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Abstract. Throughout the twentieth century, the automation of formal
logics in computers has created unprecedented potential for practical
applications of logic—most prominently the mechanical verification of
mathematics and software. But the high cost of these applications makes
them infeasible but for a few flagship projects, and even those are negligi-
ble compared to the ever-rising needs for verification. One of the biggest
challenges in the future of logic will be to enable applications at much
larger scales and simultaneously at much lower costs. This will require
a far more efficient allocation of resources. Wherever possible, theoreti-
cal and practical results must be formulated generically so that they can
be instantiated to arbitrary logics; this will allow reusing results in the
face of today’s multitude of application-oriented and therefore diverging
logical systems. Moreover, the software engineering problems concerning
automation support must be decoupled from the theoretical problems of
designing logics and calculi; this will allow researchers outside or at the
fringe of logic to contribute scalable logic-independent tools. Anticipat-
ing these needs, the author has developed the Mmt framework. It offers a
modern approach towards defining, analyzing, implementing, and apply-
ing logics that focuses on modular design and logic-independent results.
This paper summarizes the ideas behind and the results about Mmt. It
focuses on showing how Mmt provides a theoretical and practical frame-
work for the future of logic.
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1. Introduction and Related Work

Motivation. While logic has historically focused on the theoretical study of a
few individual logics—mostly first-order logic and some others such as higher-
order or modal logic—recent decades have seen increasing specialization into a
plethora of different logics. Moreover, during that time advances in technology—
e.g., the internet and theorem provers—have dramatically changed the scale
of practical applications of logic. For the future, today’s logicians envision the
routine use of logic for the verification of mathematical theorems and safety-
critical software. For example, the verification of on-chip algorithms can pre-
vent billion-dollar mishaps such as the Pentium division bug.

However, these approaches pay off almost exclusively at large scales due
to the high level of theoretical understanding and practical investment that
they require from both developers and users. For example, flagship projects
such as the verifications of the Kepler conjecture [16] or the L4 microkernel
[28] required double-digit person years of investment.

These scales bring a new set of critical challenges for logics. For instance,
they require building large libraries of logical theorems collaboratively, using
multiple logics in the same project while reusing theorems across logics, and
the interoperability of logic-based tools. Many of these challenges were not
anticipated in the designs of current logics, tools, and libraries:

• Modern logic tools such as ACL2 [27], Coq [9], HOL [15,18,19,32], Matita
[2], Mizar [44], Nuprl [8], or PVS [33] are built on mutually incompatible
logical foundations. These include first-order logic, higher-order logic, set
theory, and numerous variants of type theory.

• The respective communities are mostly disjoint and have built overlap-
ping but mutually incompatible libraries.

• All of these tools lack urgently-needed features because no community
can afford developing (and maintaining) all desirable features. These
include improvements of core components like the theorem prover as well
as of peripheral components like user interface or library management.

• Novel logics usually have to start from scratch because it is almost impos-
sible to reuse existing tools and libraries. That massively slows down
evolution because it can take years to evaluate a new idea.

• All but a few logics are never used beyond toy examples because it takes
each system dozens of person-years to reach production-ready maturity.

Existing Approaches. These problems have been known for several decades
(see, e.g., [1]) and have motivated three major independent developments in
different, disjoint communities:

(1) Logical frameworks [35] are meta-logics in which logics can be defined.
Their key benefit is that results about the meta-logic can be inherited by the
logics defined in them. Examples include type inference (the Twelf tool [36]
for LF [17]), rewriting (the Dedukti tool [4] for LF modulo [10]), and theorem
proving (the Isabelle tool [34] for higher-order logic [6]).

But logical frameworks do not go far enough: Like logics, the various
meta-logics use mutually incompatible foundations and tools. Moreover, they
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are not expressive enough for defining modern practical logics such as the ones
cited above. This requires the design of more and more complex meta-logics,
partially defeating the purpose for which they were introduced.

(2) Categorical frameworks like institutions [14] give an abstract, uniform
definition of what a logic is. Their key benefit is that they capture common
concepts of logics (such as theories and models) concisely and leverage cate-
gory theory to elegantly formalize reuse across theories and logics. Many the-
oretical results that were originally logic-specific have been generalized to the
institution-independent level [12], and institution-independent practical tool
support has been developed [31].

But institutions go too far: They abstract from the syntactic structure
of sentences, theories, and proofs that is essential to logic. Thus, they cannot
provide comprehensive logic-independent tool support and remain dependent
on specific tools for each logic.

