p
and ¬p do not. If our standard of deduction is CL, but we nonetheless want
to tolerate inconsistency, then whenever the formulas to which a classically
valid rule is applied behave consistently, no trouble arises. Problems occur
only when inconsistencies are present, for then applying the rule in question
may lead to triviality. For instance, allowing all applications of DS in a logic
which also validates the Addition rule (from ϕ to infer ϕ∨ψ) will immediately
give rise to explosion whenever an inconsistency is present.9 Thus, whether or
not an application of DS is ‘safe’ depends to a large extent on how the premises
of the argument behave. This suggests that we treat a rule like DS in a more
dynamic way: an application of DS is safe whenever the formulas to which we
apply the rule behave consistently, as in (14). An application of DS is unsafe
whenever the formulas to which we apply the rule behave inconsistently, as in
(15).

In order for a rule like DS to be safely applicable, however, it is not
sufficient to demand that the formulas to which we apply it behave consistently.
Consider the following case:

p, q,¬p ∨ ¬q,¬p ∨ r � r (16)

Here, we rely on p to infer r via DS. The formula p behaves consistently in the
sense that there is no P-winning strategy for the conjunction p ∧ ¬p given the
concession of the premises. But in view of the premises of (16) it follows that
either p behaves inconsistently or q does, since the disjunction (p∧¬p)∨(q∧¬q)

9 Given the formulas ϕ and ¬ϕ we can infer ϕ ∨ ψ via Addition. Next, we can infer ψ from
¬ϕ and ϕ ∨ ψ by DS. This works for any random formula ψ.
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is an LLD-consequence of the premises. Given this knowledge, it seems too
risky to go ahead and apply DS to ¬p ∨ r and r.

In order to make a more refined distinction between safe and unsafe ap-
plications of rules of inference, we will rely on an idea that stems from Batens’
adaptive logics framework.10 First, we define a set of formulas called the set of
abnormalities (Ω) which contains all inconsistencies in our formal language:

Ω =df {ϕ ∧ ¬ϕ | ϕ ∈ L}
Where Θ is a finite subset of Ω, let Dab(Θ) abbreviate the classical disjunction
of the members of Θ (‘Dab’ is short for ‘disjunction of abnormalities’). If Θ is
a singleton containing only one member, say ϕ, then Dab(Θ) = ϕ ∧ ¬ϕ. Next,
we will say that it is ‘safe’ to apply a rule like DS whenever the formulas to
which the rule is applied behave reliably with respect to the premises:

[D5] [Reliability] [Let ϕ[Σ] be the thesis of the Proponent. A formula ψ behaves
reliably with respect to Σ iff there is no formula Dab(Θ) such that:

(i) ψ ∧ ¬ψ ∈ Θ, and
(ii) Σ �LLD Dab(Θ), and
(iii) Σ �LLD Dab(Θ\{ψ ∧ ¬ψ}).]
If Σ is empty, then no disjunction of abnormalities is an LLD-consequence of
Σ, so all formulas behave reliably with respect to the empty set. In view of
(ii) and (iii), ψ ∧ ¬ψ is indispensable in order to have a winning strategy for
Dab(Θ) given the concession of the formulas in Σ.

Let (14) be the thesis of the Proponent. Applying Definition [D5] it is clear
that p behaves reliably with respect to the premise set {p,¬p∨q}, as no disjunc-
tion of abnormalities is an LLD-consequence of this set. In (15), p no longer
behaves reliably in view of the premise set {p,¬p,¬p ∨ q}, since the formula
Dab({p ∧ ¬p}) meets conditions (i)–(iii) of Definition [D5]. Likewise, in (16)
the formula Dab({p∧¬p, q ∧¬q}) meets conditions (i)–(iii), so—as desired—p
does not behave reliably in view of the premise set {p, q,¬p ∨ ¬q,¬p ∨ r}.

The following case illustrates why condition (iii) of Definition [D5] is
necessary:

p,¬p ∨ q, r ∧ ¬r � q (17)
In view of the premises of (17), we want DS to be applicable to p and ¬p ∨ q,
since we can safely take these formulas to behave consistently in the absence
of further knowledge. For this application of DS, it does not matter that
another formula, r, behaves inconsistently. But notice that the disjunction
Dab({p ∧ ¬p, r ∧ ¬r}) is an LLD-consequence of {p,¬p ∨ q, r ∧ ¬r}, and that
this disjunction of abnormalities meets conditions (i) and (ii) of Definition
[D5]. It is condition (iii) that prevents this disjunction from causing p to be-
have unreliably: the disjunct p∧¬p is not indispensable to Dab({p∧¬p, r∧¬r})
since p,¬p ∨ q, r ∧ ¬r �LLD r ∧ ¬r.

As we mentioned earlier on, the idea of applying LLD-invalid rules of
inference in a more dynamic way, making use of the notion of reliability, stems

10 See e.g. [6] for a general introduction to adaptive logics. For the adaptive treatment of
inconsistency, see e.g. [8,10].



110 M. Beirlaen and M. Fontaine Log. Univers.

from the adaptive logics framework.11 In what follows, we will implement this
idea in a formally precise way within the framework of dialogical logic, resulting
in an inconsistency-adaptive dialogical logic, IAD.

4.2. Inconsistency-Adaptive Dialogues

In classical dialogical logic, the Proponent can always attack a negated formula
affirmed by the Opponent, provided that it is her turn to play and that she
respects the formal restriction rule. We saw how this led to a logic in which
inconsistencies trivialize the consequence set, and remedied the problem by
restricting the application of the particle rule for negation by a new structural
rule, the negative formula rule. This restriction, however, is very strong. It
leaves the Proponent with very few means to attack negated statements, re-
sulting in a logic that is, like many paraconsistent logics, rather weak in terms
of inferential power.

Here, we present a new approach in the form of a middle way in which the
Proponent is allowed to attack negated formulas affirmed by the Opponent,
provided that she commits herself to the reliable behavior of the formula in
question. In order to implement this provision in the dialogical setting, we will
formulate a new rule, the inconsistency-adaptive negation rule, which extends
the negative formula rule [SR4.1] from Sect. 3. Before we can define this rule,
however, we need to make two preparatory changes to our framework.

First, we need a way to represent assumptions in dialogues. This we do
by introducing an extra column for each player, called the condition column.
If in some move M a player makes the assumption that a formula behaves
reliably, we will add this assumption to M ’s condition column.

Second, the assertion that a formula does or does not behave reliably
involves claims about LLD-consequence, as can be seen from Definition [D5].
In order to be able to settle such claims within an IAD-dialogue, we introduce
the distinction between our main dialogue and its subdialogue(s). In the main
dialogue the players play according to the rules of IAD. In justifying or chal-
lenging the reliability of formulas, one of the players may open a subdialogue
in which a thesis is settled by playing according to the rules of LLD.12

Let us make things a bit more precise. In IAD, moves are sequences of
the general form X −e − C − d, where X and e are as before, where C is the
condition corresponding to the move in question, and where d is either the
main dialogue—in which case we write d1—or a subdialogue—in which case
we write d1.i for the i-th subdialogue. We generalize the starting rule as follows
in order to incorporate these changes:

11 In fact, the name ‘Lower Limit Dialogic’ refers to a terminological convention used by
adaptive logicians. Adaptive logics strengthen their so-called lower limit logic in the same
way that IAD strengthens LLD.
12 The first change is inspired by the proof theory of the adaptive logics framework, where
a new column is added to proofs in order to keep track of conditional moves. The second
change is inspired by [26], where the authors make a similar distinction between the upper
section of a dialogue and its subdialogue(s).
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[SR0.1][Starting rule for IAD]. [ (i) If the initial thesis is of the form ψ[ϕ1,
. . . , ϕn], then for any play P ∈ D(ψ[ϕ1, . . . , ϕn]) we have:
(a) pP(P - !ψ[ϕ1, . . . , ϕn] - ∅ - d1)= 0
(b) pP(O - n := r1 - ∅ - d1)= 1 and pP(P - m := r2 - ∅ - d1)= 2.

