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Abstract. In recent years, a number of authors have started studying
Aristotelian diagrams containing metalogical notions, such as tautology,
contradiction, satisfiability, contingency, strong and weak interpretations
of (sub)contrariety, etc. The present paper is a contribution to this line
of research, and its main aims are both to extend and to deepen our
understanding of metalogical diagrams. As for extensions, we not only
study several metalogical decorations of larger and less widely known
Aristotelian diagrams, but also consider metalogical decorations of an-
other type of logical diagrams, viz. duality diagrams. At a more funda-
mental level, we present a unifying perspective which sheds new light on
the connections between new and existing metalogical diagrams, as well
as between object- and metalogical diagrams. Overall, the paper studies
two types of logical diagrams (viz. Aristotelian and duality diagrams) and
four kinds of metalogical decorations (viz. those based on the opposition,
implication, Aristotelian and duality relations).
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1. Introduction

The Aristotelian square of oppositions is a diagram that displays four state-
ments or notions, and certain logical relations holding between them. It has a
very rich tradition, going back—together with the discipline of logic itself—to
the works of Aristotle. Over the centuries, authors such as Avicenna, William
of Sherwood, John Buridan, Boole and Frege have studied the square and
other, larger Aristotelian diagrams [16,17,40,48,63,67]. Since the beginning of
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the twenty-first century, logicians have started studying Aristotelian diagrams
in a more systematic and mathematically precise way, which has led to sig-
nificant theoretical advances, e.g. concerning the classification of the various
types of Aristotelian diagrams [1,59,79,81].

The overwhelming majority of Aristotelian diagrams that have been stud-
ied so far have object-level decorations: they visualize the Aristotelian relations
holding between formulas coming from (the object language of) some given log-
ical system (for example, propositional logic [55], modal logic [35], temporal
logic [68], epistemic logic [50], deontic logic [56] and dynamic logic [22]), or be-
tween the natural language expressions of some given lexical field (for example,
color terms [44], singular expressions [75] and subjective quantification [80]).
In the last two or three years, however, authors such as Béziau and Seuren
have also started investigating Aristotelian diagrams that are decorated with
meta-level notions such as tautology, contradiction, satisfiability, contingency,
strong and weak interpretations of (sub)contrariety, etc. [4,5,33,72]. As will
be explained later in this paper, this transition from object- to metalogical
decorations of Aristotelian diagrams is quite important, since it sheds some
interesting new light on the ways in which the Aristotelian relations are usually
defined. It should also be emphasized that these metalogical diagrams are not
only important from a strictly theoretical perspective, but are also relevant
in more practically oriented contexts. For example, it has been argued that
the metalogical square can be fruitfully used in teaching metalogic to certain
groups of students [24].

In sum, then, metalogical diagrams are becoming an active topic of in-
vestigation in contemporary philosophical logic. The present paper is a con-
tribution to this line of research, and its main aims are both to extend and
to deepen our understanding of metalogical diagrams. We will now explain in
some more detail how each of these aims will be achieved.

The paper offers extensions vis-à-vis previous work in at least three ways.
First of all, we will study much larger metalogical diagrams: while previous
work has focused on metalogical squares and hexagons, we will also study
metalogical decorations for larger Aristotelian diagrams, such as octagons, do-
decagons, and even three-dimensional polyhedra such as the rhombic dodec-
ahedron. Secondly, we will also study metalogical decorations for less widely
known families of Aristotelian diagrams. This applies not only to the larger di-
agrams mentioned in the first point (obviously, a rhombic dodecahedron is less
familiar to most people than an ordinary square of oppositions), but also to
the smaller diagrams, such as hexagons: previous work has focused exclusively
on a single family of hexagons, viz. the Jacoby–Sesmat–Blanché hexagons,
but in this paper we will also consider other, less widely known families of
hexagons, such as the ‘Sherwood–Czezowski’ hexagons, the ‘unconnected-4’
hexagons and the ‘unconnected-8’ hexagons. Thirdly, we will show that meta-
logical decorations can be given not only for Aristotelian diagrams, but also for
other types of logical diagrams, such as Hasse diagrams and, most importantly,
duality diagrams.



Vol. 10 (2016) Metalogical Decorations of Logical Diagrams 235

There are also various ways in which the paper will deepen our under-
standing of metalogical diagrams. First of all, we will offer a more precise
account of the relationship between object- and metalogical decorations of
Aristotelian diagrams. Secondly, we will discuss the connections between the
new metalogical diagrams presented in this paper and those that were pre-
viously studied. For example, we will show that the metalogical squares and
hexagons studied by Béziau [4,5], Diaconescu [33] and Seuren [72] can be seen
as subdiagrams or specific instances of the diagrams presented here. Thirdly,
because of these connections, the paper also offers a unifying perspective on
metalogical diagrams. After all, if two seemingly unrelated metalogical dia-
grams can both be seen as specific instances of a single diagram, then they
turn out to be intimately related to each other.

The paper is organized as follows. Sections 2 and 3 mainly prepare the
ground for the analysis that will be presented in the later sections. Section 2
provides a series of increasingly more abstract ways of defining the Aristotelian
relations, and discusses which of these definitions are best able to accommo-
date meta- as well as object-logical decorations of Aristotelian diagrams. Next,
Sect. 3 provides some background on other types of logical relations, viz. the
opposition, implication and duality relations. Sections 4–8 contain the core
results of this paper: we present and study various metalogical decorations of
various kinds of logical diagrams. Section 4 studies several Aristotelian dia-
grams that are decorated with the opposition relations, and discusses their
connections with earlier work on metalogical decorations of Aristotelian dia-
grams. Next, Sect. 5 studies Aristotelian diagrams for the implication relations,
and explores their connections with Aristotelian diagrams for the opposition
relations (which were studied in Sect. 4) and for abstract ordering relations.
Section 6 concludes our study of metalogical decorations for Aristotelian dia-
grams, by exploring some Aristotelian diagrams for the Aristotelian relations
themselves, and for the duality relations. After this, we turn from metalogi-
cal Aristotelian diagrams to metalogical duality diagrams. In Sect. 7, we first
study duality diagrams for the opposition and implication relations. Section 8
then explores some duality diagrams for the Aristotelian relations, and for the
duality relations themselves. Finally, Sect. 9 summarizes the results that have
been obtained in this paper, and highlights some general themes that we have
touched upon along the way.

2. Defining the Aristotelian Relations

Before we start constructing new metalogical diagrams, it is important to
clearly understand why a single type of diagrams—viz. Aristotelian diagrams—
can be used for meta- as well as object-logical decorations. In other words, how
is it possible for the Aristotelian relations to hold between metalogical state-
ments as well as between object-logical formulas? The exact way in which the
Aristotelian relations are defined turns out to be highly relevant in answering
this question. In this section, we will introduce a series of increasingly more
abstract ways of defining the Aristotelian relations, and discuss to what extent
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these definitions are able to accommodate metalogical statements as well as
object-logical formulas.

The oldest definition dates back to Aristotle himself, and has been used
throughout the history of philophical logic [62]. In contemporary work on
Aristotelian diagrams, too, it is by far the most widely used definition [8,9].
The formulation is entirely informal, and looks as follows:

Definition 2.1. Two statements ϕ and ψ are said to be
contradictory iff ϕ and ψ cannot be true together and

ϕ and ψ cannot be false together,
contrary iff ϕ and ψ cannot be true together and

ϕ and ψ can be false together,
subcontrary iff ϕ and ψ can be true together and

ϕ and ψ cannot be false together,
in subalternation iff ϕ entails ψ and

ψ does not entail ϕ.

Because of its informal nature, this definition can apply both to object-
and to metalogical statements. To illustrate this, consider the ambiguity of the
word ‘true’ in the definition of contrariety: this word can stand for ‘truth in
a model’ (in case two object-logical formulas are said to be contrary), or for
‘absolute, informal truth’ (in case two metalogical statements are said to be
contrary). A problem with Definition 2.1 is that it makes the Aristotelian rela-
tions entirely insensitive to the ‘background logic’. Which Aristotelian relation
holds between two (object-logical) formulas partially depends on the logical
system that is being assumed. The well-known issue of ‘existential import’ can
be seen as an illustration of this problem: in classical syllogistics, there is a
subalternation from ∀x(Sx → Px) to ∃x(Sx∧Px), but in contemporary predi-
cate logic, these formulas stand in no Aristotelian relation at all [30, Section 4].
In order to deal with this problem, a new and more precise way of defining the
Aristotelian relations has been proposed [75,79,80]:

Definition 2.2. Let S be a logical system, which is assumed to have Boolean
operators and a model-theoretic semantics |=. Two formulas ϕ,ψ ∈ LS are
said to be

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ,
S-subcontrary iff S �|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
in S-subalternation iff S |= ϕ → ψ and S �|= ψ → ϕ.

First of all, note that this definition stays very close to the original, more
informal Definition 2.1. The condition that ϕ and ψ cannot be true together
is formalized as S |= ¬(ϕ ∧ ψ), i.e. S has no models in which ϕ and ψ are
simultaneously true; similarly, the condition that ϕ and ψ cannot be false
together is formalized as S |= ϕ ∨ ψ, or equivalently, S |= ¬(¬ϕ ∧ ¬ψ), i.e. S
has no models in which ϕ and ψ are simultaneously false. Furthermore, note
that unlike Definition 2.1, Definition 2.2 is capable of dealing with the logic-
sensitivity of the Aristotelian relations; for example, it is now possible to say



Vol. 10 (2016) Metalogical Decorations of Logical Diagrams 237

that two formulas are S1-contrary, but S2-contradictory, for logical systems S1
and S2. The downside of explicitly specifying the logical system S, however, is
that Definition 2.2 only applies to object-logical formulas: conditions such as
S |= ¬(ϕ ∧ ψ) and S |= ϕ → ψ are only meaningful for formulas ϕ and ψ from
the object language LS.

A key insight of Definition 2.2 is that the Aristotelian relations are fully
determined by the Boolean structure of the logical system S. This suggests a
third and final way of defining these relations, which abstracts away from the
concrete details of S, and only focuses on its Boolean structure:

Definition 2.3. Let B = 〈B,∧B,∨B,¬B,
B,⊥B〉 be a Boolean algebra. Two
elements x, y ∈ B are said to be

B-contradictory iff x ∧B y = ⊥B and x ∨B y = 
B,
B-contrary iff x ∧B y = ⊥B and x ∨B y �= 
B,
B-subcontrary iff x ∧B y �= ⊥B and x ∨B y = 
B,
in B-subalternation iff x ∧B y = x and x ∧B y �= y.

Because of its level of abstraction, this definition is fully general. First,
note that it subsumes Definition 2.2 as a special case: if S is a logical sys-
tem as specified in Definition 2.2 (i.e. having Boolean connectives), then its
Lindenbaum–Tarski algebra B(S) := {[ϕ] | ϕ ∈ LS} is a Boolean algebra, and
in the case of contrariety, for example, we have for all ϕ,ψ ∈ LS:1

ϕ and ψ are S-contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ
iff [ϕ] ∧ [ψ] = ⊥ and [ϕ] ∨ [ψ] �= 

iff [ϕ] and [ψ] are B(S)-contrary.

Another set of special cases of Definition 2.3 arises if we take the Boolean
algebra B to be the powerset ℘(X) of some set X. In this case, two sets
X1,X2 ⊆ X are ℘(X)-contrary iff X1 ∩ X2 = ∅ and X1 ∪ X2 �= X—in other
words, iff X1 and X2 are disjoint but not exhaustive. If we take X to be the
Lindenbaum–Tarski algebra B(S) of some (non-trivial) logical system S, we see
how Aristotelian relations can hold between metalogical statements. For exam-
ple, if we consider the sets X1 := {
},X2 := {⊥} ⊆ B(S), we see that X1 and
X2 are ℘(B(S))-contrary, which means exactly that the metalogical properties
of being an S-tautology and being an S-contradiction—or equivalently, the
metalogical statements “ϕ is an S-tautology” and “ϕ is an S-contradiction”—
are contrary to each other. Finally, it will also be interesting to consider the
case X := B(S) × B(S), i.e. X is the set of all pairs of (equivalence classes
of) formulas of the logical system S. Now we can define X1 := {([ϕ], [ψ]) |
ϕ and ψ are S-contrary} and X2 := {([ϕ], [ψ]) | ϕ and ψ are S-subcontrary},
and see that X1 and X2 are ℘(B(S) × B(S))-contrary, which means exactly
that the metalogical relations of being S-contrary and being S-subcontrary—
or equivalently, the metalogical statements “ϕ and ψ are S-contrary” and “ϕ
and ψ are S-subcontrary”—are themselves contrary to each other.

1 We make use here of the fact that the Aristotelian relations are only defined up to logical
equivalence, i.e. if ϕ ≡S ϕ′ and ψ ≡S ψ′, then R(ϕ, ψ) iff R(ϕ′, ψ′), for all Aristotelian
relations R. This can easily be derived from Definition 2.2.
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Definition 2.3 thus explains why the Aristotelian relations can hold be-
tween meta- as well as object-logical statements: these relations are defined
in a Boolean algebra, and this Boolean algebra can be situated at the object-
logical level—in the the case of B(S)—, or at the metalogical level—in the cases
of ℘(B(S)) and ℘(B(S) × B(S)). In Sects. 4, 5 and 6 we will study metalogical
decorations of Aristotelian diagrams that are based on both of the latter cases.
We finish this section by summarizing the dialectical progression that has been
developed:
• Definition 2.1 accommodates object- and metalogical statements,

but fails to handle logic-sensitivity (at the object-level).
• Definition 2.2 is able to handle logic-sensitivity (at the object-level),

but can only accommodate object-logical formulas.
• Definition 2.3 accommodates object- and metalogical statements,

and is able to handle logic-sensitivity (at the object- and meta-level).

3. Opposition, Implication and Duality

In this section, we will introduce some other types of logical relations that are
closely related to the Aristotelian relations, and that will play an important
role later in the paper. Section 3.1 discusses the opposition and implication
relations, which will be studied extensively in Sects. 4, 5 and 7. Next, Sect. 3.2
deals with the duality relations, which will figure prominently in Sects. 6 and 8.

3.1. The Opposition and Implication Relations

In [79] it is pointed out that the set of Aristotelian relations has a number
of problematic, or at least peculiar, properties; for example, there is a clear
conceptual asymmetry between the relations of contradiction, contrariety and
subcontrariety on the one hand, and the relation of subalternation on the
other. Furthermore, it is argued that these properties can best be explained
by viewing the Aristotelian relations as being hybrid between two other types
of relations, viz. the opposition and implication relations.

We will now define these two new types of relations. Recall that in Sect. 2,
we showed that there are at least three distinct ways of defining the Aristotelian
relations; in exactly the same way, there are also at least three ways of defining
the opposition and implication relations. In this paper, however, we will only be
dealing with these relations at the object-logical level (i.e. as holding between
formulas of the language LS of some logical system S), and thus there is no
need for the full generality that was provided by Definition 2.3. Hence, we can
define the opposition and implication relations in a way that is analogous to
Definition 2.2 (if desired, the analogues of Definitions 2.1 and 2.3 could easily
be given too).

Definition 3.1. Let S be a logical system as in Definition 2.2. Two formulas
ϕ,ψ ∈ LS are said to be
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Figure 1. Code for visualizing a the opposition relations and
b the implication relations

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ,
S-subcontrary iff S �|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-non-contradictory iff S �|= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ.

These relations are abbreviated as CDS, CS, SC S and NCDS, respectively. The
set OGS consisting of these four relations is called the opposition geometry of S,
i.e. OGS := {CDS,CS,SC S,NCDS}.

Definition 3.2. Let S be a logical system as in Definition 2.2. Two formulas
ϕ,ψ ∈ LS are said to be

in S-bi-implication iff S |= ϕ → ψ and S |= ψ → ϕ,
in S-left-implication iff S |= ϕ → ψ and S �|= ψ → ϕ,
in S-right-implication iff S �|= ϕ → ψ and S |= ψ → ϕ,
in S-non-implication iff S �|= ϕ → ψ and S �|= ψ → ϕ.

These relations are abbreviated as BI S, LI S, RI S and NI S, respectively. The
set IGS consisting of these four relations is called the implication geometry
of S, i.e. IGS := {BI S,LI S,RI S,NI S}.

The opposition and implication relations will be visualized using the code
shown in Fig. 1. It should be noted that S-left-implication coincides with S-
subalternation; consequently, the Aristotelian geometry AGS := {CDS,CS,
SC S,LI S} is hybrid between the opposition and implication geometries, i.e.
AGS ⊆ OGS ∪ IGS. Furthermore, the Aristotelian geometry is hybrid in an
informationally optimal fashion. To explain this claim, [79] introduces a well-
motivated information measure m that allows us to compare the information
levels of any two opposition and/or implication relations. Next, note that any
two formulas stand in exactly one opposition relation and in exactly one impli-
cation relation. Essentially, if the formulas happen to be S-contingent, it can
be shown that one of these two relations is strictly more informative than the
other (according to m) iff it is Aristotelian [79, Section 5].2

To illustrate this, consider the modal logic S5 and the S5-contingent
formulas �p, ♦p, �¬p and ♦¬p. It is well-known that the Aristotelian relations
holding between these formulas yield a classical Aristotelian square, which
is shown in Fig. 2b. However, in exactly the same fashion, the opposition

2 If neither of the two relations is strictly more informative than the other, then neither is
Aristotelian, and thus the two formulas stand in no Aristotelian relation at all.
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Figure 2. The a opposition, b Aristotelian and c implication
square for {�p,♦p,�¬p,♦¬p}

and implication relations holding between these formulas yield opposition and
implication squares, which are shown in Fig. 2a, c, respectively. Now consider
some pairs of formulas:
• �p and �¬p: these stand in the opposition relation CS5 and the implica-

tion relation NI S5; according to m, CS5 is strictly more informative than
NI S5, and CS5 is an Aristotelian relation, while NI S5 is not.