(3) Markup languages for formal knowledge such as MathML [3], Open-
Math [5], and OMDoc [29] allow the representation of syntax trees for logical
objects (e.g., theories or formulas). Their key benefit is that they provide a
standardized machine-readable interchange format that can be used for any
logic. A major achievement is the inclusion of MathML into the definition of
HTML5.

But markup languages succeeded only because they ignore the logical
semantics. They allow the representation of proofs and models, but they do
not make any attempt to define which proofs or models are correct.
Foundation-Independence. We introduce the novel paradigm of foundation-
independence—the systematic abstraction from logic-specific conceptualiza-
tions, theorems, and algorithms in order to obtain results that apply to any
logic. This yields the flexibility to design new logics on demand and instantiate
existing results to apply them right away.

Contrary to logical frameworks, we do not fix any foundation, not even a
meta-logic. Contrary to institutions, we can obtain reusable results that make
use of the syntactic structure. And contrary to markup languages, the logical
semantics is formalized and respected by the tools.

Systematically aiming for foundation-independence has led the author
to develop Mmt, which consists of a language [40,43] and a tool [38]. They
provide the theoretical and practical environment to define concepts, reason
meta-logically, and implement tool support in a foundation-independent way.
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Mmt stands for meta-meta-theory/tool. This name is motivated by see-
ing Mmt as part of a series of abstractions steps as pictured above. In conven-
tional mathematics, domain knowledge was expressed directly in mathemati-
cal notation. Starting with Frege’s work, logic provided a formal syntax and
semantics for this notation. Starting in the 1970s, logical frameworks provided
meta-logics to formally define this syntax and semantics. Now Mmt formalizes
the foundation-independent level.

One might expect that this meta-meta-level, at which Mmt works, is
too abstract to develop deep results. But not only is it possible to generalize
many existing results to the foundation-independent level, Mmt-based solu-
tions can even be simpler and stronger than foundation-specific ones. More-
over, Mmt is very well-suited for modularity and system integration and thus
better prepared for the large scale challenges of the future than any foundation-
specific system. In particular, it systematically separates concerns between
logic designers, tool developers, and application developers.

We argue this point by surveying the author’s work of the past 10 years.
This includes numerous foundation-independent results, which we summarize
in a coherent setting:

• Section 2: the Mmt language, which provides the foundation-independent
representation of any logical object,

• Section 3: the foundation-independent definition of logic-related concepts
based on the Mmt language,

• Section 4: the foundation-independent logical algorithms implemented in
the Mmt tool,

• Section 5: the knowledge management support developed foundation-
independently in the Mmt tool.

In all cases, we pay special attention to the foundation-independent nature
of the results and discuss the differences from and benefits over foundation-
specific approaches.

2. Foundation-Independent Representation

Key Concepts. The Mmt language uses a small set of carefully chosen orthog-
onal primitive concepts: theories, symbols, and objects, which are related by
typing and equality and acted on by theory morphisms. The main insight
behind foundation-independence is that these concepts are at the same time

• universal in the sense that they occur in virtually all formal systems in
essentially the same way,

• complete in the sense that they allow representing virtually all logics and
related languages.

Our experiments show that Mmt theories subsume any kind of formal
system such as logical frameworks, mathematical foundations (e.g., ZF set
theory), type theories, logics, domain theories, ontology languages, ontologies,
specification languages, specifications, etc.
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Every theory consists of a list of symbol declarations c[: t][= d][#N ]
where c is the symbol identifier, the objects t and d are its type and definiens,
and N is its notation. Symbol declarations subsume any kind of basic dec-
laration common in formal systems such as type/constant/function/predicate
symbols, binders, type operators, concepts, relations, axioms, theorems, infer-
ence rules, derived rules, etc. In particular, theorems are just a special case
of typed symbols: They can be represented via the propositions-as-types cor-
respondence [11,21] as declarations c : F = p, which establish theorem F via
proof p.

Mmt objects subsume any kind of complex expressions common in formal
systems such as terms, values, types, literals, individuals, universes, formulas,
proofs, derivations, etc. The key property of theories is that they define the
scope of identifiers: An object o over a theory T may use only the symbols
visible to T .

Objects o and o′ over a theory T are subject to the typing and equality
judgments �T o : o′ and �T o ≡ o′. These judgments subsume any kind of
classification used to define the semantics of formal systems: typing subsumes,
e.g., well-formedness, typing, kinding, sorting, instantiation, satisfaction, and
proving; equality subsumes, e.g., axiomatic equality, platonic equality, rewrit-
ing, and computation.