(ii) If the initial thesis is of the form ψ, then for any play P ∈ D(ψ) we
have:
(a′) pP(P - !ψ - ∅ - d1)= 0
(b′) pP(O - n := r1 - ∅ - d1)= 1 and pP(P - m := r2 - ∅ - d1)= 2.]
The classical development rule [SR1] is likewise generalized to conditional

moves by replacing moves of the form X−e with moves of the form X−e−C−d.
At the start of the dialogue, the condition set is empty, since no assumptions
were made yet. We are now ready to define the inconsistency-adaptive negation
rule for IAD:

[SR4.2] [IAD negation rule] [The sequence S is a play only if the following
condition is fulfilled: If there is a move N = P−!ψ − C − d in the sequence S
such that:

1. pS(N) = n
2. FS(N) = [m,A] and
3. m = pS(M) such that M = O−!¬ψ − ∅ − d

Then one of the following two conditions holds:
1. N is performed by P in accordance with the LLD negation rule [SR4.1],

or
2. N = P! − ψ − RΣ

ψ − d, where RΣ
ψ abbreviates that ψ behaves reliably in

view of the premise set Σ.]
If O already attacked the same statement before, then the IAD negation

rule allows P to attack a negated statement in line with [SR4.1]. If not, then P
may attack this statement under the assumption that it behaves reliably. The
latter attack is made by a conditional move: in attacking a statement ¬ψ, P
adds RΣ

ψ to the condition, thereby committing herself to the reliability of ψ in
view of the premise set Σ.

Before we show how the Opponent can attack conditional moves, let us
already illustrate the use of the IAD negation rule. Reconsider our dialogue
for the application of DS to the premise set Σ = {p ∨ q,¬p}:13

O P
d1

q[p ∨ q,¬p] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3.1 p ∨ q ∅ 0
3.2 ¬p ∅
5 p ∅ 3.1 ?∨ ∅ 4

− − − 3.2 p RΣ
p 6

13 For reasons to be explained shortly, we require O to pick rank 2 in the inconsistency-
adaptive setting.
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Explanation We saw that in LLD the Proponent has no means to attack the
premise ¬p, which ultimately causes her to lose the dialogue. The IAD negation
rule, however, allows the Proponent to attack this premise on the condition
that the negated formula p behaves reliably in view of Σ (move 6 in the dia-
logue).

Of course, once we tolerate the presence of inconsistencies we know that
formulas will not always behave reliably in view of a given premise set. So the
Opponent should be allowed to attack the assumption that a formula behaves
reliably. This she can do by claiming that the abnormality corresponding to
the formula in question is part of a Dab-formula that is a consequence of the
premise set. But from Definition [D5] it is clear that more is required in order
for this formula to behave unreliably: the Dab-formula provided by the Oppo-
nent should be an LLD-consequence of the premise set (condition (ii) of [D5]),
and it should contain the abnormality corresponding to the formula under at-
tack as an indispensable part (condition (iii) of [D5]). So the Proponent will
be able to counter-attack in one of two ways, corresponding to conditions (ii)
and (iii) of [D5]. The dynamics of this process is caught by the following rule:

Particle rule for the reliability operator R

Assertion Attack Defence
X−!ϕ− Y−?RΣ

ϕDab(Θ) − ∅ − d1 X−!FΣ(Dab(Θ)) − ∅ − d1

RΣ
ϕ − d1 (where ϕ ∧ ¬ϕ ∈ Θ)

Or X counter-attacks

X−!IΣ(Dab(Θ\{ϕ ∧ ¬ϕ})) − ∅ − d1

(where Dab(Θ)\{ϕ ∧ ¬ϕ} �= ∅)

Player Y attacks the conditional statement of X by providing a formula
Dab(Θ) including the formula ϕ ∧ ¬ϕ as one of its disjuncts. Player X replies
either by claiming that it is false that the Dab-formula in question is an LLD-
consequence of the premise set, or by claiming that the abnormality ϕ ∧ ¬ϕ is
not indispensable to the Dab-formula given by Y. In the first case, she uses the
failure operator F. In the second case, she uses the indispensability operator
I. In both cases, X’s claim concerns defendability under the concession of the
members of Σ in LLD. If she uses the F-operator, she claims that the Dab-
formula given by Y is not an LLD-consequence of the premises (condition (ii)
of [D5] again). If she uses the I-operator, she claims that Dab(Θ\{ϕ∧¬ϕ}) is
an LLD-consequence of the premises (condition (iii) of [D5] again). In order to
settle claims about LLD-defendability within an IAD-dialogue, we introduced
the notion of a subdialogue earlier in this section. When X defends herself
using either the F-operator or the I-operator, a subdialogue may open in the
continuation of the dialogue. We consider the F-operator first.

Particle rule for the failure operator F

Assertion Attack Defence
X−!FΣϕ − ∅ − d1 Y−!ϕ[Σ] − ∅ − d1.i − − −

Y opens a subdialogue d1.i No defence
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In attacking X’s statement of the form !FΣϕ, Y opens a new subdialogue
in which she defends the thesis ϕ[Σ]. In line with the starting rule, we start a
subdialogue with the empty condition set. Given the set-up of IAD-dialogues,
it will always be the Opponent who attacks expressions of the form !Fϕ, and
who defends the thesis ϕ[Σ]. Consequently, it is now the Opponent who should
play under the formal restriction. Indeed—following [26], where the F-operator
was first introduced—we require that there is a switch in formal play whenever
the F-operator is attacked. To implement the switch at the structural level, we
need to replace [SR2] with the following new rules [SR2.1] and [SR.2.2] which
regulate the formal restriction:14

[SR2.1] [Formal restriction for IAD] [If X plays under formal restriction, then
the sequence S is a play only if the following condition is fulfilled: if N =
X−!ψ − Cj − d is a member of S, for any atomic sentence ψ, then there is a
move M = Y−!ψ − Ci − d in S such that pS(M) < pS(N).]

[SR2.2] [Application of the formal restriction rule in IAD] [The application of
the formal restriction is regulated by the following conditions:

1. In the main dialogue d1, if X = P, then X plays under the formal restric-
tion.

2. If X opens a subdialogue d1.i, then X plays under the formal restriction.]

In CL-dialogues and LLD-dialogues it is generally sufficient for O to
choose rank 1 (see Sect. 2.4). However, in IAD-dialogues a switch in formal
restriction may occur when a new subdialogue is opened in accordance with
[SR2.1] and [SR2.2], and it is possible that O plays under the formal restriction
in this subdialogue. Because of this, it might now be the case that there is an
O-winning strategy beginning with O choosing rank 2, but not with O choosing
rank 1. For this reason, we let both players pick rank 2 in the illustrations in
this section.

Since the thesis defended in the subdialogue is a claim about LLD-
consequence, we play according to the rules of LLD in the subdialogue, as
ensured by the following structural rule:

[SR4.3] [Application of the negation rules] [In the main dialogue d1, P attacks
negations in accordance with the inconsistency-adaptive negation rule [SR4.2].
In a subdialogue d1.i the player who plays under the formal restriction attacks
negations in accordance with the LLD negation rule [SR4.1].]

Let us now reconsider our example we started above. Suppose O attacks
the condition attached to move 6 in the dialogue in line with the particle rule
for the R-operator, giving the Dab-formula p ∧ ¬p. A good strategy for P is
to claim that it is false that this Dab-formula is an LLD-consequence of the

14 Our approach differs from [26], where the switch is defined at the local level, i.e. inside
the particle rule. Strictly speaking the identity of the player who plays under the formal
restriction is not related to the local semantic level, so we defined the regulation of this
matter in a separate structural rule.
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premise set, using the F-operator. The continuation of the dialogue looks as
follows:

O P
d1

q[p ∨ q,¬p] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3.1 p ∨ q ∅ 0
3.2 ¬p ∅
5 p ∅ 3.1 ?∨ ∅ 4

− − − 3.2 p RΣ
p 6

7 ?RΣ
p (p ∧ ¬p) ∅ 6 FΣ(p ∧ ¬p) ∅ 8

d1.1

9 p ∧ ¬p[p ∨ q,¬p] ∅ 8 − − −
13 p ∧ ¬p ∅ 9 p ∨ q ∅ 10.1

9 ¬p ∅ 10.2
11 ?∨ ∅ 10.1 q ∅ 12

13 ?∧L ∅ 14

Explanation Using the particle rule for the R-operator, O attacks the condition
of move 6, claiming that p does not behave reliably in view of the Dab-formula
p ∧ ¬p. P defends herself by claiming that this Dab-formula is not an LLD-
consequence of Σ, using the F-operator (move 8). Next, O attacks P’s move
in line with the particle rule for the F-operator: She opens a new subdialogue
d1.1, claiming that she is able to defend p ∧ ¬p given the concessions of Σ by
P. P challenges this assertion by conceding the formulas in Σ (moves 10.1 and
10.2). The dialogue continues as usual, but with O playing under the formal
restriction (so O cannot introduce new atomic formulas in the dialogue). As a
consequence of this switch in formal restriction, O cannot answer to P’s attack
to give the left conjunct of the conjunction (move 14) she asserted in move 13
(the conjunct in question is p, an atomic formula not yet asserted by P within
d1.1). For the same reason, she cannot attack the formula ¬p asserted by P in
move 10.2. Consequently, she loses the subdialogue. In general:

[SR3.1] [Winning rule for subdialogues] [A subdialogue d1.i is won by X if
it is Y’s turn and there are no more moves available to Y. If X wins the
subdialogue, we return to the main dialogue d1 in which it is (still) Y’s turn.]