• ♦p and �¬p: these stand in the opposition relation CDS5 and the impli-
cation relation NI S5; according to m, CDS5 is strictly more informative
than NI S5, and CDS5 is an Aristotelian relation, while NI S5 is not.

• �p and ♦p: these stand in the opposition relation NCDS5 and the im-
plication relation LI S5; according to m, LI S5 is strictly more informa-
tive than NCDS5, and LI S5 is an Aristotelian relation, while NCDS5 is
not.
The Aristotelian square in Fig. 2b is thus hybrid between the opposition

and implication squares in Fig. 2a, c, respectively: every pair of formulas stands
in an opposition relation and an implication relation, and the Aristotelian
square visualizes exactly the more informative of these two relations.

The opposition and implication geometries were primarily introduced be-
cause of their relation to the Aristotelian geometry, but they also turn out to
be very interesting in their own right. We now briefly mention some basic
results from [79] that will be useful later in this paper.

Lemma 3.3. For all formulas ϕ,ψ ∈ LS, the following hold:

1a) CDS(ϕ, ψ) iff CDS(¬ϕ, ¬ψ), 1b) BI S(ϕ, ψ) iff BI S(¬ϕ, ¬ψ),
2a) CS(ϕ, ψ) iff SC S(¬ϕ, ¬ψ), 2b) LI S(ϕ, ψ) iff RI S(¬ϕ, ¬ψ),
3a) SC S(ϕ, ψ) iff CS(¬ϕ, ¬ψ), 3b) RI S(ϕ, ψ) iff LI S(¬ϕ, ¬ψ),
4a) NCDS(ϕ, ψ) iff NCDS(¬ϕ, ¬ψ), 4b) NI S(ϕ, ψ) iff NI S(¬ϕ, ¬ψ).
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Lemma 3.4. For all formulas ϕ,ψ ∈ LS, the following hold:
1a) CDS(ϕ, ψ) iff BI S(¬ϕ, ψ), 1b) CDS(ϕ, ψ) iff BI S(ϕ, ¬ψ),
2a) CS(ϕ, ψ) iff RI S(¬ϕ, ψ), 2b) CS(ϕ, ψ) iff LI S(ϕ, ¬ψ),
3a) SC S(ϕ, ψ) iff LI S(¬ϕ, ψ), 3b) SC S(ϕ, ψ) iff RI S(ϕ, ¬ψ),
4a) NCDS(ϕ, ψ) iff NI S(¬ϕ, ψ), 4b) NCDS(ϕ, ψ) iff NI S(ϕ, ¬ψ),
5a) BI S(ϕ, ψ) iff CDS(¬ϕ, ψ), 5b) BI S(ϕ, ψ) iff CDS(ϕ, ¬ψ),
6a) LI S(ϕ, ψ) iff SC S(¬ϕ, ψ), 6b) LI S(ϕ, ψ) iff CS(ϕ, ¬ψ),
7a) RI S(ϕ, ψ) iff CS(¬ϕ, ψ), 7b) RI S(ϕ, ψ) iff SC S(ϕ, ¬ψ),
8a) NI S(ϕ, ψ) iff NCDS(¬ϕ, ψ), 8b) NI S(ϕ, ψ) iff NCDS(ϕ, ¬ψ).

Lemma 3.5. For all formulas ϕ,ψ ∈ LS, the following hold:

1. there is exactly one R ∈ OGS such that R(ϕ,ψ),
2. there is exactly one S ∈ IGS such that S(ϕ,ψ).

Lemma 3.5 essentially states that OGS and IGS are partitions of B(S) ×
B(S) (recall that B(S) denotes the Lindenbaum–Tarski algebra of S). In the
contemporary study of Aristotelian diagrams, partitions play an important
role, because of their intimate connection to bitstring semantics [25,30,82]. In
this paper, this connection will not be explored in any detail; we will suffice
by briefly describing the analogy between the partition-based bitstring seman-
tics for classical propositional logic (CPL) and the partition-based bitstring
semantics for the opposition and implication relations.

In CPL, the formulas p and q induce the partition {p∧q, p∧¬q,¬p∧q,¬p∧
¬q} of the class of all CPL-models (cf. the 4 rows in a truth table for a binary
propositional connective); therefore, all Boolean combinations of formulas in
this partition can be represented by bitstrings of length 4. Entirely analogously,
the sets {([ϕ], [ψ]) | S |= ¬(ϕ ∧ ψ)} and {([ϕ], [ψ]) | S |= ϕ ∨ ψ} induce the
partition {CDS,CS,SC S,NCDS} = OGS of B(S) × B(S); therefore, in this
partition as well, all Boolean combinations of relations can be represented by
bitstrings of length 4. Similar remarks apply to IGS.

3.2. The Duality Relations

The final set of logical relations that we will study consists of the well-known
duality relations. Like the Aristotelian relations (but unlike the opposition
and implication relations), the duality relations will be used in this paper
at both the object- and the metalogical level, i.e. as holding between formu-
las/operators of the language LS of some logical system S as well as between
metalogical statements/operators. They will therefore be defined in a fully
general way (analogous to Definition 2.3 of the Aristotelian relations).

Definition 3.6. Consider Boolean algebras A = 〈A,∧A,∨A,¬A,
A,⊥A〉 and
B = 〈B,∧B,∨B,¬B,
B,⊥B〉. The duality relations between n-ary operators
O1, O2 : An → B are defined as follows:

• O1 and O2 are identical iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(a1, . . . , an),

• O1 and O2 are each other’s external negation iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(a1, . . . , an),
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• O1 and O2 are each other’s internal negation iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(¬Aa1, . . . ,¬Aan),

• O1 and O2 are each other’s dual iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(¬Aa1, . . . ,¬Aan).

These relations are abbreviated as id, eneg, ineg and dual, respectively.
The set DG consisting of these four relations is called the duality geometry ,
i.e. DG := {id,eneg, ineg,dual}.

Although the duality relations are strictly speaking defined between oper-
ators O1, O2 : An → B, it will be convenient to also be able to apply them to the
elements of B directly: we will say that O1(a1, . . . , an) and O2(a1, . . . , an) stand
in some duality relation R iff the operators O1 and O2 stand in R. Consider,
for example, conjunction and disjunction in classical propositional logic (CPL):
these can be viewed as binary operators ∧,∨ : B(CPL)×B(CPL) → B(CPL). It
trivially holds for all ϕ,ψ ∈ LCPL that ϕ ∧ ψ ≡CPL ¬(¬ϕ ∨ ¬ψ), so by Defini-
tion 3.6 we have dual(∧,∨). Moving from operators to concrete formulas, we
can also say that dual(p ∧ q, p ∨ q) and dual(¬p ∧ ¬q,¬p ∨ ¬q). In exactly
the same way, it can be shown that ineg(p ∧ q,¬p ∧ ¬q), ineg(p ∨ q,¬p ∨ ¬q),
eneg(p ∧ q,¬p ∨ ¬q) and eneg(p ∨ q,¬p ∧ ¬q). Using the visual code shown
in Fig. 3a, we thus obtain the duality square shown in Fig. 3b.

When viewed as relations between elements of B(S), the duality relations
id and eneg correspond exactly to the implication relation BI S and the oppo-
sition relation CDS, respectively. Furthermore, looking at the duality square
in Fig. 3b, it looks like dual corresponds to LI S, while ineg corresponds to
both CS and SC S. Observations such as these might explain why some au-
thors [20,58] have come close to straightforwardly identifying Aristotelian and
duality squares, for example by using Aristotelian terminology to describe a
duality square (or vice versa), or by viewing one as a generalization of the
other.

However, it has also been argued extensively that although AG and DG
sometimes yield similar-looking diagrams, they are two conceptually indepen-
dent sets of logical relations, and should thus not be confused with each other
[29,54,77,84]. For example, it is easy to show that all duality relations are
symmetric, i.e. for all R ∈ DG and for all operators O1, O2, it holds that

Figure 3. a Code for visualizing the duality relations; b du-
ality square for {p ∧ q,¬p ∧ ¬q, p ∨ q,¬p ∨ ¬q}
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Figure 4. a Non-degenerated duality square, b degenerated
duality diagram for operators that that are their own dual, c
degenerated duality diagram for operators that are their own
internal negation

R(O1, O2) iff R(O2, O1); this clearly shows that dual cannot be identified
with LI S, since the latter is asymmetric. Another important difference is that
unlike the Aristotelian relations, the duality relations are functional, i.e. for
all R ∈ DG and for all operators O1, there exists a unique operator O2 such
that R(O1, O2).3 The duality relation R can thus be seen as a function, and
we will often write O2 = R(O1). For example, since dual(∧,∨), we can also
say that dual(∧) = ∨. Since the duality relations are symmetric, the corre-
sponding functions are idempotent, i.e. R(R(O1)) = O1 for all R ∈ DG and
operators O1;4 in other words: R ◦ R = id. More generally, it is well-known
that when its elements are viewed as functions, DG forms a Klein four group
[36,53,65,66,83], which has the following Cayley table:

◦ id eneg ineg dual
id id eneg ineg dual

eneg eneg id dual ineg
ineg ineg dual id eneg
dual dual ineg eneg id

This Cayley table and the duality square in Fig. 4a might suggest that
id(O), eneg(O), ineg(O) and dual(O) are pairwise distinct for all opera-
tors O. However, there are also exist operators O that are their own dual,
i.e. dual(O) = O = id(O); it then follows that also eneg(O) = ineg(O),
and thus the duality square in Fig. 4a degenerates into the horizontal du-

3 For example, the formula p∧ q is contrary to many formulas (e.g. to ¬p, to ¬q, to ¬p∧¬q,
etc.), but it has only one internal negation (viz. ¬p ∧ ¬q).
4 Proof: R(O1) = O2 ⇔ R(O1, O2) ⇔ R(O2, O1) ⇔ R(O2) = O1, and thus R(R(O1)) =
R(O2) = O1.
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ality diagram in Fig. 4b. Viewing the elements of DG as relations, we thus
find that id ∩ dual �= ∅ �= eneg ∩ ineg. A typical example of an opera-
tor that is its own dual is negation ¬ : B(S) → B(S), since ¬ϕ ≡S ¬¬¬ϕ for
all ϕ ∈ LS . Completely analogously, there also exist operators O that are
their own internal negation, i.e. ineg(O) = O = id(O); it then follows that
also eneg(O) = dual(O), and thus the duality square in Fig. 4a degener-
ates into the vertical duality diagram in Fig. 4c. Again viewing the elements
of DG as relations, we find that id ∩ ineg �= ∅ �= eneg ∩ dual. A typi-
cal example of an operator that is its own internal negation is the bicondi-
tional ↔ : B(CPL) × B(CPL) → B(CPL), since ϕ ↔ ψ ≡CPL ¬ϕ ↔ ¬ψ for all
ϕ,ψ ∈ LCPL.5

The basic perspective on duality that has been described so far can be
extended and generalized in various ways. For example, duality patterns for
composed operators are studied in [21]. Another generalization, which will
turn out to be very useful in Sect. 8, is the so-called generalized Post dual-
ity [41,51]. Recall that according to Definition 3.6, the ineg-relation involves
negating all the operator’s arguments. Although the most canonical exam-
ples of duality indeed obey this requirement—e.g. the internal negation of
p ∧ q is ¬p ∧ ¬q; see Fig. 3b—, there are also important examples in which
internal negation is applied to only one of the operator’s arguments, such as
generalized quantifiers (on the relational perspective), subject negation, and
the public announcement operator [22,29,37,45,47]. Generalized Post duality
accommodates these examples, by ‘splitting’ the ineg-relation into n indepen-
dent relations ineg1, . . . , inegn; as a consequence, the dual-relation is also
split into n independent relations dual1, . . . ,dualn.

Definition 3.7. Consider Boolean algebras A = 〈A,∧A,∨A,¬A,
A,⊥A〉 and
B = 〈B,∧B,∨B,¬B,
B,⊥B〉. The generalized Post duality relations between
n-ary operators O1, O2 : An → B are defined as follows:
• id and eneg are defined as before (Definition 3.6),
• for 1 ≤ i ≤ n, we define inegi(O1, O2) :⇔

∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(a1, . . . , ai−1,¬Aai, ai+1, . . . , an),
• for 1 ≤ i ≤ n, we define duali(O1, O2) :⇔

∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(a1, . . . , ai−1,¬Aai, ai+1, . . . , an).

From the perspective of generalized Post duality, an n-ary operator O
thus possesses n + 1 independent negation positions, viz. 1 external negation
and n internal negations. Consequently, if n > 1, the generalized Post duality
behavior of such an n-ary operator cannot be visualized by means of a simple
square diagram, but rather requires an (n + 1)-dimensional hypercube. For
the binary operator of conjunction, for instance, we have ineg1(p ∧ q,¬p ∧ q),
dual1(p∧q, p∨¬q), ineg2(p∧q, p∧¬q), dual2(p∧q,¬p∨q), etc.; all these facts
can be visualized by means of a three-dimensional generalized Post duality

5 After having dealt with operators that coincide with their own dual or their own internal
negation, one might wonder whether there are also operators that coincide with their own
external negation. However, it is easy to show that if an operator O : An → B satisfies
eneg(O) = O, then B has to be the trivial Boolean algebra in which ⊥B = �B.
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Figure 5. a Generalized Post duality cube, and b, c two
generalized Post duality squares

cube, which is shown in Fig. 5a.6 Note that ineg1 ◦ ineg2 and eneg ◦ ineg1 ◦
ineg2 are the classical ineg- and dual-relations, respectively. Furthermore,
it can be shown group-theoretically that the generalized Post duality cube in
Fig. 5a contains exactly 14 duality squares as subdiagrams [21], two of which
are shown in Fig. 5b, c.

Finally, it should be noted that there are binary operators O such that
ineg1(O) = ineg2(O) (in this case, it also holds that O is its own ‘clas-
sical’ internal negation, since ineg(O) = (ineg1 ◦ ineg2)(O) = (ineg1 ◦
ineg1)(O) = id(O) = O). For example, for the operator O : B(S5) × B(S5) →
B(S5) : (ϕ,ψ) �→ �(ϕ ↔ ψ) it holds that ineg1(O) = ineg2(O), since �(¬ϕ ↔
ψ) ≡S5 �(ϕ ↔ ¬ψ).7 In such cases, the generalized Post duality cube degen-
erates into a generalized Post duality square, which is shown in Fig. 6a. If we
ignore the classical ineg- and dual-relations, this square can be decomposed
into a square for ineg1/dual1 and one for ineg2/dual2, which are shown in
Fig. 6b, c, respectively.

4. Aristotelian Diagrams for the Opposition Relations

We have now arrived at the core sections of the paper, which will be devoted
to constructing and studying various metalogical decorations of various kinds
of logical diagrams. In this section, we will study Aristotelian diagrams for the

6 Note that in case of generalized duality diagrams, we attach subscripts to the diagram’s
ineg- and dual-edges to indicate which inegi or duali-relation they represent. If an ineg-
or dual-edge does not have any subscript, it still represents the classical ineg- or dual-
relation, respectively. Finally, note that in the cube in Fig. 5a only ineg1, ineg2, and dual
have been visualized, for reasons of visual simplicity (eneg corresponds to the long diagonals
of the cube, ineg corresponds to the diagonals of the top and bottom faces of the cube, dual1
corresponds to the diagonals of the front and back faces of the cube, and dual2 corresponds
to the diagonals of the left and right faces of the cube).
7 One might wonder why we do not stick to the simpler example of the biconditional (↔),

since it also holds that ineg1(↔) = ineg2(↔). However, for the biconditonal we even have
ineg1(↔) = ineg2(↔) = eneg(↔), and thus its generalized Post duality cube does not
simply degenerate into a square, but even further, into a binary duality diagram resembling
the one shown in Fig. 4c.
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Figure 6. a Degenerated generalized Post duality cube for
binary operators whose ineg1 and ineg2 coincide, and its
decomposition into two generalized Post duality squares for b
ineg1/dual1 and c ineg2/dual2

opposition geometry (OG).8 Section 4.1 introduces an Aristotelian rhombic
dodecahedron for OG. Sections 4.2–4.5 study a number of interesting subdia-
grams of this rhombic dodecahedron, and discuss their connections with earlier
work on metalogical decorations of Aristotelian diagrams.

4.1. An Aristotelian Rhombic Dodecahedron for the Opposition Relations

It is well-known that if we take the Boolean closure of the CPL-fragment {p∧q,
p ∧ ¬q, ¬p ∧ q,¬p ∧ ¬q}, we get a Boolean algebra of 16 formulas, viz. the bi-
nary connectives applied to the propositional atoms p and q. This Boolean
algebra can be visualized by means of an ordinary (two-dimensional) Hasse
diagram. It was shown in [85] that this Hasse diagram can also be visualized
as a three-dimensional polyhedron, viz. a rhombic dodecahedron (RDH). In
[55,78], however, it is shown that (a variant of) the RDH can also be used to
visualize the Aristotelian relations holding in this Boolean algebra. Further-
more, the Hasse RDH and the Aristotelian RDH turn out to be intimately
related to each other (this was already suggested in [74]; the mathematical
details are worked out in [28]).