The central step to represent a specific foundation in Mmt is (i) to give
a theory F that declares one symbol for each primitive operator of the founda-
tion, and (ii) to fix the rules for typing and equality judgments on F -objects.

The above concepts are related by theory morphisms, and theories and
morphism form a category. Morphisms subsume all structural relations between
theories including logic translations, denotational semantics, interpretation
functions, imports, instantiation, inheritance, functors, implementations, and
models.

For theories S and T , a morphism m : S → T maps every S-symbol to
a T -object, which induces a homomorphic translation m(−) of all S-objects
to T -objects. Mmt guarantees that m(−) preserves the Mmt judgments, i.e.,
�S o : o′ implies �T m(o) : m(o′) and accordingly for equality. This includes
the preservation of provability as a special case, which allows moving theorems
between theories along morphisms.
Example Consider the representation of various theories in the diagram of
Fig. 1. Here the logical framework LF is used as a foundation to define first
and higher-order logic. LF contains mostly declarations without types but with
notations such as the two declarations

type
arrow # A1 → A2

which declare a symbol type for the collection of types and a binary symbol
arrow for forming function types o1 → o2. The dotted morphisms represent the
meta-relation where one theory is imported to be used as the meta-language
in which another theory is defined. For example, FOL uses the symbols and
notations of its meta-theory LF in declarations such as
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Figure 1. Diagram used in the example

o : type
i : type
equal : i → i → o # A1

.= A2

forall : (i → o) → o # ∀A1

which declare symbols
• o for the type of formulas,
• i for the type of terms,
• equal for the binary equality predicate between terms (using curried

function application),
• forall for the universal quantifier (using higher-order abstract syntax).

FOL in turn is used as the meta-theory for algebraic theories, here the
theories of semigroups and rings. For example, Semigroup uses the symbols of
FOL to declare

comp : i → i → i # A1 ◦ A2

assoc : ded
(∀[x : i]∀[y : i]∀[z : i](x ◦ y) ◦ z

.= x ◦ (y ◦ z)
)

The definition of the theory Ring uses the Mmt module system to obtain a
Bourbaki-style definition that maximizes reuse. The morphisms add and mult
arise from the two imports of the theory Semigroup that yield the two different
copies of the theory of semigroups present in the theory Ring. For example,
the associativity axiom is only declared once in Semigroup but imported twice
into Ring and available as add/assoc and mult/assoc.1

The morphism Trans is a logic translation from first to higher-order logic.
And the morphism Sem formalizes the semantics of higher-order logic in ZF
set theory. As the meta-theory of ZF, we use LF≤, an extension of LF that adds
subtyping. The composition Sem ◦ Trans yields the semantics of first-order logic
in set theory. The morphism Int represents the integers as a model of Ring
defined in set theory, and the compositions Int ◦ add and Int ◦ mult are the
additive and multiplicative semigroup of the integers.

All theories can be moved along morphisms via pushouts. For example,
all developments over LF can be moved to LF≤. This has the crucial benefit

1 Of course, in practical formalizations we use multiple intermediate theories, e.g., for
monoids and groups, to fully benefit from modularity.
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that we do not lose any work when migrating to a new meta-logic. Similarly,
Semigroup and Ring can be moved to HOL by pushout along Trans or to ZF
by pushout along Sem ◦ Trans.

Dia ::= (Thy | Mor)∗ Diagram
Thy ::= c[: o] = {Dec∗} Theory declaration
Mor ::= c : o → o = {Ass∗} Morphism declaration
Dec ::= c[: o][= o][#N ] Symbol declaration
Ass ::= c := o Assignment to symbol
o ::= c | x | Strc | c((x[: o])∗; o∗) Object
N ::= (AInt | VInt | Str)∗ Notation
c ::= URIs Identifiers
Str ::= Unicode strings Literals or delimiters
Int ::= integers Argument positions

Formal Grammar. The above grammar contains all the essentials of the Mmt
language. A diagram is a list of theory and morphism declarations. The dec-
laration of a theory t is of the form t[: M ] = {. . . , c[: o][= o′][#N ], . . .} where
M is the optional meta-theory.

The declaration of a morphism m from S to T is of the form m : S →
T = {. . . , c := o, . . .} such that every S-symbol c is mapped to a T -object o.