In line with [SR3.1], we return to our main dialogue d1 after move 14,
where it is O’s turn to make the next move. However, in the main dialogue too
O has run out of options. Consequently, P wins the dialogue in view of [SR3],
and the inference from p ∨ q and ¬p to q is IAD-valid.15

[D6] [IAD-consequence] [Σ �IAD ϕ (respectively �IAD ϕ) iff according to the
IAD-rules there is a P-winning strategy for the thesis ϕ[Σ] (respectively ϕ).]

15 Remember that we present only the “best” strategies available. So if P wins the dialogue,
she has a winning strategy and the inference under dispute is valid.
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By definition [D6]:

p ∨ q,¬p �IAD q

So far we have only defined and illustrated the use of the operators R
and F. Let us next turn to the I-operator, the use of which is regulated by the
following rule:

Particle rule for the indispensability operator I

Assertion Attack Defence
X−!IΣϕ − ∅ − di Y−?IΣϕ − ∅ − di X−!ϕ[Σ] − ∅ − di.j

X opens a subdialogue di.j

We explicate the use of this rule by means of an example. Let Σ =
{p,¬q → ¬p, r ∧ ¬r}. The Proponent claims that q[Σ]:16

O P
d1

q[Σ] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3.1 p ∅ 0 q ∅ 24
3.2 ¬q → ¬p ∅
3.3 r ∧ ¬r ∅
5 ¬p 3.2 ¬q ∅ 4

− − − 5 p RΣ
p 6

7 ?RΣ
p ((p ∧ ¬p)∨ ∅ 6

(r ∧ ¬r))
7 IΣ(r ∧ ¬r) ∅ 8

9 ?IΣ(r ∧ ¬r) ∅ 8
d1.1

r ∧ ¬r[Σ] ∅ 10
11.1 p ∅ 10 r ∧ ¬r ∅ 16
11.2 ¬q → ¬p ∅
11.3 r ∧ ¬r ∅
13 r ∅ 11.3 ?∧L ∅ 12
15 ¬r ∅ 11.3 ?∧R ∅ 14
17 ?∧L ∅ 16 r ∅ 18
19 ?∧R ∅ 16 ¬r ∅ 20
21 r ∅ 20 − − −

− − − 15 r ∅ 22
d1

23 q ∅ 4 − − −

16 We write ‘q[Σ]’ instead of ‘q[p, ¬q → ¬p, r ∧ ¬r]’ for reasons of presentation.
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Explanation In this dialogue, O attacks the conditional move 6 by providing
the Dab-formula (p ∧ ¬p) ∨ (r ∧ ¬r) in move 7.17 The particle rule for the
R-operator leaves P with two possible replies. Either she can claim that it is
false that this Dab-formula is an LLD-consequence of Σ, using the F-operator;
or she can claim that the abnormality p ∧ ¬p is not indispensable to the Dab-
formula given by O, using the I-operator. Note that if P were to opt for the
first reply, she would lose the ensuing subdialogue, since the Dab-formula given
by O is an LLD-consequence of Σ: one of its disjuncts is a premise. Therefore,
strategically, it is better for P to go into counter-attack and use the I-operator
(move 8).

Next, O attacks P to justify her claim that the abnormality p ∧ ¬p is
not indispensable to the disjunction (p ∧ ¬p) ∨ (r ∧ ¬r). In defence to this
attack—and in line with the particle rule for the I-operator – P has to show
that r ∧¬r is an LLD-consequence of Σ. To this end, a new subdialogue opens
in which P defends r ∧ ¬r given the concession of p,¬q → ¬p, r ∧ ¬r (move
10).18

In subdialogue d1.1, there is no switch as to which player plays under the
formal restriction. As in the main dialogue, it is P who defends the initial thesis
and carries the burden of proof. Therefore it is P who plays under the formal
restriction. (As we saw, the situation is different in subdialogues triggered by
the F-operator, where it is O who defends the initial thesis and, consequently,
plays under the formal restriction.)

Clearly, the thesis r ∧ ¬r[p,¬q → ¬p, r ∧ ¬r] is LLD-valid, hence P
wins the subdialogue (move 22). This means that after move 22 we return
to our main dialogue, where it is O’s turn to play. She does so by attack-
ing the formula ¬q in move 4. In doing so, however, she introduces the new
atomic formula q (move 23), which allows P to use this atom as well, and
to reply to O’s first attack in d1 (move 24). After this defence by P, no
more moves are available to O, hence P wins the dialogue. By Definition
[D6]:

p,¬q → ¬p, r ∧ ¬r �IAD q

4.3. Some more illustrations

We end Sect. 4 with two more examples which further illustrate the use of the
IAD-rules. First, we illustrate that there is no P-winning strategy for q[p∧¬p]
with the IAD-rules:

17 Which disjunctions of abnormalities O introduces when attacking conditional P-moves in
IAD-dialogues, is a strategic matter on our account. We leave it open whether and how our
analysis can benefit from a more systematic study of the heuristics involved in constructing
the ‘right’ disjunctions of abnormalities when attacking conditional moves.
18 Attacks and their respective defences usually appear on the same line in a dialogue.
For reasons of presentation, we opted to break this habit whenever a player defends herself
against an attack by means of the I-operator (as in move 10 above).
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O P
d1

q[p ∧ ¬p] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3 p ∧ ¬p ∅ 0 ∅
5 p ∅ 3 ?∧1 ∅ 4
7 ¬p ∅ 3 ?∧2 ∅ 6

− − − 7 p RΣ
p 8

9 ?RΣ
p (p ∧ ¬p) ∅ 7 FΣ(p ∧ ¬p) ∅ 10

d1.1

11 p ∧ ¬p[p ∧ ¬p] ∅ 10 − − − ∅
13 p ∧ ¬p ∅ 11 p ∧ ¬p ∅ 12
17 p ∅ 13 ?∧1 ∅ 14
15 ?∧1 ∅ 12 p ∅ 16
19 ¬p ∅ 13 ?∧2 ∅ 18

− − − ∅ 19 p ∅ 20
21 ?∧2 ∅ 12 ¬p ∅ 22
23 p ∅ 22 − − −

Explanation To attack the assertion of the form ¬p (move 7), P has to perform
a conditional move assuming that p behaves consistently (move 8). Next, O
attacks the condition (move 9) and P answers making use of the F-operator in
accordance with the rule for the R-operator (move 10). Notice that a counter-
attack with the I-operator is not allowed (there is no disjunct to delete from
the Dab-formula). When O attacks the F-operator, she opens a subdialogue
d1.1 in which she has to play under formal restriction (in accordance with
[SR2.1] and [SR2.2]). Since the thesis p ∧ ¬p[p ∧ ¬p] is clearly LLD-valid, she
has a winning strategy for it. Recall that the move 23 is allowed because P
already attacked ¬p before (move 20). O wins the subdialogue. Moreover, no
more moves are available to P d1. So P has no winning strategy for q[p ∧ ¬p]
and this thesis is IAD-invalid.