Given the close analogy between the CPL-fragment {p ∧ q, p ∧ ¬q, ¬p ∧
q,¬p ∧ ¬q} and the opposition geometry OG = {CD ,C ,SC ,NCD} that was
described at the end of Sect. 3.1 (in particular, see Lemma 3.5), it should not
be surprising that very similar results can be obtained for OG. We begin by
considering the Boolean closure of OG, i.e. ℘∪(OG) := {⋃ X | X ⊆ OG}.
This is a Boolean algebra with 16 elements; its bottom element is the empty
relation over B(S), and its top element is CD ∪C ∪SC ∪NCD = B(S)×B(S),
i.e. the universal relation over B(S). Figure 7 shows a (two-dimensional) Hasse
diagram for ℘(OG). Following Zellweger’s [85] suggestion, this Hasse diagram

8 Throughout this section (and the next ones), we will usually omit reference to the logical
system S, and thus simply write OG instead of OGS, CD instead of CDS, etc.
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Figure 7. Two-dimensional Hasse diagram for ℘∪(OG)

Figure 8. a Hasse and b Aristotelian rhombic dodecahedron
for ℘∪(OG)

can also be visualized as a rhombic dodecahedron; this Hasse RDH for ℘∪(OG)
is shown in Fig. 8a. The corresponding Aristotelian RDH is shown in Fig. 8b.9

The elements in the Hasse RDH and the Aristotelian RDH are not for-
mulas of some logical system S—i.e. elements of B(S)—, but rather binary
relations defined over that system—i.e. elements of ℘(B(S) × B(S))—; both
of these RDHs are thus metalogical diagrams. In particular, the Aristotelian
RDH for OG in Fig. 8b is by far the largest and most complex Aristotelian
diagram with a metalogical decoration that has been studied thus far.

The internal structure of the Aristotelian RDH for OG can best be de-
scribed in terms of its subdiagrams. For example, it is well-known that every
Aristotelian RDH—regardless of its decoration—contains exactly six strong

9 Note that the Aristotelian RDH in Fig. 8b contains only 14 relations: like almost all
Aristotelian diagrams in the literature, it does not contain ℘∪(OG)’s bottom element ∅ and
top element B(S) ×B(S). (It has been suggested that these elements are actually not absent

from Aristotelian diagrams, but should rather be thought of as coinciding in the diagrams’
centers of symmetry [69,74]; recently, it has been shown that this suggestion is essentially
correct, and can be derived from a general mathematical account of the relationship between
Hasse diagrams and Aristotelian diagrams [28].)
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Figure 9. The six strong Jacoby–Sesmat–Blanché hexagons
that are subdiagrams of the Aristotelian RDH for OG

Jacoby–Sesmat–Blanché hexagons [55,69,74,80].10 Figure 9 shows what these
hexagons look like in the concrete case of the Aristotelian RDH for OG. In
ongoing research [32,81], we are working on an exhaustive typology of all sub-
diagrams that can be found inside an Aristotelian RDH (again, regardless of
its decoration). All these results can then straightforwardly be applied to the
specific case of the Aristotelian RDH for OG. In the next few subsections,
however, we will not strive for such exhaustiveness, but rather focus on some

10 The Jacoby–Sesmat–Blanché (JSB) hexagons are so-called because they were first studied
in the 1950s by Jacoby [43], Sesmat [70] and Blanché [10–13] (back then not with metalogical
decorations, of course). The distinction between strong and weak JSB hexagons was first
introduced by Pellissier [64]. Using the terminology of Definition 2.3, a JSB hexagon is said

to be strong iff the join of its three contrary elements is the top element of the Boolean
algebra in which it is defined; it is said to be weak otherwise. For example, the JSB hexagon
in Fig. 9a is strong, because its contrary elements are CD , C and SC ∪NCD , and their join
CD ∪ C ∪ (SC ∪ NCD) is indeed the top element of ℘∪(OG).
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specific subdiagrams of this Aristotelian RDH that turn out to be particularly
interesting.

4.2. Béziau’s Hexagon for Tautology and Related Metalogical Notions

One of the subdiagrams of the Aristotelian RDH for OG that turns out to be
particularly interesting is the JSB hexagon shown in Fig. 10a. This diagram
does not occur in the list of six given in Fig. 9, because it is a weak JSB
hexagon; after all, the join of its contrary elements is C ∪ SC ∪ NCD , which
is not the top element of ℘∪(OG). Furthermore, this hexagon can also be
reformulated using metalogical statements about formulas ϕ,ψ ∈ LS, as shown
in Fig. 10b.

Let’s now see what happens if we fill in the same formula ϕ twice in
these metalogical statements, as is shown in Fig. 11a. In terms of relations,
this means that we are intersecting each relation R ∈ ℘∪(OG) with the identity
relation Δ := {([ϕ], [ϕ]) | ϕ ∈ LS} on B(S), and are thus no longer working in
the Boolean algebra ℘∪(OG), but rather in the Boolean algebra ℘∪({R ∩ Δ |

Figure 10. A weak Jacoby–Sesmat–Blanché hexagon inside
the Aristotelian RDH for ℘(OG), shown in terms of a relations
and b statements

Figure 11. a A strong Jacoby–Sesmat–Blanché hexagon for
statements of the form R(ϕ,ϕ) (with R ∈ ℘∪(OG)), and b its
reformulation using more familiar terminology
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R ∈ OG}) = {(
⋃ X ) ∩ Δ | X ⊆ OG}. Assuming that the underlying logical

system S is consistent,11 we get:
CD(ϕ,ϕ) iff S |= ¬(ϕ ∧ ϕ) and S |= ϕ ∨ ϕ iff impossible,
C (ϕ,ϕ) iff S |= ¬(ϕ ∧ ϕ) and S �|= ϕ ∨ ϕ iff ϕ is a contradiction,

SC (ϕ,ϕ) iff S �|= ¬(ϕ ∧ ϕ) and S |= ϕ ∨ ϕ iff ϕ is a tautology,
NCD(ϕ,ϕ) iff S �|= ¬(ϕ ∧ ϕ) and S �|= ϕ ∨ ϕ iff ϕ is a contingency.

The impossibility of CD(ϕ,ϕ)—i.e. the fact that CD ∩ Δ = ∅—has an impor-
tant consequence for the the type of Aristotelian diagram that we are dealing
with: even though the original JSB hexagon in Fig. 10 is a weak one, the
new JSB hexagon in Fig. 11 is strong. After all, although C ∪ SC ∪ NCD
is not the top element of ℘∪(OG), the fact that CD ∩ Δ = ∅ entails that
(C ∩ Δ) ∪ (SC ∩ Δ) ∪ (NCD ∩ Δ) = (C ∪ SC ∪ NCD) ∩ Δ is indeed the top
element of ℘∪({R ∩ Δ | R ∈ OG}). Furthermore, we also find that

(ϕ,ϕ) ∈ CD ∪ SC ∪ NCD iff SC (ϕ,ϕ) or NCD(ϕ,ϕ)
iff ϕ is a tautology or ϕ is a contingency
iff ϕ is satisfiable,

(ϕ,ϕ) ∈ CD ∪ C ∪ NCD iff C (ϕ,ϕ) or NCD(ϕ,ϕ)
iff ϕ is a contradiction or ϕ is a contingency
iff ϕ is a not a tautology,

(ϕ,ϕ) ∈ CD ∪ C ∪ SC iff C (ϕ,ϕ) or SC (ϕ,ϕ)
iff ϕ is a contradiction or ϕ is a tautology
iff ϕ is a not a contingency.

By filling in the same formula twice, the six relations in the original JSB
hexagon in Fig. 10 thus turn out to correspond to some well-known metalogical
notions, such as being a tautology, being satisfiable, being a contradiction
and being contingent. At this point, it might be objected that two of the six
relations do not correspond to a ‘primitive’ metalogical notion: (CD ∪ C ∪
NCD) ∩ Δ and (CD ∪ C ∪ SC ) ∩ Δ can only be ‘negatively described’, as
not being a tautology and not being a contingency, respectively. However, this
discrepancy in lexicalization is entirely to be expected, since it is perfectly
in line with previous, empirical work on natural language decorations of the
classical square and strong JSB hexagon. Linguists have found exactly the
same discrepancy in various closed lexical fields, such as the quantifiers and
the temporal adverbs.12 The correspondence between ℘∪({R ∩ Δ | R ∈ OG})
and the lexical field of tautology and related metalogical notions shows that
this partial lexicalization pattern arises not only in natural languages, but even
in metalogical jargon.

More importantly, however, because of this correspondence, the JSB
hexagon in Fig. 11a can be reformulated as the more familiar JSB hexagon

11 We will return to this assumption at the end of this subsection.
12 Using the familiar A/I/E/O abbreviations for the elements of the square, and writing U

and Y for the hexagon’s uppermost and lowermost elements, the non-lexicalized elements

are exactly O and U. A pragmatic (neo-Gricean) explanation for the non-lexicalization of the

O-element in the square has been developed in [38,39], and later extended to also account
for the non-lexicalization of the U-element in the JSB hexagon [46,73].
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Figure 12. a A classical Aristotelian square for metalogical
notions, on the assumption that S be consistent, b a degen-
erated Aristotelian ‘cross’ for the same metalogical notions,
without the assumption that S be consistent

in Fig. 11b. This metalogical hexagon was first studied by Béziau in [4, Para-
graph 3.2.4] and [5], and later also by Diaconescu [33]. What we have shown
here is that this hexagon can be seen as (a special instance of) a subdiagram of
the Aristotelian RDH for OG that was introduced in the previous subsection.

Finally, it should be emphasized that the construction of Aristotelian di-
agrams for metalogical notions such as tautology and satisfiability crucially
depends on the assumption that the underlying logical system S be consis-
tent. To illustrate this, we will ignore (non-)contingency, and thus focus on
the Aristotelian square in Fig. 12a (which can be seen as a subdiagram of
the JSB hexagon in Fig. 11). The contrariety, the subcontrariety and the two
subalternations in this square only hold if S is assumed to be consistent. For
example, if S is not consistent, i.e. if there are no S-models, then we simul-
taneously have S |= ϕ and S |= ¬ϕ, and thus lose the contrariety between ϕ
being a tautology and ϕ being a contradiction. Similar remarks apply to the
other Aristotelian relations in the square (except for the two contradictions).
In sum, then, without the assumption that S be consistent, the metalogical
square in Fig. 12a ‘degenerates’ into the Aristotelian ‘cross’ in Fig. 12b.

4.3. Aristotelian Hexagons for Strong and Weak (Sub)contrariety

Throughout the history of philosophical logic, the relations of contrariety and
subcontrariety have been defined in two related, but subtly different ways. The
resulting notions can be called strong and weak (sub)contrariety. Working in
a logical system S,13 the definitions look as follows:

13 Recall that in Sect. 2, we distinguished at least three ways of defining the Aris-
totelian relations, viz. Definitions 2.1, 2.2 and 2.3. The distinction between strong and weak

(sub)contrariety can be made in each of these approaches. We choose to work in the line of

Definition 2.2 here, because the distinction between strong and weak (sub)contrariety only
plays a role at the object-logical level. (At the metalogical level, we exclusively work with
the strong notions of (sub)contrariety throughout this paper.)
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Definition 4.1. Two formulas ϕ,ψ ∈ LS are said to be

strongly S-contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ,
weakly S-contrary iff S |= ¬(ϕ ∧ ψ),
strongly S-subcontrary iff S �|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
weakly S-subcontrary iff S |= ϕ ∨ ψ.

The strong notions of (sub)contrariety are defined in terms of a |=-
condition and a �|=-condition; the corresponding weak notions keep the for-
mer, but discard the latter. Note that the notions of (sub)contrariety defined
in Sects. 2 and 3 are the strong ones (also see Footnote 13). Other uses of
the strong notions can be found in [62,74,79]. In contrast, the weak notions
of (sub)contrariety are used in [14,57,71]. In recent years, the distinction it-
self has become the topic of some discussion. For example, Humberstone [42]
links the strong and weak notions of (sub)contrariety to “traditionalist” and
“modernist” approaches to logic, while Demey and Smessaert [27] show that
the relation between the two notions can be understood in terms of Gricean
pragmatics. Finally, and most relevant for our current purposes, Béziau [4,
Paragraph 4.1.2] has used the strong and weak notions of (sub)contrariety to
define a metalogical decoration for an Aristotelian hexagon.

Because of their definition, the strong notions of contrariety and sub-
contrariety trivially belong to OG (recall Definition 3.1). However, the corre-
sponding weak notions can also be expressed in terms of opposition relations:

(ϕ,ψ) ∈ CD ∪ C iff CD(ϕ,ψ) or C (ϕ,ψ)
iff

(
S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ

)
or(

S |= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ
)

iff S |= ¬(ϕ ∧ ψ)
iff ϕ and ψ are weakly S-contrary,

and analogously, (ϕ,ψ) ∈ CD∪SC iff ϕ and ψ are weakly S-subcontrary. Using
‘s’- and ‘w’-subscripts for ‘strong’ and ‘weak’, respectively, we thus have:

Cs = C , SC s = SC ,
Cw = CD ∪ C , SCw = CD ∪ SC .

The strong and weak notions of (sub)contrariety thus all belong to ℘∪

(OG), and hence occur in (subdiagrams of) the Aristotelian RDH that was
constructed in Sect. 4.1. Consider, for example, the strong JSB hexagon that
was already shown in Fig. 9a, but is repeated here (modulo some rotations and
reflections) as Fig. 13a, and reformulated using the strong/weak terminology
as Fig. 13b. This hexagon visualizes the Aristotelian relations holding between
the notions of contradiction, strong contrariety and weak contrariety (and their
negations).14 It can also be used to shed some new light on the interesting
question why an otherwise well-regulated piece of scientific jargon such as the
term contrary can come to be ambiguous.

14 Completely analogously, one can of course also construct a strong JSB hexagon for
strong/weak subcontrariety instead of strong/weak contrariety; see Fig. 9b.
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Figure 13. a A strong JSB hexagon with elements of
℘∪(OG), b its reformulation in terms of weak and strong con-
trariety, and c an analogous strong JSB hexagon for the uni-
lateral and bilateral interpretations of the natural language
quantifier some

The point is that the term contrary is ambiguous in a highly system-
atic fashion: it has a weak interpretation (which is compatible with contradic-
tion) and a strong interpretation (which is incompatible with contradiction).
A strong JSB hexagon such as the one shown in Fig. 13c has been used in
[73, p. 624] to explain why the natural language expression some is ambigu-
ous between a unilateral interpretation some1 (which is compatible with all,
i.e. at least one) and a bilateral interpretation some2 (which is incompatible
with all, i.e. some but not all).15 The precise linguistic-cognitive details of this
explanation need not concern us here, but given the striking analogy between
all/some1/some2 and CD/Cw/Cs, it should not be surprising if a broadly
similar account also applies to the latter.

4.4. An Aristotelian Octagon for Strong and Weak (Sub)contrariety

In the previous subsection, we constructed a strong JSB hexagon for strong and
weak contrariety (see Figs. 9a, 13), and another strong JSB hexagon for strong
and weak subcontrariety (see Fig. 9b and Footnote 14). So far, however, we
have not yet considered the interaction between these two (pairs of) notions.
The key insight in studying this interaction is that strong contrariety and
strong subcontrariety are themselves contrary to each other.16 After all, as
was already said in Sect. 2, it holds that C ∩ SC = ∅ and C ∪ SC �= B(S) ×

15 The distinction between unilateral and bilateral interpretations can also be made for
other quantifiers, such as many and few [80, p. 484ff.], and even for richer, non-closed lexi-
cal fields [73, p. 640ff.]. For example, by replacing all and some by resp. human and animal
in Fig. 13c, one can explain the ambiguity of the word animal, which has a biological inter-
pretation (which is compatible with human) as well as a more ‘everyday life’ interpretation
(which is incompatible with human). Extensive linguistic research has shown that systematic
ambiguities such as these show up across a wide range of natural languages.
16 To re-emphasize a point that was already made earlier (see Footnote 13): note that in

saying that strong contrariety and strong subcontrariety are themselves contrary, we are
using the notion of contrariety (in italics) at the metalogical level, and are thus making use
of the strong notion of contrariety. To put it more explicitly: strong contrariety and strong
subcontrariety are themselves strongly contrary.
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Figure 14. a Aristotelian square with elements of ℘∪(OG),
b its reformulation in terms of strong (sub)contrariety

Figure 15. Two Sherwood–Czezowski hexagons that result
from adding a weak contrariety (CD∪C) and b weak subcon-
trariety (CD ∪ SC) to the square in Fig. 14

B(S), i.e. C ∩ SC is the bottom element, but C ∪ SC is not the top element
of the Boolean algebra ℘∪(OG). Consequently, strong contrariety and strong
subcontrariety can be used to construct a classical Aristotelian square, which
is shown in Fig. 14.

In order to integrate the weak notions of (sub)contrariety into this square,
we need to ‘decompose’ its subalternations. First of all, recalling that weak
contrariety is Cw = CD ∪ C , we can add Cw to the square by decomposing
its left subalternation into C → CD ∪ C and CD ∪ C → CD ∪ C ∪ NCD . In
order to keep the resulting diagram closed under contradiction, we also add the
℘∪(OG)-complement of CD ∪C , viz. SC ∪NCD , by decomposing the square’s
right subalternation into SC → SC ∪NCD and SC ∪NCD → CD∪SC ∪NCD .
The resulting Aristotelian diagram is a Sherwood–Czeżowski hexagon, which
is shown in Fig. 15a.17 Secondly, recalling that weak subcontrariety is SCw =
CD∪SC , we can add weak subcontrariety in an entirely analogous fashion, and
will thereby obtain a second Sherwood–Czeżowski hexagon, which is shown in
Fig. 15b.