Mmt uses only 4 productions for T -objects. 3 of these yields the basic
leaves of syntax trees: references to symbols c that are visible to T , refer-
ences to previously bound variables x, and literals sc of type c with string
representation s (e.g., −1.5float or abcstring). The remaining production c(x1[:
o1], . . . , xm[: om]; a1, . . . , an) subsumes the various ways of forming complex
objects: It applies a symbol c, binding some variables xi, to some arguments
aj . For example, and(;F,G) represents the conjunction of F and G, and
forall(x;F ) represents the universal quantification over x in F . We obtain
the usual notations F ∧ G and ∀x.F if we declare the symbols with notations
such as and#A1 ∧ A2 and forall#∀V1.A2.
Specific Foundations. Individual foundations arise as fragments of Mmt: A
foundation singles out the well-formed theories and objects. We refer to [40]
for the details and only sketch the key idea.

Mmt provides a minimal inference system for the typing and equality
judgments that fixes only the foundation-independent rules, e.g.,
• the well-formedness of theories relative to the well-formed of objects,
• the typing rules for the leaves of the syntax tree, e.g., we have �T c : o

whenever c : o is declared in T ,
• the equality rules for equivalence, congruence, and α-equality.

Further rules are added by the foundations. For example, we can declare a
symbol o for the type of well-formed formulas and add a typing-rule for and
that derives �T and(;F,G) : o from �T F : o and �T G : o.

The foundations only restrict attention to fragments of Mmt and do
not change the Mmt grammar. This is crucial because many definitions can
be stated and many theorems proved foundation-independently once and for



8 F. Rabe Log. Univers.

all relative to the Mmt grammar. This is in contrast to foundation-specific
approaches, which have to repeat these steps tediously, often less elegantly,
every single time. Examples of such foundation-independent results include

• the category of theories and morphisms and universal constructions such
as pushouts,

• the homomorphic extension m(−) and the proof that morphisms preserve
judgments,

• the notion of free/bound variables and the definition of capture-avoiding
substitution,

• the use of notations to relate concrete and abstract syntax,
• the management of change through differencing and patching,
• the modular development of large theories.

As an example, we consider the module system.
Module System. The foundation-independent module system of Mmt provides
a very simple and expressive syntax for forming large theories from small
components, where the semantics of theory formation is independent of the
chosen foundation. We distinguish two ways of forming complex theories and
morphisms:

(1) Declaration-based formation uses special declarations that elaborate
into sets of symbol declarations. Most importantly, the declaration include T
elaborates into the set of all declarations of T . We can use that to define the
theory Semigroup more modularly as

Magma : FOL = {comp : i → i → i}
Semigroup : FOL = {

include Magma
assoc : ded

(∀[x : i]∀[y : i]∀[z : i](x ◦ y) ◦ z
.= x ◦ (y ◦ z)

)

}

The special declaration q : T = {. . . , c := o, . . .} declares an instance q of
T . It elaborates into a fresh copy of T where all T -symbols are qualified by q;
moreover, some T -symbols c can be substituted with objects o. This is used in
the theory Ring to create to different imports of the same theory:

Ring : FOL = {
add : Semigroup = {}
mult : Semigroup = {}
. . .

}

The details can be found in [43].
(2) Object-based formation uses symbols to form objects that denote

anonymous complex theories or morphisms. This allows forming infinitely
many theories and morphisms without adding new declarations.

For example, we declare a unary symbol identity#id(A1) and add infer-
ence rules that make id(T ) the identity morphism T → T . Similarly, we declare
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a symbol comp#A1 ◦ A2 that maps two morphisms to their composition.2 We
already used this symbol in the example above to obtain the complex mor-
phism Sem ◦ Trans. [42] discusses further constructions in more detail, most
importantly pushouts.

3. Foundation-Independent Logic

In Mmt, we can give concise foundation-independent definitions of the central
concepts regarding logics. This has been described in detail in [40], and we will
only give examples here.

LF = {
kind
type : kind
Pi # { V1 } A2

lambda # [ V1 ] A2

apply # A1 A2

arrow # A1 → A2

inferPi
inferlambda
inferapply
funcExten
beta
}

Meta-Logic. Meta-logics are represented as
foundations in Mmt. For example, the the-
ory for LF is shown on the right. It intro-
duces one symbol for each primitive con-
cept along with notations for it. For exam-
ple, the abstract syntax for a λ-abstraction
is lambda(x : A; t), and the concrete syntax
is [x : A]t.