The following example, ¬q[Σ] , with Σ = {¬(p ∧ q),¬¬p} illustrates how
P can make various conditional moves within the same dialogue:



118 M. Beirlaen and M. Fontaine Log. Univers.

O P
d1

¬q[Σ] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3.1 ¬(p ∧ q) ∅ 0 ¬q ∅ 4
3.2 ¬¬p ∅
5 q ∅ 4 − − −

− − − 3.2 ¬p RΣ
¬p 6

7 ?RΣ
¬p(¬p ∧ ¬¬p) ∅ 6 FΣ(¬p ∧ ¬¬p) ∅ 8

d1.1

9 ¬p ∧ ¬¬p[Σ] ∅ 8 − − −
11 ¬p ∧ ¬¬p ∅ 9 ¬(p ∧ q) ∅ 10.1

¬¬p ∅ 10.2
13 ¬p ∅ 11 ?∧L ∅ 12

− − − 13 p ∅ 14
d1

15 p ∅ 6 − − −
− − − 3.1 p ∧ q RΣ

p∧q 16
17 ?RΣ

p∧q((p ∧ q) ∅ 16 FΣ((p ∧ q) ∅ 18
∧¬(p ∧ q)) ∧¬(p ∧ q))

d1.2

19 (p ∧ q) ∧ ¬(p ∧ q)[Σ] ∅ 18 − − −
21 (p ∧ q) ∧ ¬(p ∧ q) ∅ 19 ¬(p ∧ q) ∅ 20.1

¬¬p ∅ 20.2
23 p ∧ q ∅ 21 ?∧L ∅ 22

23 ?∧L ∅ 24
25 ?∧L ∅ 16 p ∅ 26

Explanation Here, P performs a first conditional move (move 6), assuming
that ¬p behaves consistently, which is immediately attacked by O (move 7).
P answers making use of the F-operator (move 8) and O opens a subdialogue
while attacking that statement (move 9). P wins the subdialogue (move 14)
because she played the last move and O cannot attack the negations asserted by
P (move 10) since, in the subdialogue, O plays under the formal restriction in
accordance with [SR2.2]. Next, we go back to the main dialogue d1 where it is
O’s turn to play. The dialogue continues. In move 16 P makes a new conditional
attack, asserting p ∧ q and attacking O’s move 3.1. O attacks the condition
(move 17) and P answers making use of the F-operator. A new subdialogue
d1.2 opens, in which O again plays under formal restriction and loses (move
24). We return to the main dialogue d1 where it is again O’s turn to play. She
attacks the move 16 by asking the left conjunct (move 25). P answers. At this
stage no more moves are available to O, and P wins the dialogue. Note that O
might have asked the right conjunct instead of the left one. But that would not
have changed anything: O already had conceded both of the conjuncts (moves
5 and 15). Note also that, once she asked for the left conjunct, O can no longer
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ask for the right conjunct, since she chose rank 2 and since she already attacked
move 16 twice (moves 17 and 25).

Note that O could have played very differently in the above dialogue
by picking different Dab-formulas when attacking P’s conditional moves. For
instance, she could have picked the Dab-formula (¬p∧¬¬p)∨((p∧q)∧¬(p∧q))
in any of moves 7 or 17. However, this would not have given her a winning
strategy in any of the ensuing subdialogues, since (¬p∧¬¬p)∨((p∧q)∧¬(p∧q))
is not an LLD-consequence of Σ. We leave the verification of these details to
the reader.

5. Related Work

5.1. IAD and dialogical logic

The negation rule [SR4.1] of IAD is inspired by the rules defined by Rahman
& Carnielli [23]. It is worth noting that in [23] two different paraconsistent
dialogical logics are defined, namely L-D (Literal Dialogues) and D+ (Para-
consistent Positive Dialogues). The relevant difference between both is that
the negation rule of the former is restricted to negated atomic formulas (nega-
tive literal rule) while the negation rule of the latter is formulated in a general
way and does not contain any such restriction.19 In IAD, the negation rules
[SR4.1] and [SR4.2] are applied indifferently to atomic and complex formulas.

In L-D EFSQ is invalid only in case the formula which behaves inconsis-
tently is atomic:20

� (p ∧ ¬p) → q (18)

� ((p ∨ p) ∧ ¬(p ∨ p)) → q (19)

By contrast, both are invalid in D+. However, as a consequence of the general-
isation of the negation rule, DNE (¬¬p → p) is not valid in D+ even if we play
with the classical development rule. Moreover, DS (as well as CPOS and other
principles) is invalidated even if no inconsistency occurs in the dialogue. As
observed by Rahman and Van Bendegem [27,30], the invalidity of DS is a high
price to pay for going paraconsistent. A more flexible alternative is desired.
Here inconsistency-adaptive logic and paraconsistent dialogical logic meet.

In order to solve this difficulty, Rahman & Van Bendegem define a notion
of adaptive validity in a dialogical framework. Their analysis is rather different
from IAD. Indeed, IAD involves new rules by means of which conditional moves
are implemented. By contrast, Rahman & Van Bendegem do not define any
new rules for dialogues. Rather, they come up with a new definition of validity
based on an analysis at the strategic level. In their approach, a formula is valid

19 Another difference is that negation in D+ is defined in conditional form, i.e. each formula ϕ
has its corresponding constant ⊥ϕ such that ¬ϕ ⇔ ϕ →⊥ϕ. It it thus possible to distinguish
between ⊥p and ⊥q for example, the first holding for inconsistencies related to p, the second

for the inconsistencies related to q. For more details, we refer to [23, Sec. 5.1].
20 In its treatment of (18) and (19), L-D behaves exactly like Arruda’s system V1 from [1]
(see also [2, Sec. 7], where this system is called PIv).
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by adaptation if it is valid according to the standard definition of validity and
is free of paraconsistent redundancies:

[D7][Free of Paraconsistent Redundancies]. [A formula is said to be free of
paraconsistent redundancies iff P wins under the standard structural
rules and she can win under the following conditions:

1. She can attack every O-formula at least once (e.g. with one of the
possible attacks on a conjunction) in any of the possible O-variants
(not necessarily in the same O-variant).21

2. She can defend herself at least once (e.g. with one of the possible
defences of a disjunction) against all attacks in any of the possible
O-variants (not necessarily in the same O-variant).

3. She can use at least one occurrence of any atomic O-formula in any
of the possible O-variants (not necessarily the same O-variant).]

However, this is not sufficient to validate DS (((p ∨ q) ∧ ¬p) → q) for which
another device is required. Let us explain the point on the basis of the following
dialogue as developed by Rahman & Van Bendegem [27, p. 303].

O P
((p ∨ q) ∧ ¬p) → q 0

1 n := 1 m := 2 2
3 (p ∨ q) ∧ ¬p 0 q 12
5 p ∨ q 3 ?∧L 4
7 ¬p 3 ?∧R 6
9 p 5 ?∨ 8

− − − 7 p 10
O P

11 q ?∨[q] [8]

In the dialogue above, P wins in move 10 according to the rules of stan-
dard dialogical logic. However, P does not answer the challenge of move 3 and
thus the formula does not comply with the definition of validity by adaptation.
Therefore, we add in a subdialogue the possibility for P to ask ?∨[q] to enable
him to show she can answer the challenge in at least one O-variant. Now, P
can answer the attack of move 3 in move 12 and the formula is claimed to be
valid by adaptation.22

As a result, the following holds in Rahman & Van Bendegem’s dialogical
logic:

� ((p ∨ q) ∧ ¬p) → q (20)

� (((p ∨ q) ∧ ¬p) ∧ p) → q (21)

� ((p ∨ q) ∧ ¬p) ∧ p) → r (22)

� p → (¬p → q) (23)

21 An O-variant is a possible development of a dialogue triggered by an O-choice.
22 For the sake of clarity, we made some minor changes to the formulation offered in [27].
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� (p ∧ ¬p) → q (24)

The difference between (21) and (22) is a consequence of the additional device
we add for DS as in the dialogue above. Indeed, in a dialogue for (21) P can
answer q in at least one O-variant, while in a dialogue for (22) she cannot
answer r in any O-variant. LLD and IAD behave as follows with respect to
(20)–(24):

�LLD ((p ∨ q) ∧ ¬p) → q (25)

�LLD (((p ∨ q) ∧ ¬p) ∧ p) → q (26)

�LLD (((p ∨ q) ∧ ¬p) ∧ p) → r (27)

�LLD p → (¬p → q) (28)

�LLD (p ∧ ¬p) → q (29)
�IAD ((p ∨ q) ∧ ¬p) → q (30)

�IAD (((p ∨ q) ∧ ¬p) ∧ p) → q (31)

�IAD (((p ∨ q) ∧ ¬p) ∧ p) → r (32)

�IAD p → (¬p → q) (33)

�IAD (p ∧ ¬p) → q (34)

One might wonder why (30)–(34) hold. The reason is that ϕ is an IAD-
theorem iff ϕ is a theorem of CL. In an IAD-dialogue the Proponent is allowed
to conditionally attack negated statements. In order to successfully attack such
conditional statements, the Opponent must give a Dab-formula which is an
LLD-consequence of the premise set. But if the premise set is empty, no Dab-
formula whatsoever is an LLD-consequence of it. Therefore the Proponent
will have a successful defence ready: using the failure operator she can show
that any Dab-formula given by the Opponent is not an LLD-consequence of
the empty premise set. Note, however, that p ∨ q, ¬p, p �IAD q as well as
p ∨ q, ¬p, p �IAD r, and p, ¬p �IAD q. This is in line with the adaptive
approach. Adaptive logicians are interested in logical consequence rather than
theoremhood. Rahman & Van Bendegem do not define a consequence relation,
but such a development might be considered.