These two Sherwood–Czeżowski hexagons can be combined into a single
Aristotelian diagram, viz. a Buridan octagon, which is shown in Fig. 16a.18

17 The Sherwood–Czeżowski hexagons are so-called because they were long thought to have
first been studied in the 1950s by Czeżowski [19], but it has recently been argued that they
were already used by the thirteenth-century logician William of Sherwood [48,49].
18 The Buridan octagons are so-called because they were first studied by the fourteenth-
century logician John Buridan [40,67]. Buridan octagons that can be embedded as
Aristotelian subdiagrams inside an Aristotelian RDH, have recently also been called
‘rhombicubes’, based on the cube-like shape with two rhombic faces of this embedding
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Figure 16. a Buridan octagon with elements of ℘∪(OG), b
reformulation in terms of strong/weak (sub)contrariety

Note that the four relations in the ‘middle’ of this octagon (i.e. those that do
not occur in the square in Fig. 14) do not stand in any Aristotelian relation
at all (except for the obvious contradictions between CD ∪C and SC ∪NCD ,
and between C ∪ NCD and CD ∪ SC ). Consider, for example, the relations
CD ∪ C and C ∪ NCD :
• since (CD ∪ C ) ∩ (C ∪ NCD) = C �= ∅, it follows that CD ∪ C and

C ∪ NCD are neither contradictory nor contrary,
• since (CD ∪C )∪ (C ∪NCD) = CD ∪C ∪NCD �= B(S)×B(S), it follows

that CD ∪ C and C ∪ NCD are not subcontrary,
• since (CD ∪ C ) ∩ (C ∪ NCD) = C �= CD ∪ C , it follows that there is no

subalternation from CD ∪ C to C ∪ NCD ,
• since (C ∪ NCD) ∩ (CD ∪ C ) = C �= C ∪ NCD , it follows that there is

no subalternation from C ∪ NCD to CD ∪ C .
Recalling that the Buridan octagon in Fig. 16a is a subdiagram of the

Aristotelian RDH for ℘∪(OG) that was described in Sect. 4.1, it should be
noted that this Buridan octagon consists of exactly those relations R ∈ ℘∪(OG)
that contain either C or SC but not both, i.e. such that C ⊆ R iff SC �⊆ R. We
can also construct the ‘complement’ of this Buridan octagon, which contains
exactly those relations R ∈ ℘∪(OG) such that C ⊆ R iff SC ⊆ R. It is
well-known that the complement of a Buridan octagon is itself a strong JSB
hexagon [78,81],19 and hence, this complement is a strong JSB hexagon inside
the Aristotelian RDH for ℘∪(OG), viz. the one shown in Fig. 9c.

Finally, and perhaps more importantly for our current purposes, the Buri-
dan octagon in Fig. 16a also suggests that there is not just one, but actually
two ways in which the strong notion of (sub)contrariety can be weakened.

Footnote 18 continued
[30,32,78,80,81]. The term ‘rhombicube’ was introduced recently, and derives from the fact
that if we consider a Buridan octagon as an Aristotelian subdiagram embedded inside the
Aristotelian RDH, it has a cube-like shape with two rhombic faces.
19 There are 8 relations R ∈ ℘∪(OG) such that C ⊆ R iff SC ⊆ R, but two of them are
℘∪(OG)’s bottom element ∅ (for which it holds that C �⊆ ∅ and SC �⊆ ∅) and its top element
B(S) × B(S) (for which it holds that C ⊆ B(S) × B(S) and SC ⊆ B(S) × B(S)), and these do
not occur inside any Aristotelian diagram (recall Footnote 9).
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Recall that the strong notion of contrariety (Cs = C ) is defined in terms of
a |=-condition and a �|=-condition. As was discussed in the previous subsec-
tion, several authors have proposed a weaker version of contrariety by drop-
ping the �|=-condition, thereby obtaining Cw = CD ∪C . The Buridan octagon
suggests, however, that there is also an alternative notion of weak contrari-
ety, viz. C ∗

w = C ∪ NCD . It is easy to see that this alternative notion of
weak contrariety is ‘dual’ to the original one, in the sense that it can be ob-
tained from strong contrariety by dropping the |=-condition instead of the
�|=-condition. Looking again at Fig. 16a, we cannot distinguish between the
two weak notions of contrariety, since CD ∪C and C ∪NCD stand in exactly
the same Aristotelian relations to the relations of the original square (i.e. C,
SC, CD ∪ C ∪ NCD and CD ∪ SC ∪ NCD):
• both are entailed by strong contrariety (i.e. C ),
• both entail the absence of strong subcontrariety (i.e. CD ∪ C ∪ NCD),
• both are contrary to strong subcontrariety (i.e. SC ),
• and finally, both are subcontrary to the absence of strong contrariety

(i.e. CD ∪ SC ∪ NCD).
Similar remarks can be made, of course, for subcontrariety: in addition to
strong subcontrariety (SC s = SC ) and the original notion of weak subcon-
trariety (SCw = CD ∪ SC ), we also get a new notion of weak subcontrariety
(SC ∗

w = SC ∪ NCD) that is ‘dual’ to the original one. Using this new termi-
nology, the relations in the Buridan octagon in Fig. 16a can be reformulated
more evocatively as in Fig. 16b.

4.5. Correcting Béziau’s Hexagon for Strong and Weak (Sub)contrariety

In the previous two subsections, we have constructed Aristotelian diagrams for
the strong and weak notions of contrariety, and their interaction. In each of
these diagrams, the relation of contradiction played an important role, in the
sense that CD is a subset of exactly half of the relations at its vertices (for ex-
ample, in Buridan octagon in Fig. 16, it holds that CD ⊆ Cw,SCw,not Cs,not
Cs). However, none of these diagrams contains CD ‘by itself’. Béziau [4, Para-
graph 4.1.2] has studied the interaction between CD and strong/weak (sub-
contrariety), and claims that this interaction can be visualized by means of a
JSB hexagon [4, Figure 40], which is shown here as Fig. 17a. Note that Béziau
[4, p. 30] explicitly defines the notions of strong (sub)contrariety and weak
(sub)contrariety, and his definition corresponds exactly to our Definition 4.1.
However, Béziau does not state explicitly how he understands the relation la-
beled as ‘not CD ’ in his hexagon; we will return to this missing definition very
soon (see Footnote 21).

Upon closer examination, Béziau’s hexagon turns out to be only partially
correct; more specifically, we find:
• the three contrarieties and the six subalternations are correct,
• the three contradictions are incorrect,

for example, Cs and SCw are said to be contradictory, but since Cs ∩
SCw = C ∩ (CD ∪SC ) = ∅ and Cs ∪SCw = C ∪ (CD ∪SC ) = CD ∪C ∪
SC �= B(S)×B(S), these relations are contrary, rather than contradictory,
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Figure 17. a Béziau’s partially correct hexagon, b a plausi-
ble reformulation in terms of elements of ℘∪(OG), and c the
corrected version

• the three subcontrarieties are incorrect,
for example, Cw and SCw are said to be subcontrary, but since Cw ∪
SCw = (CD ∪ C ) ∪ (CD ∪ SC ) = CD ∪ C ∪ SC �= B(S) × B(S), these
relations are not subcontrary; in fact, it can be shown that they do not
stand in any Aristotelian relation at all.

The contradictions in Béziau’s hexagon in Fig. 17a, b should thus be re-
placed with contrarieties, and similarly, the subcontrarieties should be deleted
(and not replaced with any Aristotelian relation at all). Figure 17c shows the
Aristotelian diagram that is the result of making these corrections to Béziau’s
original hexagon. It should be emphasized that this corrected hexagon is highly
exotic, since it does not obey the nearly universally accepted principle that
Aristotelian diagrams should consist of pairs of contradictory formulas.20

Based on the observations made above, a uniform explanation can be
given for the errors in the hexagon in Fig. 17a, b: Béziau seems to have ig-
nored the relation NCD . After all, the incorrect contradictions and subcon-
trarieties are based on the assumption that the universal relation over B(S) is
CD ∪C ∪ SC , whereas actually it is CD ∪C ∪ SC ∪NCD .21 Putting it in less
abstract terms, Béziau seems to have ignored the fact that there exist pairs

20 The systematic study of such non-standard Aristotelian diagrams is still in its infancy;
some preliminary results can be found in [60,61].
21 Whether this explanation also applies to the contradiction between CD and ‘not CD ’,
depends on how the latter relation is interpreted (recall that Béziau does not explicitly
say what he means by ‘not CD ’). If ‘not CD ’ is interpreted as C ∪ SC ∪ NCD , then CD
and ‘not CD ’ are indeed contradictory to each other, and this relation in Béziau’s hexagon
in Fig. 17a is correct after all. However, given the uniform explanation for the two other

contradictions and the three subcontrarieties, it seems far more likely that Béziau means
‘not CD ’ to be interpreted as C ∪SC—this interpretation is also assumed in Fig. 17b—and
in that case, it is incorrect to say that CD and ‘not CD ’ are contradictory to each other
(since CD ∪ (C ∪ SC ) �= B(S) × B(S)).



258 L. Demey and H. Smessaert Log. Univers.

Figure 18. a The complement-closure of Béziau’s hexagon,
b its reformulation in terms of strong/weak/weak*
(sub)contrariety

of formulas—e.g. the pairs (p, q) and (p, p) in CPL—that are not contradic-
tory, not contrary, and not subcontrary to each other (all we can say is that
NCDCPL(p, q) and NCDCPL(p, p)).22

A correct Aristotelian diagram for the interaction between CD and
strong/weak subcontrariety can be obtained by considering the complement-
closure of Béziau’s hexagon, i.e. the Aristotelian diagram that is obtained by
adding the complements of all relations that occur in the original diagram.23

The resulting diagram is a dodecagon, which is shown in Fig. 18. This do-
decagon contains all the other Aristotelian diagrams shown in Sects. 4.3–4.5
as subdiagrams. Comparing this dodecagon to the Aristotelian RDH that was
described in Sect. 4.1, we see that it lacks only two relations, namely precisely
those that were originally forgotten by Béziau: NCD and its contradictory,
CD ∪ C ∪ SC .

One can also adopt an alternative perspective on the relationship between
Béziau’s hexagon in Fig. 17a and the Aristotelian RDH for OG in Fig. 8b.
Recall that ℘∪(OG) consists of 16 relations, which are of the form

⋃ X , for
X ⊆ OG. Now, if NCD = ∅, then these 16 relations collapse pairwise into 8
relations; for example, CD ∪NCD = CD ∪∅ = CD . The table below describes
all these collapses:

22 Using Pellissier’s [64] terminology, yet another reformulation might look as follows: Béziau
takes the hexagon in Fig. 17 to be a strong JSB hexagon, but actually it is a weak JSB
hexagon. However, this reformulation has to be taken with a grain of salt: Béziau’s hexagon
is incorrect in its contradictions and subcontrarieties, so it is not a proper JSB hexagon to
begin with, and thus the question whether it is a strong or a weak one does not even arise,
strictly speaking.
23 For most Aristotelian diagrams, this operation does not make much sense, since they are
already closed under negation, and are thus their own complement-closure.
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RDH collapse collapse RDH
CD → CD C ∪ SC ← C ∪ SC ∪ NCD
CD ∪ NCD → ← C ∪ SC
C → C CD ∪ SC ← CD ∪ SC ∪ NCD
C ∪ NCD → ← CD ∪ SC
SC → SC CD ∪ C ← CD ∪ C ∪ NCD
SC ∪ NCD → ← CD ∪ C
NCD → [∅] [CD ∪ C ∪ SC ] ← CD ∪ C ∪ SC
[∅] → ← [CD ∪ C ∪ SC ∪ NCD ]

In this table, square brackets indicate that a relation is the top- or bottom ele-
ment in its respective Boolean algebra, and is thus not included in Aristotelian
diagrams (recall Footnote 9). We thus see that the 16 − 2 = 14 relations of
the Aristotelian RDH for OG pairwise collapse into the 16

2 − 2 = 6 relations
of Béziau’s hexagon.24 In other words, Béziau’s hexagon is correct after all
(and plays a role analogous to our RDH), if only we are prepared to make the
assumption that NCD = ∅. This leads to a more charitable interpretation of
Béziau’s hexagon, since the only substantial criticism that can now be made
is that he should have stated more explicitly that he was working under the
assumption that NCD = ∅. The problem with this interpretation, however,
is that the assumption that NCD = ∅ is itself extremely unrealistic. For ex-
ample, in any consistent logical system S, if ϕ is S-contingent, it holds that
NCDS(ϕ,ϕ), and thus definitely NCDS �= ∅. In all reasonable logical systems,
it will thus be the case that NCD �= ∅, which brings us back to the original
conclusion that Béziau’s hexagon in Fig. 17 is partially incorrect, and should
be replaced by the dodecagon in Fig. 18 or even the full RDH in Fig. 8b.

We will finish this section with a more general remark. In recent years,
Béziau has studied at least two metalogical decorations of Aristotelian dia-
grams, viz. a JSB hexagon for tautology, satisfiability and related notions—see
Fig. 11b—and a JSB hexagon for the interaction between contradiction and
strong and weak notions of (sub)contrariety—see Fig. 17a. Until now, these
metalogical hexagons appeared to be two ‘independent’ Aristotelian diagrams.
In this section, however, we have shown that these hexagons are intimately
related to each other, since both of them can be seen as (special instances of)
subdiagrams of one and the same metalogical diagram, viz. the Aristotelian
RDH for OG that was described in Sect. 4.1.

5. Aristotelian Diagrams for the Implication Relations

In this section we continue our study of metalogical decorations for Aristotelian
diagrams, by considering various Aristotelian diagrams for the implication
geometry (IG). Section 5.1 shows how all the diagrams for OG that were

24 Furthermore, note that on the assumption that NCD = ∅, Béziau’s hexagon is a strong
JSB hexagon. It is still conceptually very different, however, from the six strong JSB
hexagons inside the Aristotelian RDH for OG that were listed in Fig. 9, since the latter
six do not depend on the assumption that NCD = ∅.
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Figure 19. a A weak Jacoby–Sesmat–Blanché hexagon dec-
orated with elements of ℘∪(IG), b the result of filling in
(ϕ,¬ϕ)

studied in Sect. 4 can systematically be turned into diagrams for IG. Next,
Sect. 5.2 explores the connection between Aristotelian diagrams for IG and
Aristotelian diagrams for abstract ordering relations.

5.1. From Opposition to Implication Decorations of Aristotelian Diagrams

We have argued above that since OG is a partition of B(S) × B(S)—i.e. every
pair of formulas stands in exactly one opposition relation—the elements of
℘∪(OG) can be used to decorate an Aristotelian RDH. Furthermore, all Aris-
totelian diagrams that were discussed in Sect. 4 can be seen as subdiagrams of
this Aristotelian RDH. Now, one the one hand, OG and IG are closely related
to each other (recall Lemma 3.4), and on the other hand IG is also a partition
of B(S) × B(S)—i.e. every pair of formulas stands in exactly one implication
relation (recall Lemma 3.5). Consequently, it should come as no surprise that
the elements of ℘∪(IG) = {⋃ X | X ⊆ IG} can also be used to decorate an
Aristotelian RDH, and furthermore, all the insights and Aristotelian diagrams
for ℘∪(OG) that were discussed in Sect. 4 can straightforwardly be transposed
to ℘∪(IG).

We will now briefly describe some of these Aristotelian diagrams for IG.
First of all, in analogy to the weak JSB hexagon of opposition relations that
was shown in Fig. 10a, we will consider the weak JSB hexagon of implication
relations that is shown in Fig. 19a. In the light of Lemma 3.4, however, we will
not fill in (ϕ,ϕ) in these relations, but rather (ϕ,¬ϕ); the resulting metalogical
JSB hexagon is shown in Fig. 19b.25 In terms of relations, this means that we
are intersecting each relation R ∈ ℘∪(IG) with the relation ∇ := {([ϕ], [¬ϕ]) |
ϕ ∈ LS} on B(S), and are thus no longer working in the Boolean algebra
℘∪(IG), but rather in the Boolean algebra ℘∪({R ∩ ∇ | R ∈ IG}) = {(

⋃ X ) ∩

25 It should be clear that we could also choose to systematically fill in (¬ϕ, ϕ) instead of
(ϕ, ¬ϕ): by Lemma 3.4 the resulting JSB hexagon would be identical to the one shown in
Fig. 19b, modulo symmetry over the hexagon’s vertical axis—for example, RI (¬ϕ, ϕ) iff
LI (ϕ, ¬ϕ).
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∇ | X ⊆ IG}.26 Assuming that the underlying logical system S is consistent,
we find that

(ϕ,¬ϕ) ∈ BI iff impossible,
(ϕ,¬ϕ) ∈ LI iff ϕ is a contradiction,
(ϕ,¬ϕ) ∈ RI iff ϕ is a tautology,
(ϕ,¬ϕ) ∈ NI iff ϕ is a contingency,
(ϕ,¬ϕ) ∈ BI ∪ RI ∪ NI iff ϕ is satisfiable,
(ϕ,¬ϕ) ∈ BI ∪ LI ∪ NI iff ϕ is not a tautology,
(ϕ,¬ϕ) ∈ BI ∪ LI ∪ RI iff ϕ is not a contingency.

The metalogical hexagon in Fig. 19b can thus be reformulated as the hexagon
for tautology and related metalogical notions that was already shown in
Fig. 11b. This well-known hexagon [4,5,33] can thus not only be seen as (a
special instance) of a subdiagram of the Aristotelian RDH for OG (as was
shown in Sect. 4.2), but also as (a special instance) of a subdiagram of the
Aristotelian RDH for IG.