Additionally, LF declares one symbol
for each rule that is added to Mmt’s infer-
ence system. These are the usual rules for
a dependently-typed λ-calculus such as

Γ, x : A �Σ t : B

Γ �Σ [x : A]t : {x : A}B
inferlambda

Of course, these rules cannot themselves by declared formally.3 Nonethe-
less, they are declared as symbols of the Mmt theory LF and thus subject to
the module system. Therefore, e.g., inferlambda may be used to derive a typ-
ing judgment about T -objects only if T imports LF. Moreover, we can build
further meta-logics by importing LF and adding rules for, e.g., rewriting or
polymorphism.
Syntax and Proof Theory. For the special case of using LF as a meta-logic, a
logic syntax is any Mmt theory that includes LF and the declarations o : type
and ded : o → type. For example, a theory PL for propositional logic could
add the declarations on the left and a theory FOL for first-order logic could
import PL and add the ones on the right (where we omit the usual notations):

2 Mmt identifiers a symbol by the pair of its name and the name of its containing theory.
Therefore, this symbol comp does not clash with the one of the same name from the theory
Semigroup.
3 The simplest reasonable meta-logic in which we can formalize these rules is LF itself. So
we have to supply these rules extra-linguistically to get off the ground. Once a sufficiently
expressive meta-logic is represented in this way, we never have to add inference rules again.
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� : o
⊥ : o
¬ : o → o
∧ : o → o → o
∨ : o → o → o
⇒ : o → o → o

i : type
.= : i → i → o
∀ : (i → o) → o
∃ : (i → o) → o

Given a logic syntax L, an L-theory is a theory that extends L with
additional declarations. For example, the FOL-theory of semigroups adds

comp : i → i → i #A1 ◦ A2

assoc : ded
(∀[x : i]∀[y : i]∀[z : i](x ◦ y) ◦ z

.= x ◦ (y ◦ z)
)

A sentence over an L-theory T is any object F such that �T F : o.
The proof theory of a logic is defined as a theory that extends the syntax.

For example, some proof rules for a natural deduction calculus for propositional
logic are declared as:

∨Il : {A : o}{B : o}dedA → ded [A ∨ B]
∨Ir : {A : o}{B : o}dedB → ded [A ∨ B]
∨E : {A : o}{B : o}{C : o}ded [A ∨ B] →

(dedA → dedC) → (dedB → dedC) → dedC

Finally, a proof of the T -sentence F under the assumptions F1, . . . , Fn is
any object such that x1 : dedF1, . . . , xn : dedFn �T p : dedF .
Model Theory and Logic Translations. There is an intuitive similarity between
model theory and logic translations: Both are inductive translations from one
formalism into another: Model theory translates the syntax and proofs into
the semantic domain; logic translations translates syntax and proofs to some
other logic. In Mmt level, we can capture this similarity formally: Both are
represented as theory morphisms.

In particular, we represent the semantic domain, in which models are
defined, as a theory itself. Traditional logic assumes an implicit mathemati-
cal domain such as axiomatic set theory. But modern approaches in computer
science often use other, precisely defined domains such as higher-order logic,
constructive type theory, or even programming languages. Therefore, Mmt
allows choosing different semantic domains. Comprehensive examples of foun-
dations and model theory are given in [20,24].

For example, the set theoretical model theory of HOL is represented as
a morphism Sem : HOL → ZF, where ZF formalizes axiomatic set theory. Sem
maps every logical symbol to its interpretation—this corresponds to the cases
in the inductive definition of the interpretation function. The different ways of
extending Sem to the non-logical symbols declared in FOL-theories T correspond
to the different possible T -models. Thus, models are represented as theory
morphisms as well.

Finally we can show once and for all and for any meta-logic that every
logic defined in Mmt induces an institution. This ties together the concrete
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representations in logical frameworks and the abstract representations as insti-
tutions. We obtain an according result for logic translations, which are repre-
sented as theory morphisms L → L′ such as from FOL to HOL.

The LATIN project [7] leveraged the Mmt module system and the above
conceptualization to systematically develop a comprehensive library of logics
from small reusable components. The whole library includes ¿1000 modules,
a small fragment is visualized below. All theories use LF as their meta-theory.
The left part relates, e.g., propositional, first-order, higher-order, modal, and
description logics as well as set theories via imports and translation. The mid-
dle part shows how propositional logic PL is build up from individual features
for, e.g., negation and conjunction. The right part shows how the module for
conjunction consists of formalizations of syntax, model theory, and proof the-
ory.