5.2. IAD and adaptive logic

In this section we show that logical consequence in LLD corresponds to
logical consequence in Batens’ paraconsistent logic CLuN (Sect. 5.2.1), and
that logical consequence in IAD corresponds to logical consequence in the
inconsistency-adaptive logic CLuNr (Sect. 5.2.2).23

5.2.1. LLD and CLuN. We first outline the result that LLD-consequence
and CLuN-consequence are identical (Theorem 1), and next turn to the non-
monotonic extensions (Theorem 2). Our results are restricted to finite premise

23 The propositional fragment of CLuN was first introduced in [2] under the name PI. See
e.g. [4,9] for more details on CLuN and CLuNr.
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sets.24 Our proof outlines rely on existing results established by dialogicians
and adaptive logicians. For the details, we refer to these results where neces-
sary.

Theorem 1. Σ �LLD ψ iff |=CLuN ψ.

Proof outline. We make use of two results from the literature. First, in [9]
Diderik Batens and Joke Meheus show that a Smullyan-style tableau method
for CLuN is obtained from Smullyan’s tableau method for CL simply by
removing the following rule for signed formulas:25

If T¬ϕ, then Fϕ (T¬)

Second, in [12] Nicolas Clerbout gives a procedure for transforming an atom-
ically closed Smullyan tableau for a thesis ϕ into an extensive form26 of a
winning P-strategy in a game D(ϕ), and vice versa. Our proof strategy is to
apply the procedure from [12] first to the tableau method for CLuN from [9]
(⇐), and next to extensive forms of winning P-strategies in LLD-games (⇒).

⇐ In order to apply Clerbout’s procedure to Batens and Meheus’ tableau
method for CLuN, we add the following rule for tableaux in CLuN:

If T¬ϕ then Fϕ only if, on the same branch,

(F¬) was already applied to F¬ϕ
(T¬∗)

(T¬∗) is redundant in the tableau method for CLuN, as we can only apply
it to formulas appearing on a branch that is already closed (since it contains
two formulas T¬ϕ and F¬ϕ). We need the addition of this rule, however, to
ensure that complete closed branches are atomically closed, i.e. to ensure that
whenever two signed formulas T¬ϕ and F¬ϕ occur on some branch, then in
completing the tableau we take care that there is an atomic formula ψ such
that T¬ψ and F¬ψ occur on the same branch. (T¬∗) takes care that if no
more rules are applicable in a CLuN-tableau and the tableau closes, then the
tableau closes atomically. Consequently, we can use this tableau as an input
to Clerbout’s procedure (an atomically closed CLuN-tableau for ϕ is also
an atomically closed CL-tableau for ϕ). The result is an extensive form of a
winning P-strategy sp in a game D(ϕ) for CL. In order to show that sp is a
winning P-strategy in D(ϕ) for LLD, all we need to show is that it respects
the additional structural rule [SR4.1].

In Clerbout’s procedure, T-signed (resp. F-signed) formulas in tableaux
correspond to O-moves (resp. P-moves) in dialogues. The application of (T¬)
to some formula T¬ϕ in a tableau corresponds to a P-attack on some O-move
labeled ¬ϕ in a dialogue. Analogously, the application of (F¬) to some formula

24 Since compactness holds for CLuN, Theorem 1 readily generalizes to cases in which Σ
is infinite. Since compactness fails for CLuNr, this generalization cannot be carried out for
Theorem 2.
25 See [28] for the details on Smullyan-style tableaux. We are assuming that the equivalence
operator is not primitive in our language. Note that in [9], CLuN is called ‘P’,
26 The extensive form of a dialogical game is the representation of the game in the form
of a tree, and the extensive form of a strategy of player X is the tree representation of X’s
strategy. See [12, Definitions 2–4] for the full definitions.
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F¬ϕ in a tableau corresponds to an O-attack on some P-move labeled ¬ϕ in
a dialogue.

Since in a (modified) CLuN-tableau the only rule applicable to formulas
of the form T¬ϕ is (T¬∗), and since this rule is only applicable in case (F¬)
was already applied to F¬ϕ on the same branch, it follows by construction that
in the extensive form resulting after applying the procedure from [12] there
cannot be a P-attack on an O-move labeled ¬ϕ unless O already attacked the
same formula before. Hence [SR4.1] is respected, and the strategy sp provided
by the procedure is a winning P-strategy in D(ϕ) for LLD.

⇒ Given an extensive form of a winning P-strategy sp in a game D(ϕ)
for LLD, we can use this strategy as an input to the procedure from [12] (a
winning P-strategy for ϕ in LLD is (a fortiori) a winning P-strategy for ϕ in
CL). The result is an atomically closed CL-tableau for ϕ.

Suppose that, in the resulting tableau T , a formula Fϕ occurs on a branch
θ as a result of applying (T¬) to some formula T¬ϕ. Then in the extensive form
of sp this corresponds to a P-move n at which P attacks a formula ¬ϕ. Since
sp is an LLD-strategy, the moves in its extensive form respect [SR4.1], and
there must be an O-move m < n at which O attacks the formula ¬ϕ uttered
by P. But then, by the construction from [12], if θ contains an application of
(T¬) to T¬ϕ, then higher up on the branch it will contain an application of
(F¬) to F¬ϕ. So all applications of (T¬) in T are in fact applications of the
weaker rule (T¬∗), and T is an atomically closed CLuN-tableau for ϕ.

So far, we have shown that a formula ϕ is a CLuN-theorem iff ϕ is
an LLD-theorem. In view of the validity of MP in LLD and CLuN, the
deduction theorem holds for these logics. Hence, our result readily generalizes:
for all finite Σ, Σ �LLD ψ iff |=CLuN ψ. �

5.2.2. IAD and CLuNr. In showing the correspondence between IAD and
CLuNr we will make use of the tableau method for CLuNr from [9], restricted
to the propositional level.27 To obtain a CLuNr-tableau for Σ |= ψ, first make
a CLuN-tableau for this inference (see Sect. 5.2.1; there is no need for using
the CLuN-redundant rule (T¬∗)). Second, add the following rule (which, like
(T¬∗), is redundant in CLuN):

T¬ϕ

Tϕ | Fϕ
(T¬ ∗ ∗)

Next, label formulas that stem from the premises: prefix all premises in the
tableau (signed formulas of the form Tϕ which appear at the top node) with
a ‘•’, and do the same for all signed formulas appearing at nodes which result
from applying a rule to a formula labeled with a ‘•’. Given a branch θ, θ
denotes the set of formulas on θ which are labeled with a ‘•’.

A branch θ of the resulting tableau T verifies a formula ϕ ∧ ¬ϕ iff
Tϕ,T¬ϕ ∈ θ. Let Ab(θ) = {ϕ | Tϕ,T¬ϕ ∈ θ}. Where Δ ⊂ Ω, θ veri-
fies a formula Dab(Δ) iff θ verifies at least one member of Δ. Let Θ(Σ) be
the set of disjunctions of the form (ϕ1 ∧ ¬ϕ1) ∨ · · · ∨ (ϕn ∧ ¬ϕn) verified

27 In [9], CLuNr is referred to as ‘Pr’.
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by all θ ∈ T . U(Σ) = {ϕ | ϕ ∧ ¬ϕ ∈ Δ for some Δ such that Dab(Δ) ∈
Θ(Σ) and there is no Δ′ ⊂ Δ such that Dab(Δ′) ∈ Θ(Σ)}.

As usual a branch closes as soon as it contains two nodes Tϕ and Fϕ.
Otherwise it remains open. A branch θ of a finished tableau for Σ |= ϕ is marked
iff it is open and Ab(θ) �⊆ U(Σ). A CLuNr-tableau for Σ |= ϕ closes iff all
of its branches are either closed or marked. For more details on constructing
tableaux for CLuNr, see [9, Sec. 5].

Lemma 1. ϕ behaves reliably in view of Σ iff ϕ �∈ U(Σ).

Proof. Step 1. Let T be a complete CLuN-tableau for Σ |= ψ. Dab(Δ) ∈ Θ(Σ)
iff Dab(Δ) is verified by all θ ∈ T iff the CLuN-tableau for Σ |= Dab(Δ) closes
iff (by [9, Theorem 1]) Σ |=CLuN Dab(Δ) iff (by Theorem 1) Σ �LLD Dab(Δ).

Step 2. ⇒ Suppose ϕ ∈ U(Σ). By the definition of U(Σ), there is a Δ
such that (i) ϕ ∧ ¬ϕ ∈ Δ, (ii) Dab(Δ) ∈ Θ(Σ), and (iii) there is no Δ′ ⊂ Δ
such that Dab(Δ′) ∈ Θ(Σ). By step 1, there is a Δ such that (i) ϕ ∧ ¬ϕ ∈ Δ,
(ii) Σ �LLD Dab(Δ), and (iii) there is no Δ′ ⊂ Δ such that Σ �LLD Dab(Δ′).
Since Δ\{ϕ ∧ ¬ϕ} ⊂ Δ, it follows by [D5] that ϕ does not behave reliably in
view of Σ.