Another insight that can fruitfully be transposed from OG to IG is the
distinction between strong and weak opposition relations. The notion of left-
implication (LI ) that was defined in Definition 3.2 can be called strong (no-
tation: LI s), since it is defined in terms of a |=- and a �|=-condition. This defi-
nition can be weakened in two ways that are ‘dual’ to each other: LIw drops
the �|=-condition, while LI ∗

w drops the |=-condition.27 Obviously, an analogous
distinction can be made for right-implication. All these relations are elements
of ℘∪(IG):

LI s = LI , RI s = RI ,
LIw = BI ∪ LI , RIw = BI ∪ RI ,
LI ∗

w = LI ∪ NI , RI ∗
w = RI ∪ NI .

Together, these strong and weak notions of left- and right-implication can be
used to decorate a Buridan octagon, which is shown in Fig. 20.

5.2. Aristotelian Diagrams for Ordering Relations

In this subsection we will explore the relationship between the Aristotelian
RDH for ℘∪(IG) and Aristotelian diagrams for abstract ordering relations. The
latter were among those that have sparked a renewed interested in Aristotelian
diagrams since the middle of the twentieth century [13], and have recently also
been studied by Béziau [6]. Let’s start by briefly recalling the definitions of
partial and total ordering relations:

Definition 5.1. A binary relation ≤ on a set S is said to be a partial order iff
it satisfies the following conditions:

26 Recall that in Sect. 4.2, every relation R ∈ ℘∪(OG) was intersected with the identity
relation Δ = {([ϕ], [ϕ]) | ϕ ∈ LS}. It is easy to see that ∇ = CD ∈ OG and Δ = BI ∈ IG.
Furthermore, in [79] it is shown that CD and BI are the most informative relations of
OG and IG, respectively. The operations described here and in Sect. 4.2 are thus entirely
analogous, since both of them involve intersecting the relations of one geometry with the
most informative relation of the other geometry.
27 The notion of entailment in contemporary logic is typically assumed to be reflexive
(ϕ |= ϕ), and thus does not correspond to LI s, but rather to LIw.
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Figure 20. a Buridan octagon with elements of ℘∪(IG), b
reformulation in terms of strong/weak left- and right-
implication

Figure 21. Aristotelian hexagon for a a total order, and b a
partial order

• for all x ∈ S: x ≤ x, (reflexivity)
• for all x, y, z ∈ S: if x ≤ y and y ≤ z, then x ≤ z, (transitivity)
• for all x, y ∈ S: if x ≤ y and y ≤ x, then x = y. (antisymmetry)

Furthermore, ≤ is said to be a total order iff it satisfies all the conditions
mentioned above, and additionally also the following one:28

• for all x, y ∈ S: x ≤ y or y ≤ x. (totality)
Finally, if ≤ is a partial or a total order, then the corresponding strict relation
< is defined as follows: x < y :⇔ (x ≤ y and x �= y).29

Consider a total order ≤ on a set S. It follows straightforwardly from
Definition 5.1 that the relations ≤,≥, <,>,=, �= ∈ ℘(S × S) can be used to
decorate a JSB hexagon, which is shown in Fig. 21a. For example, < and > are

28 Note that if the totality axiom is added, the reflexivity axiom becomes redundant, since
every relation that satisfies totality can easily be shown to also satisfy reflexivity.
29 In case ≤ is a total order, the corresponding strict relation can also be defined as follows:
x < y :⇔ not(x ≥ y). However, this alternative definition cannot be used if ≤ is only a
partial order: if ≤ is a total order, then not(x ≥ y) is equivalent to (x ≤ y and x �= y), but
if ≤ is only a partial order, then these two statements are not equivalent to each other.



Vol. 10 (2016) Metalogical Decorations of Logical Diagrams 263

contrary to each other, since there are no x, y ∈ S such that simultaneously
x < y and x > y, but there are x, y ∈ S such that neither x < y nor x > y (for
example, take (x, y) := (x, x), for any x ∈ S). Furthermore, the JSB hexagon
for total orders is strong, since the union of the contrary relations <, > and
= is the universal relation S × S (i.e. the top element of the Boolean algebra
℘(S × S)): it follows straightforwardly from the totality condition that for all
x, y ∈ S: x < y or x > y or x = y. The fact that a total order can be used to
decorate a strong JSB hexagon has long been known—in fact, it was already
known in the 1950s by Sesmat [70] and Blanché [11–13], two of the authors
after which the JSB hexagon was originally named (recall Footnote 10).

If the relation ≤ is not assumed to be a total order, but merely a partial
order, the Aristotelian hexagon in Fig. 21a undergoes some changes:

• two of the three contradictions change into contrarieties,
for example, < and ≥ are contraries, since < ∩ ≥ = ∅ (i.e. there are no
x, y ∈ S such that simultaneously x < y and x ≥ y), and < ∪ ≥ �= S ×S
(i.e. there are x, y ∈ S such that neither x < y nor x ≥ y)

• one of the three subcontrarieties is lost
(and not replaced with any Aristotelian relation at all),
viz. ≤ and ≥ are no longer subcontrary to each other, since ≤ ∪ ≥ �=
S × S (i.e. there are x, y ∈ S such that neither x ≤ y nor x ≥ y),

• the three contrarieties and the six subalternations remain unchanged.

The resulting Aristotelian hexagon is shown in Fig. 21b, and was first studied
in [60, Figure 59]. We would now like to point out a striking analogy between
two conceptual processes that have been described in this section and the
previous one:

• in Sect. 4.5: correcting Béziau’s hexagon,
i.e. from Fig. 17a, b to 17c.

• just now: moving from a total order to a partial order,
i.e. from Fig. 21a to 21b,

These two cases arise because of essentially one and the same reason. As was
argued in Sect. 4.5, the first case shows that one cannot ignore the opposi-
tion relation of non-contradiction, i.e. one cannot assume (like Béziau seemed
to do) that NCD = ∅. Completely analogously, the second case shows that
in going from complete to partial orders (and thus dropping the totality ax-
iom), one cannot ignore the relation of incomparability # := {(x, y) ∈ S × S |
not(x ≤ y) and not(x ≥ y)} = {(x, y) ∈ S × S | not(x = y) and not(x <
y) and not(x > y)}, i.e. one cannot assume that # = ∅. From this perspective,
it is particularly ironic that Béziau explicitly states that his hexagon for con-
tradiction and strong and weak (sub)contrariety in Fig. 17a is “very similar to
the ones presented by Sesmat and Blanché relating <,>,=,≤,≥, �=” [4, p. 30],
and thus compares it to the hexagon for total orders in Fig. 21a, although it
is actually much more similar to the hexagon for partial orders in Fig. 21b.

The Boolean closure of the hexagon for partial orders in Fig. 21b is
a Boolean algebra consisting of 16 elements, which—after leaving out the
empty and universal relations (recall Footnote 9)—can be used to decorate
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Figure 22. Aristotelian rhombic dodecahedron for partial orderings

an Aristotelian RDH. (A geometrical variant of this RDH can already be
found in [60, Figure 59].) The atoms of this Boolean algebra are the rela-
tions =, <, > and #, and thus the Boolean algebra itself can be described as
℘∪({=, <,>,#}) = {⋃ X | X ⊆ {=, <,>,#}}; see Fig. 22.30 All relations in
the hexagon for partial orders in Fig. 21b (and its Boolean closure) can thus
be written as

⋃ X for some X ⊆ {=, <,>,#}; for example, the relations ≤,
≥ and �= correspond to = ∪ <, = ∪ > and < ∪ > ∪ #, respectively. As a
consequence, the hexagon for partial orders in Fig. 21b can be reformulated
as in Fig. 23a.31

The Aristotelian hexagon in Fig. 23a can be seen as a subdiagram of the
Aristotelian RDH for partial orders that was shown in Fig. 22. Needless to say,
the latter also has many other subdiagrams, which can be exhaustively studied.

30 Note that we can move back from partial to total orderings by imposing the totality axiom,
which corresponds to assuming that # = ∅. This assumption entails that the 16 relations of
℘∪({=, <, >, #}) collapse pairwise into 8 relations (this is analogous to the pairwise collapse
of ℘∪(OG) that is described toward the end of Sect. 4.5, where it is assumed that NCD = ∅).
Ignoring the empty and universal relation, we thus find that the 16 − 2 = 14 relations of
the RDH for partial orders in Fig. 22 pairwise collapse into the 16

2
− 2 = 6 relations of the

strong JSB hexagon for linear orders in Fig. 21a.
31 We are now also in a position to explain why the hexagons in Figs. 17c and 21b do
not entirely consist of the same Aristotelian relations, despite the fundamental underlying
analogy that was described earlier (ignoring NCD vs. ignoring #). The differences between
both diagrams arise from the fact that the hexagon’s top element in Fig. 17c is C ∪ SC ,
whereas in Fig. 21b it is < ∪ > ∪ #. To obtain a fully perfect analogy, we would need
to put C ∪ SC ∪ NCD at the top of the hexagon in Fig. 17c, or, alternatively, < ∪ >
at the top of the hexagon in Fig. 21b. However, the first option is not the most plausible

interpretation of Béziau’s use of ‘not CD ’ (recall Footnote 21), while the second one does not
match our intuitive understanding of �= (take, for example, the partial order of set inclusion,
and consider the sets A = {1, 2} and B = {2, 3}: even though neither A ⊂ B nor A ⊃ B, we
still want to be able to say that A �= B).
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Figure 23. Three Aristotelian subdiagrams of the Aris-
totelian RDH for partial orders shown in Fig. 22

For now, we will mention only two such subdiagrams: the strong JSB hexagon
in Fig. 23b and the ‘contrariety square’ in Fig. 23c, which are reformulations
in terms of ℘∪({=, <,>,#}) of Aristotelian diagrams for partial orders that
were originally studied by Béziau [6, Figures 3 and 9].

Concrete instances of the Aristotelian RDH for partial orders in Fig. 22
(or any of its subdiagrams) can be obtained by ‘filling in’ a concrete partial
order. A well-known example of a partial ordering relation is set inclusion,
and thus we immediately obtain an Aristotelian RDH for set inclusion [76].
Another example, which is more relevant for our current purposes, is based
on the fact that S-entailment is a partial order over the Lindenbaum-Tarski
algebra B(S) of a given logical system S, and hence, we immediately obtain
an Aristotelian RDH for entailment. This diagram is exactly the RDH for the
implication geometry IG that was described in Sect. 5.1; in particular, the
abstract relations =, <, > and # are instantiated exactly as the implication
relations BI , LI , RI and NI , respectively, and hence ℘∪({=, <,>,#}) =
℘∪({BI ,LI ,RI ,NI }) = ℘∪(IG). This shows that the Aristotelian RDH for
IG is not only related to the RDH for OG, as was shown in Sect. 5.1, but is
also a specific instance of the RDH for partial orders.

6. Aristotelian Diagrams for Aristotelian and Duality Relations

In this section we conclude our study of metalogical decorations for Aristotelian
diagrams. Section 6.1 studies some Aristotelian diagrams that are decorated
with the Aristotelian relations themselves, while Sect. 6.2 studies some Aris-
totelian diagrams for the duality relations.

6.1. Aristotelian Diagrams for the Aristotelian Relations

Since the Aristotelian geometry is hybrid between the opposition and impli-
cation geometries (AG ⊆ OG ∪ IG), many of the diagrams that were studied
in Sects. 4 and 5 can be viewed not only as Aristotelian diagrams for OG or
IG, but also as Aristotelian diagrams for AG itself. For example, since con-
trariety and subcontrariety are not only opposition relations, but also Aris-
totelian relations, the decoration of the Buridan octagon for strong and weak
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(sub)contrariety in Fig. 16 can be seen as consisting of opposition relations,
but equally well as consisting of Aristotelian relations. Still, the Aristotelian
diagrams in Sects. 4 and 5 do not fully do justice to the hybrid nature of AG,
since none of them has a decoration that simultaneously contains opposition
and implication relations. In this subsection, we will therefore focus exactly
on Aristotelian diagrams with decorations containing both opposition and im-
plication relations.

The Aristotelian diagrams that were constructed in Sects. 4 and 5 are
all based on the fact that OG and IG are partitions of B(S) × B(S) (recall
Lemma 3.5). It is well-known, however, that the Aristotelian geometry is not a
partition—indeed, this was one of the main motivations for introducing OG and
IG in [79]—, and thus we cannot straightforwardly apply the same technique as
before. In particular, it does not make sense to introduce ℘∪(AG) := {⋃ X |
X ⊆ AG}, since the latter is not a Boolean algebra whose atoms are the
Aristotelian relations.

Since the Aristotelian geometry is hybrid between the opposition and
implication geometries (AG ⊆ OG ∪ IG), it makes sense to look at the meet
(i.e. the coarsest common refinement) of the partitions OG and IG, which is
defined as follows:

OG ∧ IG := {R ∩ S | R ∈ OG, S ∈ IG, R ∩ S �= ∅}.
Since the partition OG ∧IG is a refinement of OG as well as IG, it follows that
every Aristotelian relation can be seen as an element of the Boolean closure
℘∪(OG ∧ IG) [31]. Note, however, that there are |OG| × |IG| = 4 × 4 = 16
relations of the form R ∩ S for R ∈ OG and S ∈ IG, and only one of them
is irrelevant (it can easily be shown that CD ∩ BI = ∅ if the underlying
logical system S is consistent). In other words, we have |OG ∧ IG| = 15,
and thus ℘∪(OG ∧ IG) contains 215 = 32768 relations in total, which renders
it practically infeasible to systematically study Aristotelian diagrams for AG
by viewing them as subdiagrams of some larger, Boolean closed Aristotelian
diagram (in contrast to Sects. 4 and 5, where all Aristotelian diagrams for OG
and IG were seen as subdiagrams of the Aristotelian RDH for OG and the
Aristotelian RDH for IG, respectively).

We will therefore proceed in a more local fashion, and study some inter-
esting Aristotelian diagrams for AG without viewing them as subdiagrams of
some larger, Boolean closed Aristotelian diagram. Furthermore, many of the
Aristotelian diagrams that will be studied in this subsection do not hold in full
generality, i.e. for all pairs of formulas (ϕ,ψ), but only if we impose certain
additional conditions on the formulas, such as satisfiability or contingency.32

For each diagram that is studied in this subsection, we will therefore explicitly
state the additional conditions which it depends on.

32 Formally, this means that we intersect every relation in ℘∪(OG ∧ IG) with ΔA,B :=
{(ϕ, ψ) | ϕsatisfies condition A, ψ satisfies condition B}, and do not work with a partition
of B(S) × B(S), but rather of (B(S) × B(S)) ∩ ΔA,B = ΔA,B .
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The first Aristotelian diagram that we will study contains both weak op-
position and weak implication relations. Löbner [52, p. 55] defines the following
four relations:
• ϕ and ψ are compatible iff S �|= ¬(ϕ ∧ ψ),
• ϕ implies ψ iff S |= ϕ → ψ,
• ϕ is contrary to ψ iff S |= ¬(ϕ ∧ ψ),
• ϕ does not imply ψ iff S �|= ϕ → ψ.

These four relations correspond exactly to SC ∪ NCD , BI ∪ LI , CD ∪ C and
RI ∪ NI , respectively. Löbner thus exclusively works with weak opposition
and implication relations: using notation from Sects. 4 and 5, his relations are
SC ∗

w, LIw, Cw and RI ∗
w, respectively.

Since OG and IG are partitions of B(S) × B(S) (recall Lemma 3.5), it is
trivial to check that CD ∪ C and SC ∪ NCD are contradictory, and also that
BI ∪ LI and RI ∪ NI are contradictory. If we do not impose any additional
constraints, then these two contradictions are the only Aristotelian relations
that obtain between Löbner’s four relations. For example, CD∪C and BI ∪LI
do not stand in any Aristotelian relation at all:
• (p ∧ ¬p, p) ∈ CD ∪ C and (p ∧ ¬p, p) ∈ BI ∪ LI ,

so (CD ∪ C ) ∩ (BI ∪ LI ) �= ∅,
so CD ∪ C and BI ∪ LI are neither contradictory nor contrary,

• (p, q) /∈ CD ∪ C and (p, q) /∈ BI ∪ LI ,
so (CD ∪ C ) ∪ (BI ∪ LI ) �= B(CPL) × B(CPL),
so CD ∪ C and BI ∪ LI are not subcontrary,

• (p,¬p) /∈ (CD ∪ C ) ∩ (BI ∪ LI ) and (p,¬p) ∈ CD ∪ C ,
so (CD ∪ C ) ∩ (BI ∪ LI ) �= CD ∪ C ,
so there is no subalternation from CD ∪ C to BI ∪ LI ,

• (p, p) /∈ (CD ∪ C ) ∩ (BI ∪ LI ) and (p, p) ∈ BI ∪ LI ,
so (CD ∪ C ) ∩ (BI ∪ LI ) �= BI ∪ LI ,
so there is no subalternation from BI ∪ LI to CD ∪ C .

Without imposing any additional constraints, Löbner’s relations thus consti-
tute a ‘degenerated’ Aristotelian square (or ‘cross’), which is shown in Fig. 24a.

If we make the additional assumption that the relations’ first argument
is satisfiable, however, the situation changes quite drastically. For example,
based on this assumption, it can be shown that CD ∪ C and BI ∪ LI are

Figure 24. Löbner’s relations as decorations of a an Aris-
totelian cross (no constraints) and b a classical Aristotelian
square (constraint: satisfiability of the first argument)
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contrary to each other: it is still trivially the case that (CD ∪ C ) ∪ (BI ∪ LI )
is not the universal relation over B(S), and to see that (CD ∪ C ) ∩ (BI ∪ LI )
is empty, note that (ϕ,ψ) ∈ (CD ∪ C ) ∩ (BI ∪ LI ) entails that S |= ¬(ϕ ∧ ψ)
and S |= ϕ → ψ, and thus S |= ¬ϕ, which contradicts our assumption that ϕ
is satisfiable. In exactly the same way, it can be shown that SC ∪ NCD and
RI ∪NI are subcontrary to each other, and that there are subalternations from
BI ∪LI to SC ∪NCD and from CD ∪C to RI ∪NI . On the assumption that
their first argument is satisfiable, Löbner’s relations thus end up constituting
a classical Aristotelian square, which is shown in Fig. 24b. Although Löbner
himself did not explicitly draw this metalogical square, he recognized that his
four relations “constitute another Aristotelian square too, implication [BI∪LI ]
implying compatibility [SC ∪ NCD ] and so on” [52, p. 55].