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL

Isabelle / HOL ZF ZFC Mizar

Base

¬ ... ∧

PL

∧Mod

∧Syn

∧Pf

4. Foundation-Independent Algorithms

The Mmt system provides foundation-independent implementations of the
typical algorithms needed to obtain tool support for a logic. These are obtained
by systematically differentiating between the foundation-independent and the
foundation-specific aspects of existing solutions, and implementing the former
in Mmt.

Each implementation is relative to a set of rules via which the foundation-
specific aspects are supplied. This yields extremely general algorithms that
can be easily instantiated for specific foundations. The details of each rule are
implemented directly in Mmt’s underlying programming language (Scala).
Practical experience has shown this to be not only feasible but extremely
simple and elegant. For example, the foundation-independent parts of Mmt
consist of ¿30,000 lines of Scala code. But, e.g., the LF plugin provides only 10
simple rules of a few hundred lines of Scala code. Of course, for logics defined
using a meta-logic like LF, no such rules have to be provided at all since they
are induced by the ones of LF.

Moreover, rules are declared as regular Mmt symbols (as we did for
the LF in Sect. 3), and the implementations use exactly those rules that are
imported into the respective context. That makes it very easy to recombine
and extend sets of rules to implement new languages. For example, it took
a single rule of 10 lines of code to add shallow polymorphism to LF, and a
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single rule schema to add rewriting. This is in contrast to foundation-specific
implementations, where similar extensions can require whole PhD theses or
may be infeasible altogether.

Below we sketch Mmt’s solutions for parsing and type-checking as exam-
ples and discuss applications to deduction and computation.
Parsing and Presenting. The Mmt algorithms for parsing and presenting are
completely foundation-independent.4 They use the notations visible to T to
parse/present T -objects. Notably, because the grammar for Mmt objects is
so simple, they are easier to design and implement than their foundation-
specific counterparts. Therefore, the foundation-independent Mmt algorithms
are actually stronger than those of many state-of-the-art logic tools.

As indicated in Sect. 3, Mmt notations subsume not only the usual fixity-
based notations such as A1 → A2 for the infix notation of arrow but also com-
plex notations for binders such as [V1]A2 for lambda, which binds one variable
and then takes one argument. But Mmt also supports additional advanced
features, each only present in very few foundation-specific systems:
• Sequence arguments and sequences of bound variables. For LF, we can

actually use notations such as [V1, . . .]A2 and (A1 ∗ . . .) → A2. The for-
mer expresses that lambda binds a comma-separated list of variables; the
latter expresses that arrow takes a star-separated list of arguments.

• Implicit arguments. Notations may declare some arguments to be implicit.
These are omitted in concrete syntax, and parsing/type checking must
infer them from the context.

• 2-dimensionality. Notations can declare over-/under-/sub-/superscripts
as well as fraction-style notations. These are used for presentation in
2-dimensional output formats such as HTML.

Typing. An important advantage of Mmt’s grammar for objects is that it can
express both human-written and machine-checked syntax trees in the same
format. These two are often very different, e.g., when human-written syntax
omits inferable subobjects. For example, given the concrete syntax [x]x ∧ x,
parsing yields the syntax tree lambda(x;∧(;x, x)). Now type checking this tree
infers the type of x and returns lambda(x : o;∧(;x, x)). Foundation-specific
implementations often use a separate intermediate representation format for
the former. Because Mmt uses the same representation format for both, it can
react more flexibly when type checking is not needed or fails.

More generally, the Mmt type-checker takes an Mmt judgment such as
U �T o : o′ where U declares some variables for unknown subobjects. Then
it solves for the unique substitution σ such that �T o[σ] : o′[σ]. This problem
is undecidable for most foundations and partial solutions are very difficult to
obtain. Mmt’s implementation elegantly separates the layers: a foundation-
independent core algorithm handles much of the difficulty of the problem; it
is customized by supplying a set of rules that handle all foundation-specific
aspects and that are comparatively easy to implement. These rules are declared

4 Technically, foundation-specific rules may have to be provided for lexing literals. The
details can be found in [41].
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in Mmt theories and thus part of the module system. For example, the rules
for LF are the symbols inferPi, inferlambda, etc. indicated in the definition
of LF in Sect. 3. Despite the high generality of Mmt’s foundation-independent
solution, there are only a few foundation-specific solutions (e.g., the one in
Coq [9]) that are substantially stronger.