⇐ Suppose ϕ does not behave reliably in view of Σ. By [D5], there is
a Dab(Δ) such that (i) ϕ ∧ ¬ϕ ∈ Δ, (ii) Σ �LLD Dab(Δ), and (iii) Σ ��LLD

Dab(Δ\{ϕ ∧ ¬ϕ}). Let Δ′ ⊆ Δ be the smallest subset of Δ such that Σ �LLD

Δ′. By (iii), it follows that ϕ∧¬ϕ ∈ Δ′. By our construction, there is no Δ′′ ⊂
Δ′ such that Σ �LLD Δ′′. By step 1, (i) ϕ ∧ ¬ϕ ∈ Δ′, (ii) Dab(Δ′) ∈ Θ(Σ),
and (iii) there is no Δ′′ ⊂ Δ′ such that Dab(Δ′′) ∈ Θ(Σ). By the definition of
U(Σ), ϕ ∈ U(Σ). �

Lemma 2. For finite premise sets Σ, if Σ �IAD ψ then Σ |=CLuNr ψ.

Proof outline. Suppose Σ �|=CLuNr ψ. (i) If Σ �|=CL ψ, then clearly Σ ��IAD

ψ, for IAD and CL share the same set of particle rules, and the structural rules
of IAD impose further restrictions on P-moves in CL-dialogues (in particular
on the application of the particle rule for negation). So if P has no winning
strategy for ψ[Σ] in CL, then P has no winning strategy for ψ[Σ] in IAD.

(ii) Suppose Σ |=CL ψ. Consider an open and unmarked branch θ of a
completed CLuNr-tableau T for this inference (since Σ �|=CLuNr ψ, there is
at least one).

(i) Locate the top node n of the first (highest) L-application of (T¬ ∗ ∗) on
θ.28

(ii) Let T¬ϕ be the formula occurring at n. Consider n’s child node m at
which the formula Fϕ occurs as a result of the R-application of (T¬ ∗ ∗)
at n. Let λ be the rightmost branch in T which contains m.

28 An L-application or left-application of (T¬ ∗ ∗) to a formula T¬ϕ on a branch θ of a

tableau is an application of this rule resulting in θ’s containing both a node labeled T¬ϕ
and a node labeled Tϕ. Analogously, an R-application or right-application of (T¬ ∗ ∗) on a
branch θ of a tableau is an application of this rule resulting in θ’s containing both a node
labeled T¬ϕ and a node labeled Fϕ.
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We show that the following holds:

(a) At step (i) λ always contains at least one L-application of (T¬ ∗ ∗).
(b) λ always exists, and is a closed branch.

Ad. (a). Suppose that, at step (i), λ contains no L-applications of (T¬∗∗). Then
all nodes on λ are either starting nodes, nodes generated via CLuN-rules, or
nodes generated via R-applications of (T¬∗∗). Note that all R-applications of
(T¬ ∗ ∗) are just instances of the CL-rule (T¬). Therefore, all nodes on λ are
either starting nodes or nodes generated via CL-rules. Since T is complete, λ
then corresponds to some branch in the CL-tableau for Σ |= ψ. But then λ is
closed, since by our supposition Σ |=CL ψ.

Ad. (b). By (a) we know that there is always an L-application of (T¬∗∗)
on λ at step (i), with top node n. Therefore we will always be able to move
to the right at step (ii), i.e. to move to the rightmost branch containing the
child m of the R-application of (T¬ ∗ ∗) at n. Since CLuN-trees are finitely
generated and Σ is finite, there always is such a rightmost branch. Moreover,
it is easily checked that λ contains only applications of CL-valid rules, and
since T is complete and Σ |=CL ψ, λ is closed. In fact, λ is identical to some
branch μ in the completed CL-tableau T ′ for Σ |= ψ.

Using the procedure from [12], we next transform T ′ into an extensive
form tree for Σ �CL ψ. In this extensive form, μ corresponds to a CL-dialogue
d for ψ[Σ]. We modify d into an IAD-dialogue d′:

(1) For each P-move n in d: if n is the result of an application of the particle
rule for negation to some O-assertion ¬ϕ, add the condition {RΣ

ϕ} to n,
unless O already challenged the P-assertion ¬ϕ at some move m < n.

(2) By our construction, each conditional P-challenge corresponds to an ap-
plication of (T¬) in μ. Locate the first (highest) application of (T¬) in
μ. By our construction again, this application corresponds to the first
(highest) R-application of (T¬∗∗) to a formula T¬ϕ occurring at a node
n in θ. Since θ contains the L-application of (T¬ ∗ ∗) to T¬ϕ, ϕ ∈ Ab(θ).
Since θ is unmarked, ϕ ∈ U(Σ). Hence there is a Δ such that ϕ∧¬ϕ ∈ Δ,
Dab(Δ) ∈ Θ(Σ), and there is no Δ′ ⊂ Δ such that Dab(Δ′) ∈ Θ(Σ).

By our construction, the first (highest) application of (T¬) in μ
corresponds to a P-move in d challenging an O-assertion of the form ¬ϕ.
Suppose that d contains an O-move m < n challenging the P-assertion
¬ϕ. Then m would correspond to an application of (F¬) to F¬ϕ in λ and
in θ. But then θ would be closed, since T¬ϕ ∈ θ. Contradiction. Hence,
d contains no O-move m < n challenging ¬ϕ. Consequently, we added
the condition RΣ

ϕ to n in step (1). Now let m be the last move in d. Add
a new move m + 1 of the form O−?R(Dab(Δ)) − ∅ − d, challenging the
conditional move P−!ϕ − {RΣ

ϕ} − d.

Re-label all d-moves as d′-moves. We show that O has a winning strategy in
the continuation of d′. In accordance with the particle rule for the R-operator,
P can now play using either the I-operator or the F-operator in move m+2. It
does not matter for our purposes which option P picks. What matters is that,
whichever alternative P chooses, O has a winning strategy for the ensuing



126 M. Beirlaen and M. Fontaine Log. Univers.

subdialogue. Since ϕ ∈ U(Σ), ϕ does not behave reliably in view of Σ (by
Lemma 1). If P defends using the F-operator, she will lose the ensuing sub-
dialogue since Σ �LLD Dab(Δ). If she counter-attacks using the I-operator,
she will lose the ensuing sub-dialogue since Dab(Δ) is minimal.

It is safely left to the reader to verify that the completion of d′ in line
with O’s winning strategy does not violate any of the IAD-rules. By [D6],
Σ ��IAD ψ. �
Lemma 3. For finite premise sets Σ, if Σ |=CLuNr ψ then Σ �IAD ψ.

Proof outline. Suppose Σ ��IAD ψ. (i) If Σ �|=CL ψ, then Σ �|=CLuNr ψ, for
the upper limit logic of CLuNr is CL and adaptive logics are never stronger
than their upper limit logic [6, Sec. 5].

(ii) Suppose Σ |=CL ψ. Since Σ ��IAD ψ, and since whenever P has a
winning strategy in LLD, P has a winning strategy in IAD, it follows that
Σ ��LLD ψ. We first show the following:
(†) There is a move m of the form O−!¬ϕ such that:
(a) For all P-winning strategies sp for ψ[Σ] in CL, sp assigns the move P−!ϕ

to m;
(b) For all O-winning strategies so for ψ[Σ] in LLD, so assigns m to a P-move

n < m and P cannot challenge m in view of [SR4.1]; and
(c) For all O-winning strategies so for ψ[Σ] in IAD, there is a Δ ⊂ Ω such

that ϕ ∧ ¬ϕ is indispensable to Δ and Σ �LLD Dab(Δ), and so assigns
the move O−?RΣ

ϕ(Dab(Δ)) − ∅ − d to P−!ϕ − {RΣ
ϕ} − d.

Ad. (a) and (b). By our supposition, Σ |=CL ψ while Σ ��LLD ψ. Hence there
is a P-winning strategy sp for ψ[Σ] in CL and there is an O-winning strategy
so for ψ[Σ] in LLD. This is possible only in view of [SR4.1], since this rule
constitutes the only difference between CL-games and LLD-games. So there
must be a move m of the form O−!¬ϕ such that so assigns m to a P-move
n < m, and such that in the case of CL sp assigns the move P−!ϕ to m, while
in the case of LLD P cannot challenge m in view of [SR4.1].