In Seuren [72, p. 11] we find another Aristotelian diagram that contains
both opposition and implication relations. Seuren considers the same four re-
lations as Löbner (although he calls them differently), and adds two more,
viz. ‘strict compatibility’ and its complement. As indicated by Seuren himself
[72, p. 3], the relation of strict compatibility is better known as logical inde-
pendence or unconnectedness [79, Footnote 43],33 and is defined as follows:

ϕ and ψ are unconnected iff S �|= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ and
S �|= ϕ → ψ and S �|= ψ → ϕ.

It should be clear that Seuren’s notion of strict compatibility can be repre-
sented as NCD ∩ NI . Making use of Lemma 3.5, the complement of strict
compatibility can be represented as follows:

not(NCD ∩ NI ) = not(NCD) ∪ not(NI ) = (CD ∪ C ∪ SC ) ∪ (BI ∪ LI ∪ RI ).

Strict compatibility and its complement are (by definition) contradictory to
each other. Furthermore, even without making any additional assumptions
about the relations’ arguments, it can easily be shown that these two new
relations enter into Aristotelian relations with Löbner’s original four; for ex-
ample, NCD ∩ NI is contrary to CD ∪ C and to BI ∪ LI , and stands in
subalternation to SC ∪NCD and to RI ∪NI . In total, Seuren’s relations thus
constitute the Aristotelian hexagon shown in Fig. 25a; this type of hexagon is
relatively unknown, but has recently been studied and called an ‘unconnected-
4’ hexagon, since it contains exactly four pairs of vertices that do not stand in
any Aristotelian relation at all [32,78,81].

If we do make the additional assumption that the relations’ first argument
is satisfiable, then the cross constituted by Löbner’s four relations again turns
into a classical Aristotelian square (recall Fig. 24), and the hexagon as a whole
turns into a more familiar JSB hexagon, as shown in Fig. 25b, and originally
in [72, Figure 4]. It should be noted that this is a weak JSB hexagon, since
(CD ∪ C ) ∪ (BI ∪ LI ) ∪ (NCD ∩ NI ) �= B(S) × B(S).34

33 See Footnote 2 of this paper for the relation between unconnectedness and the informa-
tivity account of the Aristotelian relations that is presented in [79].
34 For example, (p∨¬p, p) ∈ SC∩RI , and hence (p∨¬p, p) /∈ CD∪C and (p∨¬p, p) /∈ BI∪LI
and (p ∨ ¬p, p) /∈ NCD ∩ NI .
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Figure 25. Seuren’s relations as decorations of a an
‘unconnected-4’ hexagon (no constraints) and b a weak JSB
hexagon (constraint: satisfiability of the first argument)

Figure 26. a Variant of Löbner’s square (constraint: the first
argument is not a tautology), b Aristotelian octagon (con-
straint: contingency of both arguments)

Löbner’s squares in Fig. 24 are decorated with weak relations Cw and
LIw and the ‘dually’ weak relations SC ∗

w and RI ∗
w. A variant of Löbner’s

square can be obtained by changing which relations are ‘ordinarily weak’ and
which ones are ‘dually weak’, i.e. by considering the relations C ∗

w = C ∪
NCD , LI ∗

w = LI ∪ NI, SCw = CD ∪ SC and RIw = BI ∪ RI . If we do not
make any additional assumptions, these four new relations again constitute
a degenerated Aristotelian square, just like Löbner’s four original ones (see
Fig. 24a). However, if we make the additional assumption that the relations’
first argument is not a tautology,35 then they turn out to constitute a classical
Aristotelian square, which is shown in Fig. 26a.

Löbner’s original square in Fig. 24b and its variant in Fig. 26a can be
combined with each other, thereby yielding an Aristotelian octagon. To ensure
that both squares are classical (i.e. not degenerated), we have to assume that
the relations’ first argument is satisfiable and not a tautology, i.e. that it is

35 Note the close connection between the conditions that are needed to turn the degenerated
square into a classical square: for Löbner’s original four relations, the condition is that the
first argument is satisfiable (i.e. S �|= ¬ϕ), for the four new relations, the condition is that
the first argument is not a tautology (i.e. S �|= ϕ).
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contingent. If we additionally assume that the relations’ second argument is
also contingent, then the relations of the two squares enter into further Aris-
totelian relations with each other; for example, it can be shown that CD ∪ C
(from Löbner’s original square) and BI ∪ RI (from the variant to Löbner’s
square) are contrary to each other,36 and also that BI ∪ LI (from Löbner’s
original square) and CD ∪SC (from the variant) are contrary to each other.37

The resulting metalogical octagon is shown in Fig. 26b.38 This type of Aris-
totelian octagon has hitherto not been studied in any systematic way, but it
can be found in [23,37,45,47], where it receives an object-logical decoration
consisting of categorical statements from syllogistics. In [31] is is shown that
the octagon’s object-logical (syllogistic) decoration is intimately related to the
metalogical decoration that has been discussed here.

To finish this subsection, we will study two different ways to turn the
weak JSB hexagon in Fig. 25b into a strong JSB hexagon. Note that the rea-
son for the JSB hexagon in Fig. 25b being weak is that its contrariety triangle
consists of CD ∪ C , BI ∪ LI and NCD ∩ NI , and thus lacks SC and RI (see
Footnote 34); in order to obtain a strong JSB hexagon, we thus need to add
these two relations to the hexagon’s contrariety triangle. One possibility is to
combine both relations into SC ∪ RI , and add this to NCD ∩ NI , which re-
sults in the Aristotelian hexagon in Fig. 27a. If we make the assumption that
the relations’ first argument is satisfiable and that their second argument is
contingent, then this hexagon can be shown to be a strong JSB hexagon. An
alternative possibility is to add SC to CD∪C , and RI to BI ∪LI , which results
in the Aristotelian hexagon in Fig. 27b. This second possibility is conceptually
more elegant than the first one, since it better respects the distinction be-
tween the opposition and implication geometries.39 Furthermore, if we make
the assumption that both of the relations’ arguments are contingent, then the
diagram in Fig. 27b can be shown to be a strong JSB hexagon as well.

6.2. Aristotelian Diagrams for the Duality Relations

We now turn to Aristotelian diagrams for the duality relations id, eneg, ineg
and dual, which were introduced in Sect. 3.2. Just like the Aristotelian rela-
tions (but unlike the opposition and implication relations), the duality relations
do not constitute a partition of B(S)×B(S): they are neither jointly exhaustive

36 Proof: it is trivial that (CD ∪ C ) ∪ (BI ∪ RI ) is not the universal relation over B(S); to
see that (CD ∪ C ) ∩ (BI ∪ RI ) = ∅, note that (ϕ, ψ) ∈ (CD ∪ C ) ∩ (BI ∪ RI ) entails that
S |= ¬(ϕ ∧ ψ) and S |= ψ → ϕ, and thus S |= ¬ψ, which contradicts our assumption that ψ
is (contingent and thus) satisfiable.
37 Proof: it is trivial that (BI ∪ LI ) ∪ (CD ∪ SC ) is not the universal relation over B(S); to
see that (BI ∪ LI ) ∩ (CD ∪ SC ) = ∅, note that (ϕ, ψ) ∈ (BI ∪ LI ) ∩ (CD ∪ SC ) entails that
S |= ϕ → ψ and S |= ϕ ∨ ψ, and thus S |= ψ, which contradicts our assumption that ψ is
(contingent and thus) not a tautology.
38 Although the Aristotelian octagon in Fig. 26b was obtained by combining the two classical
Aristotelian squares in Figs. 24b and 26a, it can also be seen as the result of combining the
degenerated squares in the centers of the two Buridan octagons in Figs. 16 and 20.
39 The hexagon in Fig. 27b is also intimately related to the information perspective on OG
and IG developed in [79].
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Figure 27. a Strong JSB hexagon (constraint: satisfiability
of the first argument and contingency of the second argu-
ment), b another strong JSB hexagon (constraint: contingency
of both arguments)

(for example, p and q do not stand in any duality relation at all), nor mutually
exclusive (as was explained in Sect. 3.2, the existence of operators that are their
own duals or internal negations entails that id∩dual �= ∅ �= eneg∩ ineg and
id∩ ineg �= ∅ �= eneg∩dual, respectively). We thus find ourselves in a situa-
tion that is highly similar to the one described at the beginning of the previous
subsection, and we will therefore use the same strategy for dealing with it: we
will proceed in a local fashion, and construct various interesting Aristotelian
diagrams for the duality geometry DG, without viewing them as subdiagrams
of some larger, Boolean closed Aristotelian diagram. Furthermore, just as in
the previous subsection, many of the Aristotelian diagrams that will be studied
here do not hold in full generality, i.e. for all pairs of operators (O1, O2), but
only if we impose certain additional conditions on the operators, such as not
being their own dual or internal negation.40 For each diagram that is stud-
ied in this subsection, we will therefore again explicitly state the additional
conditions it depends on.

We begin by defining an Aristotelian square for the duality relations ineg
and eneg, and their complements, which will be denoted as ‘not ineg’ and
‘not eneg’.41 By definition, ineg and ‘not ineg’ are contradictory to each

40 Recall that in Sect. 6.1, we imposed additional conditions on the Aristotelian relations’
two arguments independently—for example, it made sense to require the first formula to be
satisfiable, and the second formula to be contingent ; see Fig. 27a. Since the duality relations
are functional, however, it can easily be shown that a duality relation’s first argument
satisfies a certain condition iff its second argument satisfies that same condition; for example,
if two operators O1 and O2 stand in some duality relation R ∈ DG, then we have the
following chain of equivalences: O2 is self-dual iff dual(O2) = O2 iff R(dual(O2)) = R(O2)
iff dual(R(O2)) = R(O2) iff dual(O1) = O1 iff O1 is self-dual. Therefore, in this subsection
we will always impose the same condition(s) on both of the duality relations’ arguments.
41 Note that because of our ‘local’ approach, we cannot write ineg =

⋃ X and ‘not ineg’
=

⋃ Y for some sets of relations X , Y. Of course, if we were working with a partition P such
that DG ⊆ ℘∪(P), then we would have ineg =

⋃ X for some X ⊆ P, and hence also ‘not
ineg’ =

⋃
(P − X ). Similar remarks apply to eneg.
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Figure 28. a Degenerated Aristotelian square for duality re-
lations (constraints: none), b classical Aristotelian square for
the same duality relations (constraint: no operators that are
their own dual), c ‘unconnected-8’ hexagon for the duality
relations (constraints: none)

other, and similarly for eneg and ‘not eneg’. Whether there are any other
Aristotelian relations holding between these four relations, however, depends
on the additional conditions we are willing to impose on the relations’ ar-
guments. It can be shown that without additional conditions, there are no
Aristotelian relations besides the two aforementioned contradictions, and we
thus obtain the ‘degenerated’ square shown in Fig. 28a. In particular, note
that ineg and eneg are not contrary to each other, since if the operator O
is self-dual, then ineg(O) = eneg(O), and thus ineg ∩ eneg �= ∅. However,
if we impose the additional condition that the relations’ arguments should be
operators that are not self-dual, then it does hold that ineg∩eneg = ∅, which
(together with the trivial fact that ineg ∪ eneg is not the universal relation
over B

A
n

:= {O | O : An → B}) implies that ineg and eneg are contrary to
each other. Similarly, if we exclude self-dual operators, we also find two sub-
alternations and a subcontrariety, and thus obtain the classical Aristotelian
square shown in Fig. 28b.

A more general picture can be obtained by considering Aristotelian di-
agrams that simultaneously contain the non-trivial (i.e. non-id) duality re-
lations eneg, ineg and dual. By definition, these three relations are con-
tradictory to their complements, i.e. ‘not eneg’, ‘not ineg’ and ‘not dual’,
respectively. Furthermore, it can be shown that dual and ineg are contrary
to each other, since dual∩ ineg = ∅: if there were operators O1, O2 : An → B

such that (O1, O2) ∈ dual ∩ ineg, then dual(O1) = O2 = ineg(O1), so
eneg(O2) = eneg(ineg(O1)) = dual(O1) = O2, and thus B would be the
trivial Boolean algebra in which ⊥B = 
B (recall Footnote 5). For essentially
the same reason, it also holds that ‘not ineg’ and ‘not dual’ are subcontrary
to each other, and also that there are subalternations from dual to ‘not ineg’
and from ineg to ‘not dual’. However, if we do not make any additional as-
sumptions about the operators, then there are no other Aristotelian relations
among dual, ineg, eneg and their complements besides the ones that have
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Figure 29. a ‘Unconnected-4’ hexagon for the duality rela-
tions (constraint: no operators that are their own dual), b
‘unconnected-4’ hexagon for the duality relations (constraint:
no operators that are their own internal negation), c weak
JSB hexagon for the duality relations (constraint: no opera-
tors that are their own dual or internal negation)

just been mentioned, and we thus end up with the Aristotelian hexagon shown
in Fig. 28c. This type of hexagon has recently been called an ‘unconnected-
8’ hexagon, since it contains exactly 8 pairs of vertices that do not stand in
any Aristotelian relation at all [32].42 Such ‘unconnected-8’ hexagons have
not been studied extensively so far, but it is known that representing them
with bitstrings requires bitstring of length at least 5 (unlike all other types of
Aristotelian hexagons, which can be represented with bitstrings of length 3 or
4).

If we now make the additional assumption that the duality relations’
arguments should be operators that are not their own duals, it holds that
ineg ∩ eneg = ∅, and we thus find a contrariety between ineg and eneg,
and also the corresponding subcontrariety and two subalternations (recall the
transition from the degenerated square in Fig. 28a to the classical square in
Fig. 28b); the hexagon as a whole thus turns into an ‘unconnected-4’ hexagon,
which is shown in Fig. 29a. Completely analogously, if we instead make the
additional assumption that the duality relations’ arguments should be opera-
tors that are not their own internal negations, it holds that dual∩eneg = ∅,
and we thus find a contrariety between dual and eneg, and also the cor-
responding subcontrariety and two subalternations; the hexagon as a whole
again turns into an ‘unconnected-4’ hexagon, which is shown in Fig. 29b.
Note that although the Aristotelian hexagons in Fig. 29a, b both belong to
the ‘unconnected-4’ family, there is still a crucial difference between them,
which has to do with the ‘distribution’ of unconnectedness across the hexagon
(i.e. which duality relations stand/do not stand in some Aristotelian relation
to each other).

Finally, if we simultaneously impose the two additional assumptions that
the duality relations’ arguments should be operators that are neither their

42 Note the terminological analogy with the ‘unconnected-4’ hexagon.
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own duals nor their own internal negations, then the resulting hexagon turns
out to be a JSB hexagon, which is shown in Fig. 29c. It should be noted that
this is a weak JSB hexagon, since dual ∪ ineg ∪ eneg is not the universal
relation over the class B

A
n

of all operators O : An → B.

7. Duality Diagrams for the Opposition/Implication Relations

In Sects. 4, 5 and 6, we showed that the opposition, implication, Aristotelian,
and duality geometries yield various interesting metalogical decorations of
Aristotelian diagrams. In this section and the next one, we will discuss how
these four geometries can also be used to decorate another type of logical dia-
grams, viz. duality diagrams. In this section, we will focus on duality diagrams
for the opposition relations (Sect. 7.1), and also make some brief comments
about duality diagrams for the implication relations (Sect. 7.2).

7.1. Duality Diagrams for the Opposition Relations

We start by studying duality diagrams for the opposition relations. At first
sight, it might look like a ‘category mistake’ to talk about duality relations
holding between opposition relations, since in Sect. 3.2 the duality relations
were defined between operators, rather than relations (recall Definition 3.6).
However, every relation R can naturally be associated with an operator, viz. its
characteristic function χR; when the characteristic functions χR and χS stand
in some duality relation, then in a derived sense, the relations R and S them-
selves can also be said to stand in that duality relation. In particular, since each
opposition relation R ∈ OGS is a binary relation over the Lindenbaum–Tarski
algebra B(S), its characteristic function χR looks as follows:

χR : B(S) × B(S) → {0, 1} : ([ϕ], [ψ]) �→ χR([ϕ], [ψ]) :=

{
1 if ([ϕ], [ψ]) ∈ R,

0 if ([ϕ], [ψ]) /∈ R.

Since {0, 1} can be seen as a Boolean algebra (viz. the smallest non-trivial
Boolean algebra), the operator χR is of the right ‘type’, and Definition 3.6 is
applicable to it. To illustrate this, consider item 2a of Lemma 3.3, which states
the following:

for all formulas ϕ,ψ : C (ϕ,ψ) iff SC (¬ϕ,¬ψ).

Reformulating this in terms of characteristic functions, we get:

for all formulas ϕ,ψ : χC (ϕ,ψ) = 1 iff χSC (¬ϕ,¬ψ) = 1.

Now, in the smallest non-trivial Boolean algebra {0, 1}, the biconditional x =
1 ⇔ y = 1 is equivalent to x = y, and thus we get:

for all formulas ϕ,ψ : χC (ϕ,ψ) = χSC (¬ϕ,¬ψ).