As an example, we give the implementation of the rule inferlambda, which
is supplied by the LF plugin:

object InferLambda extends TypeInferenceRule(LF.lambda) {
def apply(solver:Solver,o:Object,context:Context):Option[Object]={
o match {
case LF.lambda(x,a,t) =>

solver.check(Typing(context, a, LF.type))

solver.inferType(t, context ++ (x oftype a)).map{
b => LF.Pi(x,a,b)

}
case => None

}
}

}

Here TypeInferenceRule signals when the core algorithm should apply the
rule: during type inference, i.e., when Γ and o are given and o′ such that Γ �LF

o : o′ is needed. Its constructor argument LF.lambda makes the applicability
more precise: The rule is applicable to lambda-objects, i.e., whenever o is of
the form lambda(x : a; t). When applied, it receives the object o and the
current context Γ and returns the inferred type if possible. It also receives
the current instance of the core algorithm solver, which maintains the state
of the algorithm, in particular the unknown subobjects U . solver also offers
callbacks for discharging the premises of the rule. In this case, two premises
are discharged: The rule checks that Γ �LF a : type, and infers b such that
Γ, x : A �LF t : b. If the latter succeeds, Pi(x : a; b) is returned.

Note how foundation-independence yields a clear separation of concerns.
The foundation-specific core—e.g., the rule inferlambda—is supplied by the
developer of the LF plugin. But the general aspects of type-checking—e.g., con-
straint propagation and error reporting—are handled foundation-independently
by the solver. Similarly, the module system remains transparent: The rules
are not aware of the modular structure of the current theory. This is in con-
trast to foundation-specific systems where module system and type checking
often have to interact in non-trivial ways.

Mmt implements objects as an inductive data type with four constructors
for symbols, variables, literals, and complex objects. One might expect that
this foundation-independent representation of objects makes it awkward to
implement foundation-specific rules. For example, for LF, one would prefer
an inductive data type with one constructor each for type, lambda, Pi, and
apply.

Mmt makes this possible: It uses the notations to generate construc-
tor/destructor abbreviations (using Scala’s extractor patterns [13]). Thus, e.g.,
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LF-rules can be defined as if there were an LF-specific inductive data type. For
example, LF.Pi(x,a,b) abbreviates the internal representation of Pi(x : a; b).
Notably, these abbreviations are also available during pattern-matching: case
LF.lambda(x,a,t) matches any Mmt object of the form lambda(x : a; t).
Deduction and Computation. The semantics of logics and related languages
can be defined either deductively or computationally. Both paradigms are well-
suited for foundation-independent implementation, and the integration of typ-
ing, deduction, and computation is an open research question. Mmt can state
this question foundation-independently, which makes it a good framework for
exploring solutions.

In Mmt, deduction means to find some object p such that �T p : F , in
which case p proves F . Computation means to find some simple object o′ such
that �T o ≡ o′, in which case o evaluates to o′. Mmt provides promising but
still very basic foundation-independent implementations for both. In the long
run, we can use Mmt to build a foundation-independent theorem prover to
integrate specialized tools for individual logics. Or we can formalize the seman-
tics of programming languages in Mmt in order to reason about programs.

Currently, Mmt’s foundation-independent theorem prover implements,
e.g., the search space, structure sharing, and backtracking. Similarly, its
foundation-independent computation engine implements the congruence clo-
sure and rewriting. In both cases, the individual proving/computation steps
are delegated to the set of rules visible to T . Both algorithms are transparently
integrated with typing.

Notably, the LF plugin defines only three deduction rules and already
yields a simple theorem prover for any logic defined in LF.

Computation rules for specific theories can be provided by giving models
whose semantic domain is a programming language [41]. That allows integrat-
ing arbitrary computation with logics.

However, contrary to parsing and type-checking, deduction and compu-
tation often require foundation-specific optimizations such as search strate-
gies and decision procedures. Here Mmt’s foundation-independent implemen-
tations are still too weak to compete with foundation-specific ones. But there
is no indication they cannot be improved dramatically in future work.

5. Foundation-Independent Knowledge Management

Developing knowledge management services and applications is usually too
expensive for individual logic communities, especially if it requires optimization
for large scale use cases. Indeed, even the logics with the strongest tool support
fare badly on knowledge management. Fortunately, most of this support can be
obtained completely foundation-independently—we do not even have to supply
any foundation-specific rules as we did in Sect. 4. Thus, maybe surprisingly,
foundation-independence helps solve problems in general at relative ease that
have proved very hard in each foundation-specific instance.
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Figure 2. Screenshot of the Mmt IDE

User Interfaces. Mmt provides two foundation-independent user interfaces
that go beyond the state-of-the-art of all but very few foundation-specific solu-
tions. It uses jEdit, a mature full-fledged text editor, as the host system for a
foundation-independent IDE. And it uses web browsers as the host system for
a library browsing environment.