Ad. (c). In an IAD-game the moves m such that (a) and (b) hold for
m are exactly those moves which P can challenge only conditionally. For O to
have a winning strategy for ψ[Σ] in IAD she must, for at least one move m
such that (a) and (b) hold for m, challenge P’s conditional move by using the
particle rule for the R-operator (this holds in view of [SR4.2]). In doing so, she
must provide a formula Dab(Δ) such that (i) ϕ∧¬ϕ is indispensable to Δ and
(ii) Σ �LLD Dab(Δ). If (i), then O has a winning strategy in a sub-dialogue
triggered by P using the I-operator. If (ii) then O has a winning strategy in
a sub-dialogue triggered by P’s using the F-operator. Since there is a move m
such that (a) and (b) hold for m, and since O indeed has a winning strategy
for ψ[Σ] in IAD (by our supposition), it follows that (c) holds for m.

Since Σ �CL ψ, there is a P-winning strategy for ψ[Σ] in CL. Equivalently
(since Σ is finite and since the deduction theorem holds for CL), there is
a P-winning strategy for

∧
Σ → ψ in CL. Call this strategy sp. Using the

algorithm from [12], transform the extensive form of sp into a closed, complete
CL-tableau T for

∧
Σ → ψ. By the construction, move m from (†) corresponds
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to a node n in T labeled T¬ϕ. By (†(a)) and the construction, it follows that
T contains an application of (T¬) to n, resulting in a node n′ labeled Fϕ.

We now make the following modifications to T . First, remove the top
node F

∧
Σ → ψ, label the new top node T

∧
Σ with a ‘•’, and do the same

for all signed formulas appearing at nodes which result from applying a rule
to a formula labeled with a ‘•’. Next, for all branches θ on T which contain n
and n′: At n′ − 1, the predecessor of n′ on θ, create a new branch such that
n′ − 1 has two immediate successors n′ and n′′. n′, as before, is labeled Fϕ.
The new node n′′ is labeled Tϕ. n′′ (resp. n′) can be seen as the result of an
L-application (resp. an R-application) of (T¬ ∗ ∗) to n. Complete the branch
containing n′′ using only (T¬ ∗ ∗) and the tableau rules for CLuN.

We re-interpret all applications of (T¬) on branches θ containing n and
n′ in the original tableau T as R-applications of (T¬ ∗ ∗), so that all branches
resulting from our modifications to T are complete branches of the CLuNr-
tableau for Σ |= ψ.

By Theorem 1 and our supposition, Σ �|=CLuN ψ. By the construction,
(†(b)), and the CLuN-redundancy of (T¬ ∗ ∗), at least one of the newly ob-
tained branches remains open. Call this branch ι. Suppose that ι contains
the R-application of (T¬ ∗ ∗) to n, and hence contains n as well as n′. Then
by our construction ι is a branch of the original tableau T . But T is closed,
so the supposition is false and ι contains the L-application of (T¬ ∗ ∗) to n.
Consequently, ι contains n as well as n′′, and ϕ ∈ Ab(ι).

By (†(c)) it follows that there is a Δ ⊂ Ω such that ϕ∧¬ϕ is indispensable
to Δ and Σ �LLD Dab(Δ). By [D5] ϕ does not behave reliably in view of Σ.
By Lemma 1, ϕ ∈ U(Σ). Hence, since ϕ ∈ Ab(ι), ι remains unmarked.

In sum, we constructed a complete, open, and unmarked branch of the
CLuNr-tableau for Σ |= ψ. Consequently, Σ �|=CLuNr ψ.

Theorem 2. For finite premise sets Σ, Σ �IAD ψ iff Σ |=CLuNr ψ.

Proof. Immediate in view of Lemmas 2 and 3. �

6. Variation

In this section we discuss some easy-to-define variants of IAD making use of
insights borrowed from dialogical logicians and adaptive logicians.

6.1. Intuitionistic inconsistency-adaptive dialogical logic

An intuitionistic version of IAD is obtained by substituting the classical de-
velopment rule [SR1] for the intuitionistic development rule [SR1.1]:

[SR1.1][Intuitionistic development rule].

[For any move M in P such that pP(M) > 2 we have FP(M) = [m′, Z] where
Z ∈ {A, D} and m′ < pP(M). Let r be the repetition rank of player X and
P ∈ D(ψ[ϕ1, . . . , ϕn]) (respectively D(ψ)) such that:

1. For every move M = Y− e−C −d in P, with pP(M) = m and such that
e is a complex formula, let:
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– M1, . . . ,Mn ∈ P be the n moves of X such that FP(M1) = · · · =
FP(Mn) = [m,A],

– The sequence P � N be such that N = X − e − C − d and
FP�N (N) = [m, A]

Then we have P � N ∈ D(ψ[ϕ1, . . . , ϕn]) (respectively D(ψ)) if and
only if n < r.

2. For every Y-move M ′ ∈ P such that pP(M ′) = m′ and FP(M ′) =
[k, A], let the sequence P � N ′ be such that N ′ = X − e − C − d
and FP�N ′(N ′) = [m′, D]. We have P � N ′ ∈ D(ψ[ϕ1, . . . , ϕn]) (re-
spectively D(ψ)) if and only if the following conditions hold:

– There is no N ′′ ∈ P such that FP(N ′′) = [m′, D],
– For every Y-move M ′′ ∈ P such that pP(M ′′) > m′ we have:

if FP(M ′′) = [h, A], then there is an X-move P ∈ P such that
FP(P ) = [pP(M ′′), D].]

Intuitively, this rule states that when it is X’s turn, she is allowed to attack
any formula previously uttered by Y in accordance with the limit fixed by the
chosen rank, or she can defend herself against the last non-answered attack.

Note that [SR1.1] applies to the entire dialogue, including its possible
subdialogues. As a consequence, players defending a thesis ϕ[Σ] in a subdia-
logue now have to show that this inference too is intuitionistically valid.

The difference between classical IAD and intuitionistic IAD is illustrated
by the following dialogue:

O P
d1

p[¬¬p] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3 ¬¬p ∅ 0

− − − 3 ¬p RΣ
p 4

5 p ∅ 4 − − −

Explanation In the above dialogue for intuitionistic IAD, O wins without even
attacking the condition of P’s move 4. Note that clause 2 of [SR1.1] prohibits
P from defending herself against O’s attack in move 3: she is only allowed to
defend herself against the last unanswered O-attack, which is the one in move
5. Due to this restriction, P runs out of moves and loses the dialogue.

The situation is very different in classical IAD. Here, P is allowed to
defend herself against O’s attack in move 3, by asserting p in a new move 6.
In the continuation of the dialogue, O can still attack P’s conditional move
4 in line with the particle rule for the R-operator, but she will lose the en-
suing subdialogue no matter which Dab-formula she proposes, since there are
no Dab-formulas among the LLD-consequences of the premise set. Once the
subdialogue ends, there are no more O-moves available in the main dialogue,
so the inference is valid for classical IAD.

As a further illustration of the workings of intuitionistic IAD, note that
there is no P-winning strategy for the thesis q[p, ¬q → ¬p, r ∧ ¬r] in the
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dialogue from Sect. 4.2. In intuitionistic IAD move 24 in this dialogue cannot
be performed by P, since she can no longer defend herself against O’s attack
in move 3. P runs out of moves, and O wins the dialogue.

Interestingly, intuitionistic IAD is not strictly weaker than classical IAD.
For instance, the inference from the premise set {¬q, r∨q, (p∨¬p) → (q∧¬q)}
to the conclusion r is valid in intuitionistic IAD, but not in classical IAD.
In an IAD-dialogue for this inference, P has a winning strategy only if she
conditionally attacks the premise ¬q, assuming that q behaves reliably. Due to
the invalidity of excluded middle in intuitionistic logic, the abnormality q ∧¬q
is an LLD-consequence of the premise set only if we play with the classical
development rule [SR1], not if we play with the intuitionistic development rule
[SR1.1]. Consequently, q does not behave reliably if we use [SR1], while it does
if we use [SR1.1]. We leave it as an exercise to write out the dialogues for this
inference in the respective IAD-variants.

6.2. A Simple Variant for a Simple Strategy

In certain argumentative contexts we may want to permit attacks on a slightly
weaker condition than IAD does. For instance, instead of demanding that the
abnormality corresponding to the condition of a P-move is not an indispensable
part of some Dab-formula, we could implement the weaker demand that the
abnormality in question is not a consequence of our premise set (independently
of its being or not being part of some longer Dab-formula).

[D8][Simply ok formulas] [Let ϕ[Σ] be the thesis of the Proponent. A formula
ψ is simply ok with respect to Σ iff Σ ��LLD ψ ∧ ¬ψ.]