By Definition 3.6, this means exactly that ineg(χC , χSC ), i.e. χC and χSC

are each other’s internal negation. Moving from characteristic functions to
the opposition relations themselves, we can also say, in a derived sense, that
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ineg(C ,SC )43. Completely analogously, items 1a and 4a of Lemma 3.3 entail
that ineg(CD ,CD) and ineg(NCD ,NCD), i.e. CD and NCD are their own
internal negations.

Similar remarks also apply to non-atomic relations of ℘∪(OG). Consider,
for example, the relations CD ∪ C ∪ NCD and CD ∪ SC ∪ NCD: it follows
immediately from items 1a, 2a and 4a of Lemma 3.3 that

for all formulas ϕ, ψ : (ϕ, ψ)∈CD ∪ C ∪ NCD iff (¬ϕ, ¬ψ)∈CD ∪ SC ∪ NCD .

Reformulating this in terms of characteristic functions, we get

for all formulas ϕ, ψ : χCD∪C∪NCD(ϕ, ψ) = 1 iff χCD∪SC∪NCD(¬ϕ, ¬ψ) = 1

and hence

for all formulas ϕ,ψ : χCD∪C∪NCD(ϕ,ψ) = χCD∪SC∪NCD(¬ϕ,¬ψ),

which means exactly that ineg(CD ∪ C ∪ NCD ,CD ∪ SC ∪ NCD).
We can also study other duality relations holding between the opposi-

tion relations. For example, since OG is a partition of B(S) × B(S) (recall
Lemma 3.5), it follows that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD iff (ϕ,ψ) /∈ C ∪ SC ∪ NCD .

Reformulating this in terms of characteristic functions, we get

for all formulas ϕ,ψ : χCD(ϕ,ψ) = 1 iff χC∪SC∪NCD(ϕ,ψ) = 0.

Now, in the smallest non-trivial Boolean algebra {0, 1}, the biconditional x =
1 ⇔ y = 0 is equivalent to x = ¬y (where ¬ is the complement operator of the
{0, 1} Boolean algebra, i.e. ¬y := 1 − y), and thus we get:

for all formulas ϕ,ψ : χCD(ϕ,ψ) = ¬χC∪SC∪NCD(ϕ,ψ).

By Definition 3.6, this means exactly that eneg(χCD , χC∪SC∪NCD), i.e. CD
and C ∪ SC ∪ NCD are each other’s external negation. In general, it can be
shown that eneg(

⋃ X ,
⋃

(OG − X )) for all X ⊆ OG.
We have already established that ineg(C ) = SC and eneg(SC ) = CD ∪

C ∪ NCD . Since eneg ◦ ineg = dual, it should follow that also dual(C ) =
eneg(ineg(C)) = eneg(SC) = CD ∪ C ∪ NCD . To verify this, note that
Lemmas 3.5 and 3.3 imply that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ C iff (¬ϕ,¬ψ) /∈ CD ∪ C ∪ NCD ,

43The idea that contrariety and subcontrariety are each other’s internal negation is not
entirely new. A closely related idea can already be found in the Summulae Logicales of the
13th century philosopher Petrus Hispanus: after he has given the definitions (which he calls
‘laws’) of contrariety and subcontrariety, Hispanus writes that “the law of subcontraries is
the reverse of the law of contraries” [15, p. 113, our emphasis]. Interestingly, the original
Latin text says that the law of subcontraries is contrary to the law of subcontraries (“lex
subcontrariarum contrario modo se habet legi contrariarum” [15, p. 112, our emphasis]),

which is a particularly ironic example of the confusion between Aristotelian relations and

duality relations that was mentioned in Subsect. 3.2. The English translation as ‘reverse’ is
thus not literally correct, but it probably better captures what Hispanus had in mind (see
[15, p. 113, Footnote 16] for the translators’ remarks about this issue).
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Figure 30. a Duality square for C and SC , b, c degenerated
duality diagrams for CD and NCD

Figure 31. a Duality square for CD∪C and other opposition
relations, b degenerated duality diagrams for CD ∪NCD and
C ∪ SC , c degenerated duality diagram for the empty and
universal relation

and hence

for all formulas ϕ,ψ : χC (ϕ,ψ) = ¬χCD∪C∪NCD(¬ϕ,¬ψ),

which by Definition 3.6 means indeed that dual(C ,CD ∪ C ∪ NCD).
We are now in a position to construct actual duality diagrams for the

relations in ℘∪(OG). First of all, based on the fact that ineg(C ,SC ), we can
construct the duality square shown in Fig. 30a. Note that this square also visu-
alizes facts such as eneg(C ,CD∪SC ∪NCD) and dual(SC ,CD∪SC ∪NCD),
all of which follow from Lemmas 3.3 and 3.5. Next, since ineg(CD ,CD),
or, functionally speaking, ineg(CD) = CD , it follows that dual(CD) =
eneg(ineg(CD)) = eneg(CD) = C ∪ SC ∪ NCD , and hence we find the
degenerated duality diagram in Fig. 30b, which is thus a metalogical in-
stance of the generic degenerated duality diagram in Fig. 4c. The fact that
ineg(NCD ,NCD) leads to a similar degenerated duality diagram, which is
shown in Fig. 30c.

Next, the facts that ineg(CD ∪ C ,CD ∪ SC ) and eneg(CD ∪ SC ,C ∪
NCD) lead to the duality square in Fig. 31a, and the fact that CD ∪ NCD
is its own internal negation—and hence dual(CD ∪ NCD) = eneg(CD ∪
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NCD) = C ∪ SC—leads to the degenerated duality diagram in Fig. 31b.
The five duality diagrams shown in Figs. 30a–c and 31a, b jointly exhibit
all the duality relations that hold between the 14 opposition relations in the
Aristotelian RDH for ℘∪(OG) (recall Fig. 8b).44 The only elements of ℘∪(OG)
that are not present in this RDH are the empty relation and the universal
relation over B(S) (recall Footnote 9); these two relations turn out to be their
own internal negations and each other’s external negations, and thus lead to
a final degenerated duality diagram, which is shown in Fig. 31c.

It is interesting to note that several (sets of) opposition relations consti-
tute Aristotelian as well as duality diagrams. For example, we have just shown
that C , SC , CD ∪ C ∪ NCD and CD ∪ SC ∪ NCD yield the duality square
shown in Fig. 30a, but in Sect. 4.4 it was shown that these same four op-
position relations also yield a classical Aristotelian square, which was shown
in Fig. 14a, and is embedded as the ‘vertically stretched’ square inside the
Buridan octagon in Fig. 16a. By contrast, CD ∪ C , CD ∪ SC , C ∪ NCD and
SC ∪ NCD yield the duality square shown in Fig. 31a, but the correspond-
ing Aristotelian diagram is not a classical square, but rather a ‘degenerated’
square (or ‘cross’), which is embedded as the ‘horizontally stretched’ square
inside the Buridan octagon in Fig. 16a.

These observations can be used to the argue for the conceptual inde-
pendence between the Aristotelian and duality geometries. From a duality
perspective, there is no difference whatsoever between the duality squares in
Figs. 30a and 31a. The corresponding Aristotelian squares, however, are radi-
cally different from each other: the first one is a classical Aristotelian square,
whereas the second one is a ‘degenerated’ square, i.e. an Aristotelian ‘cross’.
As to individual relations, note, for example, that dual(C ,CD ∪ C ∪ NCD)
as well as dual(CD ∪ C ,C ∪ NCD). Switching from the duality to the Aris-
totelian perspective, however, we see that there is a subalternation from C to
CD ∪C ∪NCD , whereas CD ∪C and C ∪NCD are unconnected (i.e. they do
not stand in any Aristotelian relation at all). This clearly shows that the dual-
ity relation dual cannot straightforwardly be identified with the Aristotelian
relation of subalternation. This argument for the conceptual independence be-
tween the Aristotelian and duality geometries has already been made earlier
in the literature (recall the relevant discussion in Sect. 3.2), but what we have
shown here, is that the argument can be made not only based on object-logical
notions (as has been done so far in the literature), but also based on metalog-
ical notions.

We will finish this subsection with a more ‘lightweight’, terminological
observation. Recall that in Sect. 4.4, we studied two ‘weak’ notions of con-
trariety, viz. Cw = CD ∪ C and C ∗

w = C ∪ NCD , and informally said that
these two notions are ‘dual’ to each other, since they can both be obtained
from the strong notion of contrariety (Cs = C ) by dropping the latter’s �|=-
or |=-condition, respectively. However, in this subsection we have shown that

44 Analogously, at the object-logical level, [76] studies the duality relations that hold in the
Aristotelian RDH decorated with the 14 binary propositional connectives.
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dual(CD∪C ,C∪NCD), which means exactly that dual(Cw,C ∗
w), and hence,

Cw and C ∗
w turn out to be also ‘dual’ to each other in the technically precise

sense of the word!45

7.2. Duality Diagrams for the Implication Relations

By now, it should no longer come as a surprise that all results from the previous
subsection about duality diagrams for the opposition relations can straightfor-
wardly be transposed to duality diagrams for the implication relations (also
recall the relation between Sects. 4 and 5 on Aristotelian diagrams for OG and
IG, respectively). In particular, it follows from Lemma 3.3 that BI and NI
are their own internal negation, and that LI and RI are each other’s internal
negation. Constructing duality diagrams for the implication relations is thus
entirely straightforward; however, to avoid being overly repetitive, we will not
do this in full detail at this point.

8. Duality Diagrams for Aristotelian and Duality Relations

In this section, we finish our exploration of metalogical decorations of duality
diagrams. Section 8.1 studies duality diagrams for the Aristotelian relations,
while Sect. 8.2 studies duality diagrams for the duality relations themselves.

8.1. Duality Diagrams for Aristotelian Relations

Since the Aristotelian geometry is hybrid between the opposition and impli-
cation geometries (AG ⊆ OG ∪ IG), many of the diagrams that were studied
in Sect. 7 can be viewed not only as duality diagrams for OG or IG, but also
as duality diagrams for AG itself (a similar observation was made at the be-
ginning of Sect. 6.1 about OG/IG- and AG-based decorations of Aristotelian
diagrams). However, these diagrams do not entirely exemplify the hybrid na-
ture of AG, since none of them has a decoration that contains opposition and
implication relations simultaneously. This is not a coincidence, since the ineg-
relations in these diagrams are all based on Lemma 3.3, which describes the
effects of negating both arguments of an opposition or implication relation.
This lemma does not establish any connection between OG and IG: if both ar-
guments of an opposition (resp. implication) relation are negated, the result is
again an opposition (resp. implication) relation. This shows that there do not
exist any duality diagrams (in the classical sense of the word ‘duality’, as cap-
tured by Definition 3.6) whose decoration contains opposition and implication
relations simultaneously.

From this perspective, Lemma 3.3 stands in sharp contrast to Lemma 3.4.
The latter describes the effects of negating only a single (either the first or the
second) argument of an opposition or implication relation, and thereby estab-
lishes various links between OG and IG: if a single argument of an opposition
relation is negated, the result is an implication relation, and vice versa. In terms
of duality, this means that by moving from classical duality (Definition 3.6) to

45 Similar remarks can be made, of course, about SCw = CD ∪SC and SC ∗
w = SC ∪NCD .
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generalized Post duality (Definition 3.7), we will be able to construct duality
diagrams whose decoration contains opposition as well as implication relations.

To illustrate this, consider item 2b of Lemma 3.4, which states the fol-
lowing:

for all formulas ϕ,ψ : C (ϕ,ψ) iff LI (ϕ,¬ψ).

Reformulating this in terms of characteristic functions, we get:

for all formulas ϕ,ψ : χC (ϕ,ψ) = 1 iff χLI (ϕ,¬ψ) = 1

and hence:

for all formulas ϕ,ψ : χC (ϕ,ψ) = χLI (ϕ,¬ψ).

By Definition 3.7, this means exactly that ineg2(χC , χLI ), and in a derived
sense, ineg2(C ,LI ). In exactly the same way, it can be shown that ineg2(CD ,
BI ), ineg2(SC ,RI ), and so on. Moving to non-atomic relations of ℘∪(OG) and
℘∪(IG), we find, for example:

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD ∪ C iff (ϕ,¬ψ) ∈ BI ∪ LI .

and hence

for all formulas ϕ,ψ : χCD∪C (ϕ,ψ) = χBI∪LI (ϕ,¬ψ),

which means exactly that ineg2(CD ∪C ,BI ∪LI ). Analogously, it also holds
that ineg2(SC ∪ NCD ,RI ∪ NI ).

We have already established that ineg2(CD ∪ C ) = BI ∪ LI and (in
Sect. 7.2) that eneg(BI ∪ LI ) = RI ∪ NI . Since eneg ◦ ineg2 = dual2, it
should follow that also dual2(CD∪C ) = eneg(ineg2(CD∪C )) = eneg(BI ∪
LI ) = RI ∪ NI . To verify this, note that Lemmas 3.5 and 3.4 imply that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ CD ∪ C iff (ϕ,¬ψ) /∈ RI ∪ NI ,

and hence

for all formulas ϕ,ψ : χCD∪C (ϕ,ψ) = ¬χRI∪NI (ϕ,¬ψ),

which by Definition 3.7 indeed means that dual2(CD ∪ C ,RI ∪ NI ).
In sum, then, we find that the opposition relations CD∪C and SC ∪NCD

together with the implication relations BI ∪ LI and RI ∪ NI can be used
to decorate a generalized Post duality square, which is shown in Fig. 32a.
Note that these are exactly the four relations defined by Löbner [52, p. 55],

Figure 32. Three generalized Post duality squares
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Figure 33. a Shield and spear generalized Post duality
diagram corresponding to Seuren’s Aristotelian hexagon in
Fig. 25, b generalized Post duality cube corresponding to the
Aristotelian octagon in Fig. 26b

who explicitly recognized that they “themselves form a duality square with
respect to the predicate [i.e. using ineg2 and dual2 instead of ineg and dual]”
(emphasis added). In Sect. 6.1 we showed that these four relations also yield an
Aristotelian square (recall Fig. 24), and pointed out that this, too, was already
recognized by Löbner. The exact nature of this Aristotelian square turned out
to depend on whether or not the relations’ first argument is assumed to be
satisfiable—compare Fig. 24a, b. By contrast, the (generalized Post) duality
square in Fig. 32a does not depend on any additional assumptions.

In an analogous fashion, it can be shown that CD∪SC , C ∪NCD ,BI ∪RI
and LI ∪ NI yield another generalized Post duality square, which is shown in
Fig. 32b. Note that these are exactly the four relations that were used in
Sect. 6.1 to define a ‘variant’ to Löbner’s square (recall Fig. 26a). Further-
more, the exact nature of this Aristotelian square turned out to depend on
whether or not the relations’ first argument is not a tautology; by contrast,
the corresponding generalized Post duality square in Fig. 32b does not depend
on any additional assumptions.

Similar results can be obtained if we work with ineg1 instead of ineg2.
For example, it follows from items 1a and 2a of Lemma 3.4 that ineg1(CD ∪
C ,BI ∪ RI ), and from items 3a and 4a of the same lemma that ineg1(SC ∪
NCD ,LI ∪NI ). Furthermore, also making use of Lemma 3.5, it is easy to check
that dual1(CD ∪C ,LI ∪NI ) and dual1(SC ∪NCD ,BI ∪RI ). The resulting
generalized Post duality square is shown in Fig. 32c.

Recall that in Sect. 6.1, we also studied Seuren’s Aristotelian meta-
hexagon, which can be obtained by adding CD ∪ C ∪ SC ∪ BI ∪ LI ∪ RI
and NCD ∩NI to Löbner’s four relations (recall Fig. 25). Now, it follows from
Lemma 3.4 that

for all formulas ϕ,ψ : (ϕ,ψ) ∈ NCD ∩ NI iff (ϕ,¬ψ) ∈ NCD ∩ NI ,
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and hence ineg2(NCD∩NI ,NCD∩NI ). Analogously, it holds that ineg2(CD∪
C ∪SC ∪BI ∪LI ∪RI ,CD∪C ∪SC ∪BI ∪LI ∪RI ) and dual2(NCD∩NI ,CD∪
C ∪ SC ∪ BI ∪ LI ∪ RI ). Seuren’s Aristotelian hexagon in Fig. 25 thus turns
out to correspond to the generalized Post duality diagram shown in Fig. 33a.
This diagram consists of two ‘independent’ parts, viz. the duality square which
was already shown in Fig. 32a, and a degenerated duality diagram containing
NCD ∩NI and CD ∪C ∪SC ∪BI ∪LI ∪RI .46 Finally, recall that in Sect. 6.1
it was shown that the exact nature of Seuren’s Aristotelian hexagon depends
on whether or not the relations’ first argument is assumed to be satisfiable—
compare Fig. 25a, b. By contrast, the (generalized Post) duality diagram in
Fig. 33a does not depend on any additional assumptions.

We showed in Sect. 3.2 that generalized Post duality generally gives rise
to cube diagrams. Starting with CD ∪ C and applying the ineg1-, ineg2-,
dual1- and dual2-operators (and their combinations) to it, we find exactly
the 8 relations that were shown in Sect. 6.1 to yield the Aristotelian octagon in
Fig. 26b. In other words, from a duality perspective, the Aristotelian octagon
in Fig. 26b turns out to correspond to a generalized Post duality cube, which
is shown in Fig. 33b. This cube has been studied before in [51, Figure 3], and
it contains the (classical) duality square in Fig. 31a and the three (generalized
Post) duality squares in Fig. 32 as subdiagrams on its diagonal planes. Finally,
recall that in Sect. 6.1 it was shown that the exact nature of the Aristotelian
octagon in Fig. 26b depends on whether or not the relations’ first and sec-
ond argument are assumed to be contingent. By contrast, the corresponding
generalized Post duality cube in Fig. 33b does not depend on any additional
assumptions.

8.2. Duality Diagrams for Duality Relations

In this subsection we will show that the duality relations can themselves be
used to decorate duality diagrams. The key idea is that the duality relations
are all essentially their own internal negations. Consider, for example, the
eneg-relation: for any two operators O1, O2 : An → B, the Boolean nature of
¬B and Definition 3.6 imply that47

eneg(O1, O2) iff for all a ∈ A
n: O1(a) = ¬BO2(a)

iff for all a ∈ A
n: ¬BO1(a) = ¬B¬BO2(a)

iff eneg(¬BO1,¬BO2).
To make this fully precise, we will write F for the class of all operators

O : An → B. It is well-known that F is itself a Boolean algebra, whose Boolean
operators are defined pointwise. For example, given operators O1, O2 ∈ F,
their meet O1 ∧F O2 is defined to be the operator O1 ∧F O2 : An → B : a �→
(O1 ∧F O2)(a) := O1(a) ∧B O2(a), and similarly, the complement ¬FO1 is
defined to be the operator ¬FO1 : An → B : a �→ (¬FO1)(a) := ¬B(O1(a)).
Relations such as eneg are binary relations on F and hence, their characteristic

46 The duality diagram corresponding to a JSB hexagon was called a “shield and spear”
diagram by Smessaert [77, p. 180].
47 We write a for the n-tuple (a1, . . . , an) ∈ A

n, and also ¬Aa for (¬Aa1, . . . , ¬Aan) ∈ A
n.
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function is itself an operator χeneg : F2 → {0, 1}. Since F as well as {0, 1} are
Boolean algebras, the operator χeneg is of the right ‘type’, and Definition 3.6
is applicable to it. In particular, recall that we have just showed above that

for all O1, O2 ∈ F : eneg(O1, O2) iff eneg(¬BO1,¬BO2).

Putting it in terms of characteristic functions, this becomes:

for all O1, O2 ∈ F : χeneg(O1, O2) = 1 iff χeneg(¬BO1,¬BO2) = 1.

Now, in the Boolean algebra {0, 1}, the biconditional x = 1 ⇔ y = 1 is
equivalent to x = y, and thus we get:

for all O1, O2 ∈ F : χeneg(O1, O2) = χeneg(¬BO1,¬BO2).

Because of the pointwise definition of ¬F in terms of ¬B, this can be reformu-
lated one final time, as follows:

for all O1, O2 ∈ F : χeneg(O1, O2) = χeneg(¬FO1,¬FO2).

By Definition 3.6, this means exactly that ineg(χeneg, χeneg). Moving from the
characteristic function χeneg to the duality relation eneg itself, we can also
say, in a derived sense, that ineg(eneg,eneg), i.e. eneg is its own internal
negation.

In exactly the same way, it can also be shown that the other duality
relations, id, ineg and dual, are their own internal negations, based on the
following chains of equivalences:

id(O1, O2) iff for all a ∈ A
n: O1(a) = O2(a)

iff for all a ∈ A
n: ¬BO1(a) = ¬BO2(a)

iff id(¬BO1, ¬BO2),

ineg(O1, O2) iff for all a ∈ A
n: O1(a) = O2(¬Aa)

iff for all a ∈ A
n: ¬BO1(a) = ¬BO2(¬Aa)

iff ineg(¬BO1, ¬BO2),

dual(O1, O2) iff for all a ∈ A
n: O1(a) = ¬BO2(¬Aa)

iff for all a ∈ A
n: ¬BO1(a) = ¬B¬BO2(¬Aa)

iff dual(¬BO1, ¬BO2).

We will also consider the complement of the eneg-relation, i.e. ‘not eneg’
:= F

2 − eneg. By definition of ‘not eneg’, it holds that

for all O1, O2 ∈ F : (O1, O2) ∈ ‘not eneg’ iff (O1, O2) /∈ eneg.

Putting this in terms of characteristic functions, we get:

for all O1, O2 ∈ F : χ‘not eneg’(O1, O2) = 1 iff χeneg(O1, O2) = 0.

Now, in the Boolean algebra {0, 1}, the biconditional x = 1 ⇔ y = 0 is
equivalent to x = ¬y (where ¬ is the complement operator of the {0, 1} Boolean
algebra, i.e. ¬y := 1 − y), and thus we get:

for all O1, O2 ∈ F : χ‘not eneg’(O1, O2) = ¬χeneg(O1, O2).

By Definition 3.6, this means exactly that eneg(χ‘not eneg’, χeneg), or in a
derived sense: eneg(‘not eneg’,eneg).

We have already established above that ineg(eneg) = eneg and just
now also that eneg(eneg) = ‘not eneg’; it now follows that dual(eneg) =
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Figure 34. Degenerated duality diagrams for the duality relations

(eneg◦ineg)(eneg) = eneg(ineg(eneg)) = eneg(eneg) = ‘not eneg’, and
hence dual(eneg, ‘not eneg’).

In exactly the same way, we can also define the relations ‘not id’ :=
F
2 − id, ‘not ineg’ := F

2 − ineg and ‘not dual’ := F
2 − dual, and show the

following:

eneg(id, ‘not id’), dual(id, ‘not id’),
eneg(ineg, ‘not ineg’), dual(ineg, ‘not ineg’),
eneg(dual, ‘not dual’), dual(dual, ‘not dual’).

Each of the four duality relations R ∈ DG thus gives rise to a degenerated
duality diagram, which is shown in Fig. 34. Unfortunately, these degenerated
duality diagrams are not particularly interesting. A much richer perspective
can be obtained by considering the generalized Post duality relations hold-
ing between the duality relations.48 For example, note that for all operators
O1, O2 : An → B, we have:

id(O1, O2) iff for all a ∈ A
n: O1(a) = O2(a)

iff for all a ∈ A
n: ¬BO1(a) = ¬BO2(a)

iff eneg(¬BO1, O2)

iff for all a ∈ A
n: O1(a) = ¬B¬BO2(a)

iff eneg(O1,¬BO2).

These chains of equivalences can be used to show that ineg1(id,eneg) and
ineg2(id,eneg). Furthermore, we can also show that ineg1(ineg,dual) and
ineg2(ineg,dual), based on the following chains of equivalences:

48 In this paper we will focus on generalized Post duality relations holding between the
‘classical’ duality relations; in other words, we will define ‘classical’ duality decorations
for generalized Post duality diagrams. Of course, one could also study (classical and/or
generalized Post) duality relations holding between the generalized Post duality relations
themselves, or, in other words, define generalized Post duality decorations for (classical
and/or generalized Post) duality diagrams. This, however, will be left for another paper.
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ineg(O1, O2) iff for all a ∈ A
n: O1(a) = O2(¬Aa)

iff for all a ∈ A
n: ¬BO1(a) = ¬BO2(¬Aa)

iff dual(¬BO1, O2)

iff for all a ∈ A
n: O1(a) = ¬B¬BO2(¬Aa)

iff dual(O1,¬BO2).

We have just shown that inegi(id) = eneg and inegi(ineg) = dual
(for i = 1, 2). Using this, we find

duali(id) = eneg(inegi(id)) = eneg(eneg) = ‘not eneg’,
duali(ineg) = eneg(inegi(ineg)) = eneg(dual) = ‘not dual’,

and hence duali(id, ‘not eneg’) and duali(ineg, ‘not dual’) (for i = 1, 2).
By going from ‘classical’ to generalized Post duality, the degenerated

duality diagrams for id and eneg in Fig. 34a, b thus ‘click together’ to
yield a generalized Post duality square, which is shown in Fig. 35a. Since
ineg1(id) = eneg = ineg2(id), this square can actually be seen as a degen-
erated generalized Post duality cube (see Fig. 6 in Sect. 3.2). Furthermore,
if we ignore the classical ineg- and dual-relations, then this square can be
decomposed into a square for ineg1/dual1 and one for ineg2/dual2, which
are shown in Fig. 35b, c, respectively.

Figure 35. Generalized Post duality square for id and eneg

Figure 36. Generalized Post duality square for ineg and dual
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Finally, the degenerated duality diagrams for ineg and dual in Fig. 34c,
d also ‘click together’ to yield another generalized Post duality square, which
is shown in Fig. 36a. We can make the same remarks about this square as
about the one in Fig. 35a; in particular, if we ignore the classical ineg- and
dual-relations, it again decomposes into a square for ineg1/dual1 and one
for ineg2/dual2, which are shown in Fig. 36b, c, respectively.

9. Conclusion

When dealing with logical diagrams, we can distinguish between a diagram’s
type and its decoration. The diagram’s decoration consists of the formulas/
notions that it represents, while its type is determined by the kind of logical
relations holding between those formulas/notions.49 Consider, for example, the
square diagram in Fig. 2b: this is an Aristotelian square for (formulas from) the
modal logic S5, so we can say that its type is Aristotelian, while its decoration
is based on S5.

In this paper, we have studied metalogical diagrams, whose types and
decorations consist of logical relations. In particular, we have studied two di-
agram types, viz. Aristotelian diagrams and duality diagrams, and four kinds
of diagram decorations, viz. based on relations from the opposition geometry
(OG), the implication geometry (IG), the Aristotelian geometry (AG) and the
duality geometry (DG). A high-level overview of the core sections of the paper
can therefore be given by means of the following table:

OG IG AG DG
Aristotelian diagrams Sect. 4 Sect. 5 Sect. 6.1 Sect. 6.2
Duality diagrams Sect. 7.1 Sect. 7.2 Sect. 8.1 Sect. 8.2

This overview table suggests a natural question: why are the opposi-
tion and implication relations only used in the diagrams’ decorations, and
not in the diagram types? In other words, shouldn’t it also be possible to
study opposition diagrams and implication diagrams for the opposition, im-
plication, Aristotelian and duality relations? The answer is that this is indeed
perfectly possible. In Sect. 3.1 it was explained that for every Aristotelian dia-
gram, we can define a corresponding opposition diagram and a corresponding
implication diagram (with the original Aristotelian diagram being informa-
tionally optimal among the three types of diagrams). For example, given the
Aristotelian square for S5 shown in Fig. 2b, we can define the correspond-
ing opposition and implication squares for S5, which are shown in Fig. 2a, c,
respectively. This account perfectly transfers from object- to metalogical dec-
orations, and hence, for every Aristotelian diagram that has been studied in
Sects. 4, 5 and 6 of this paper, it is possible to define the corresponding opposi-
tion and implication diagrams. However, for reasons of space (and because the

49 If a logical diagram is viewed as a graph [34], its type and decoration correspond to the
graph’s edges and vertices, respectively.
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Aristotelian diagrams are more informative than their corresponding opposi-
tion and implication diagrams anyway), we have focused on the Aristotelian
diagrams.

To conclude, we will highlight some general themes that have shown up
at various places throughout the paper. The first such consideration is that
despite their more abstract nature, metalogical decorations of logical diagrams
give rise to the same kinds of linguistic lexicalization patterns as object-logical
decorations. For example, in Sect. 4.2 we compared the non-lexicalization of the
metalogical notions of ‘non-tautology’ and ‘non-contingency’ (Fig. 11) to the
non-lexicalization of the quantifiers nall and allno. Furthermore, in Sect. 4.3 we
pointed out that the strong and weak notions of contrariety are analogous to
the bilateral and unilateral readings of quantifiers such as some and many (see
Fig. 13). Observations such as these further reinforce Seuren’s claim that “uni-
versal lexicalization phenomena are also present in the terminology of the met-
alogic of logical relations. We surely have not heard the last of this” [72, p. 11].

A second remark concerns the relative importance of non-contradiction
(NCD) and non-implication (NI ). In [79] these are shown to be the least infor-
mative relations of their respective geometries, i.e. NCD is the least informa-
tive opposition relation, and NI is the least informative implication relation.
From this perspective, these relations seem to be mathematical artefacts—
needed solely to turn OG and IG into partitions—without much independent
significance. In this paper, by contrast, NCD and NI have played an impor-
tant role at various places.50 For example, in Sect. 4.2 it was shown that
NCD ∩Δ = {(ϕ,ϕ) | NCD(ϕ,ϕ)} corresponds to the largest class of formulas,
viz. the contingencies. This allowed us to define the strong JSB hexagon in
Fig. 11b, instead of merely the square in Fig. 12. Furthermore, in Sect. 4.5
we argued that the errors in Béziau’s hexagon in Fig. 17a, b are the result of
illicitly ignoring NCD , and showed how these errors can be corrected by taking
this relation into account (see Fig. 18). Similarly, in Sect. 5.2 we explained the
difference between the strong JSB hexagon for total orders in Fig. 21a and the
RDH for partial orders in Fig. 22 in terms of NI (or rather, its abstract ana-
logue, the incomparability relation #). Finally, as was discussed in Sect. 6.1,
NCD and NI can be used to define the notion of unconnectedness or indepen-
dence (viz. as NCD ∩NI ). In ongoing work [26], we are exploring the interplay
between unconnectedness and other notions of logical (in)dependence, which
gives rise to the same kind of metalogical diagrams as discussed in this paper.

50 For yet another metalogical illustration of the importance of NCD , recall that in 2003,
Béziau [1] famously argued that the Aristotelian relations CD , C and SC are analogous to
classical, paracomplete and paraconsistent negation, respectively. However, in more recent
work, Béziau has also considered so-called paranormal negations [2,3,7]. These are charac-
terized by the fact that a proposition and its paranormal negation can be true together,
and can also be false together. But this means exactly that paranormal negation is analo-
gous to NCD . Béziau’s original analogy can thus be completed as follows: the opposition
relations CD , C , SC and NCD are analogous to classical, paracomplete, paraconsistent and
paranormal negation, respectively.



Vol. 10 (2016) Metalogical Decorations of Logical Diagrams 287

A third topic of interest is the distinction between ‘classical’ and ‘degener-
ated’ Aristotelian squares. It is well-known that the four categorical statements
of syllogistics constitute a ‘classical’ Aristotelian square. However, it is equally
well-known that if we move from syllogistics to contemporary first-order logic,
by dropping the assumption of existential import, only the two contradictions
are left, and hence the classical Aristotelian square degenerates into a mere
Aristotelian cross [30, Section 4]. As we have seen throughout this paper, simi-
lar phenomena also occur for metalogical instead of object-logical decorations.
For example, in Sect. 4.2 we defined an Aristotelian square for metalogical no-
tions such as tautology and satisfiability, which is shown in Fig. 12a. However,
if we drop the assumption that the underlying logical system is consistent,
then this square degenerates into a cross, as shown in Fig. 12b. Furthermore,
in Sect. 6.1 we showed that Löbner’s [52, p. 55] four relations yield an Aris-
totelian square, which is shown in Fig. 24b. However, if we drop the assumption
that the first argument of Löbner’s relations is satisfiable, then this square also
degenerates into a cross, as shown in Fig. 24a. Finally, in Sect. 6.2 we stud-
ied an Aristotelian square for the duality relations ineg and eneg, which is
shown in Fig. 28b. However, if we drop the assumption that operators cannot
be self-dual, then this square, once more, degenerates into a cross, as shown
in Fig. 28a.

A fourth and final recurrent theme is the subtle relation between the dif-
ferent types of diagrams. We have seen that several sets of relations can be used
to decorate Aristotelian as well as duality diagrams. In some cases, however,
the Aristotelian diagram turns out to depend on certain additional assump-
tions, whereas the corresponding duality diagram does not. For example, in
Sect. 8.1 we studied the duality square for Löbner’s relations, which is shown
in Fig. 32a. In Sect. 6.1, however, we showed that these relations can also be
used to define an Aristotelian square, but whether this square is classical or
degenerated, depends on whether the relations’ first argument is assumed to
be satisfiable; compare Fig. 24a, b. Similarly, the six relations in the duality
diagram shown in Fig. 33a can also be used to define an Aristotelian hexagon,
but whether this is a JSB or a U4 hexagon again depends on whether the
relations’ first argument is assumed to be satisfiable; compare Fig. 25a, b.

This sharp contrast between Aristotelian and duality diagrams can be
seen as the metalogical manifestation of a more general phenomenon that is
well-understood at the object-logical level: the Aristotelian relations are sen-
sitive to the deductive power of the underlying logical system, but the duality
relations are entirely insensitive to this [23].51 Consider, for example, the for-
mulas �p and �¬p from modal logic. The Aristotelian relation holding between
these formulas heavily depends on the particular modal system that we hap-
pen to be working in. For example, (i) in the system D, these formulas are
contrary, (ii) in the system D + {♦p → �p}, they are contradictory, and (iii)
in the minimal normal system K, they are unconnected, i.e. they do not stand
in any Aristotelian relation at all [18]. However, switching from Aristotelian

51 Also see Sect. 2, in particular, the motivation for going from Definition 2.1 to 2.2.
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to duality relations, note that in each of these three modal systems, it holds
that �p and �¬p are each other’s internal negation, which shows that the
duality relation holding between these formulas is independent of any addi-
tional factors. This contrast between ‘context-sensitive’ Aristotelian relations
and ‘context-insensitive’ duality relations manifests itself at the metalogical as
well as at the object-logical level.

All these remarks and observations point in the direction of a final, over-
arching conclusion: there exists a fundamental continuity between object- and
metalogical decorations of logical diagrams. The mathematical background of
this continuity was described in Sect. 2 (for Aristotelian diagrams) and in
Sect. 3.2 (for duality diagrams). Furthermore, since metalogical decorations
give rise to the same kinds of rich logical and linguistic behavior as object-
logical decorations, it is to be expected that over time, the former will come
to be as widely studied as the latter.
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