If Σ is empty, then no disjunction of abnormalities is an LLD-consequence of
Σ, so all formulas are simply ok with respect to the empty set. We implement
this idea via a new operator, the S-operator. In the IAD negation rule [SR4.2],
replace ‘RΣ

ψ ’ with ‘SΣ
ψ ’. The latter expression abbreviates that ψ is simply ok

with respect to Σ. The particle rule for the new operator is as follows:

Particle rule for the S-operator
Assertion Attack Defence
X−!ϕ − SΣ

ϕ − d Y−?SΣ
ϕ − ∅ − d X−!FΣ(ϕ ∧ ¬ϕ) − ∅ − d

All the rest remains as before. Call the resulting logic SIAD or Simple
Inconsistency-Adaptive Logic. IAD implements the reliability strategy of the
adaptive logics framework, whereas SIAD implements the simple strategy. An
advantage of SIAD over IAD is that it removes the element of choice whenever
X attacks a conditional Y-move: as opposed to the particle rule for the R-
operator, the particle rule for the S-operator leaves X with no alternatives for
picking a Dab-formula in order to show that a formula asserted by Y behaves
unreliably.

The main disadvantage of SIAD is that it is explosive whenever dis-
junctions of abnormalities cannot be reduced to one of their disjuncts. Let
ϕ1, . . . , ϕn ∈ Ω. Then if for some premise set Σ it holds that Σ �LLD ϕ1 ∨
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· · · ∨ ϕn while Σ ��LLD ϕ1, . . . ,Σ ��LLD ϕn, then anything is a consequence of
Σ. Let, for instance Σ = {¬p,¬q, p ∨ q}:

¬p,¬q, p ∨ q �SIAD r (35)

In order for P to win this inference in an IAD-dialogue or in an SIAD-
dialogue, she needs to conditionally attack either the O-assertion ¬p or the
O-assertion ¬q. In the IAD-dialogue, the conditions corresponding to these
moves are RΣ

p and RΣ
q respectively. None of p or q is reliable in view of the

LLD-consequence (p∧¬p)∨(q∧¬q). As a result, O will have a winning strategy
for the IAD-dialogue. In the SIAD-dialogue, the conditions corresponding to
P’s attack are SΣ

p and SΣ
q respectively. Each of p and q is simply ok, since

neither p ∧ ¬p nor q ∧ ¬q is an LLD-consequence. As a result, P will have a
winning strategy for the SIAD-dialogue.

The simple strategy is just one of a number of alternative strategies that
a player can adopt when conditionally attacking a statement by the other
player—and, admittedly, not a recommendable one in contexts where disjunc-
tions of abnormalities cannot be reduced to one of their disjuncts. Within the
adaptive logics framework a number of other strategies are available for arguing
in the possible presence of inconsistent information [5,29]. The incorporation
of these within the dialogical setting is left for future investigation.

6.3. Finite Dialogues for Infinite Premise Sets

In line with the pluralist turn recently taken by dialogicians, we define a way
of dealing with infinite premise sets within the framework of dialogical logic.
This need not go against the original motivation underlying dialogical logic,
since in our proposal dialogical games are still finitary.

The only change needed is a slight addition to the particle rule for condi-
tional assertions of the form !ψ[ϕ1, . . . , ϕn]. We introduce the following particle
rule for dealing with countably infinite premise sets Σ:

Assertion Attack Defence
X−!ψ[Σ] − ∅ − d Y−?∞ − ∅ − d X−!ψ[ϕ1, . . . , ϕn] − ∅ − d
(where Σ is countably infinite) (where ϕ1, . . . , ϕn ∈ Σ)

The defensive move of X can then be attacked by Y in line with the
particle rule for assertions of the form !ψ[ϕ1, . . . , ϕn] from Sect. 1.

The general idea is that whenever a player claims that a formula is a
consequence of Σ, whether we are playing in the main dialogue or in a sub-
dialogue, she must show that the formula in question is a consequence of
some finite subset of Σ. As an illustration, consider the premise set Σ =
{p ∨ q,¬q, (q ∧ ¬q) ∨ (ri ∧ ¬ri), (q ∧ ¬q) → (ri ∧ ¬ri) | i ∈ N}, which we
borrow from [7, Sec. 5]. We show that Σ �IAD p.
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O P
d1

p[Σ] ∅ 0
1 n := 2 ∅ m := 2 ∅ 2
3 ?∞ ∅ 2 p[p ∨ q,¬q] ∅ 4
5.1 p ∨ q ∅ 4
5.2 ¬q ∅
7 q ∅ 6 5.1 ?∨ ∅ 6

5.2 q RΣ
q 8

9 ?RΣ
q ((q ∧ ¬q)∨ ∅ 8 IΣ(r3 ∧ ¬r3) ∅ 10

(r3 ∧ ¬r3))
11 ?IΣ(r3 ∧ ¬r3) ∅ 10
d1.1

11 r3 ∧ ¬r3[Σ] ∅ 12
13 ?∞ ∅ 12 r3 ∧ ¬r3 ∅ 14

[(q ∧ ¬q) ∨ (r3 ∧ ¬r3),
(q ∧ ¬q) → (r3 ∧ ¬r3)]

Explanation The Dab-formula (q∧¬q)∨(r3∧¬r3) chosen by O at move 9 is just
one of an infinite number of possible Dab-formulas containing q ∧ ¬q between
which O can choose (we chose ‘r3’ arbitrarily). The formula in question is
indeed a consequence of Σ, but the disjunct q ∧ ¬q is dispensable. To show
this, P uses the I-operator and picks a finite subset of Σ of which the shorter
Dab-formula r3 ∧ ¬r3 is a consequence.

It is easily verified that P has a winning strategy in d1.1, due to the LLD-
validity of (q ∧ ¬q) ∨ (r3 ∧ ¬r3), (q ∧ ¬q) → (r3 ∧ ¬r3) � r3 ∧ ¬r3. Since P wins
the subdialogue, she will also win the main dialogue.

The strategy adopted by the Proponent in this dialogue readily gener-
alizes. Whatever Dab-formula the Opponent picks, the Proponent always has
an answer ready which gives her a winning strategy for the dialogue, provided
that she picks a ‘good’ finite subset of Σ. Hence Σ �IAD p.

7. Conclusion

Our main aim was to bring closer together the frameworks of dialogical logic
and adaptive logic. This we achieved by combining some of the key features of
both approaches, resulting in IAD, an inconsistency-adaptive dialogical logic.
IAD is a defeasible extension of the paraconsistent dialogical logic LLD, which
is in turn inspired by the work of Rahman and Carnielli [23]. The extension
integrates elements from the adaptive approach within the framework of dia-
logical logic. The result is a non-explosive dialogical logic in which applications
of the particle rule for negation are sensitive to the consistent behaviour of the
premises. By interpreting logical validity in terms of a winning strategy in a
two-player game, IAD gives a game-theoretic interpretation to its counterpart
logic CLuNr from the adaptive logics framework (see Sect. 5.2).
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To illustrate the modularity of our approach, we provided a number of
ways in which IAD can be adjusted for use in different contexts. For instance,
if we replace the classical development rule with the intuitionist development
rule, we readily obtain an intuitionistic variant of IAD. Likewise, we can
replace the reliability operator of IAD with a different operator for modeling
the simple strategy of adaptive logic. It remains to be seen whether other
adaptive strategies can likewise be represented by similar operators within
dialogical logic. Future work will also point out to what extent we can use
the dialogical framework for explicating the reasoning steps underlying other
adaptive consequence relations.
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[16] Jaśkowski, S.: Propositional calculus for contradictory deductive systems. Studia
Logica 24, 143–157 (1969)

[17] Keiff, L.: Le Pluralisme Dialogique. Approches dynamiques de l’argumentation
formelle. PhD thesis, Université Lille 3, Lille (2007)
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[29] Straßer, C., Šešelja, D.: Towards the proof-theoretic unification of Dung’s ar-
gumentation framework: an adaptive logic approach. J. Logic Comput. 21(2),
133–156 (2011)

[30] Van Bendegem, J.-P.: Paraconsistency and dialogue logic, critical examination
and further explorations. Synthese 127(1–2), 35–55 (2001)



134 M. Beirlaen and M. Fontaine Log. Univers.

Mathieu Beirlaen
Research Group for Non-Monotonic Logics and Formal Argumentation
Institute for Philosophy II
Ruhr University Bochum
Bochum, Germany
e-mail: mathieubeirlaen@gmail.com

Matthieu Fontaine
Instituto de Investigaciones Filosóficas
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