The user interfaces are described in detail in [39], and we only list some
of the advanced features. Both include hyperlinking of symbols to their decla-
ration and tooltips that dynamically infer the type of the selected subobject.
The IDE displays the list of errors and the abstract syntax tree of a source file
as shown in Fig. 2. Both are cross-referenced with the respective source loca-
tions. Moreover, the IDE provides context-sensitive auto-completion, which
uses the available proving rules to suggest operators that can return an object
of the required type. This already yields a basic interactive theorem prover.
The web browser interface includes 2-dimensional presentations, e.g., for proof
trees, and the folding and hiding of subobjects. It also allows dynamically dis-
playing additional information such as SVG graphs of the modular structure
of theories.

Moreover, both interfaces are highly scalable. For example, the IDE
employs change management to recheck a declaration only when it was changed
or affected by a change. And the multi-threaded HTTP server loads and
unloads theories into main memory dynamically so that it can serve very large
libraries.
Services. The simplicity of the Mmt syntax makes it easy to develop advanced
foundation-independent services. We mention only some examples here. [37]
defines a query language that allows retrieving sets of declarations based on
relational (RDF-style) and tree-based (XQuery-style) criteria. Queries may
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Figure 3. Screenshot of the library browser

refer both to the Mmt concepts and to user-annotated metadata. Math-
WebSearch [30] is a massively optimized substitution tree index of objects.
It performs unification-based search over extremely large libraries almost-
instantaneously. [25] develops change management support for Mmt. It creates
differences and patches that only include those changes in an Mmt file that
are semantically relevant.

All services are independent and exposed through high-level interfaces so
that they can be easily reused when building Mmt-based applications such as
the user interfaces mentioned above. Of particular importance is the MathHub
system [22]. Based on git, Drupal, and Mmt, it uses the above services in a
highly scalable project management and archiving solution for logic libraries.

The viability and strength of these approaches has been demonstrated
by instantiating the above services for several major logics such as for Mizar
in [23] and for HOL Light in [26]. For example, Fig. 3 shows the dynamic
inference in the web-based library browser: Browsing the HOL Light library,
the user selected the subexpression !A (universal quantification at type A)
and called type inference, which returned (A ⇒ bool) ⇒ bool. This requires
identifying the selected subexpression, inferring its type, and rendering the
result using notations—completely foundation-independently apart from using
the type inference rules of LF. Foundation-specific systems, on the other hand,
are usually designed in such a way that it would be very difficult to offer such
an interactive behavior in a web browser at all.

6. Conclusion

The success of logic in the future depends on the solution of one major problem:
the proliferation of different logics suffering from incompatible foundations
and imperfect and expensive (if any) tool support. These logics and tools are
competing instead of collaborating, thus creating massive duplication of work
and unexploited synergies. Moreover, new logics are designed much faster than
tool support can be developed, e.g., in the area of modal logic. This inefficient
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allocation of resources must be overcome for scaling up applications of logic in
the future.

Over several decades, three mostly disjoint research communities in logic
have independently recognized this problem, and each has developed a major
solution: logical frameworks, institutions, and markup languages. All three
solutions can be seen as steps towards foundation-independence, where con-
ceptualizations, theorems, and tool support are obtained uniformly for an arbi-
trary logic.

But these solutions have been developed separately, and each can only
solve some aspects of the problem. Logical frameworks are too restrictive and
ignore model theoretical aspects. Institutions are too abstract and lack proof
theoretical tool support. And markup languages do not formalize the semantics
of logics.

The present author has picked up these ideas and coherently re-invented
them in a novel framework: the foundation-independent Mmt language and
tool.

We have described the existing results, which show that Mmt allows
obtaining simple and powerful results that apply to any logic. Notably, these
results range from deep theoretical results to large scale implementations.
Within Mmt, new logics can be defined extremely easily, and mature, scalable
implementations can be obtained at extremely low cost.

The vast majority of logic-related problems can be studied within Mmt—
in extremely general settings and with tight connections to both theoretical
foundations and practical applications. The Mmt language is very simple and
extensible, and the Mmt tool is open-source, well-documented, and systemat-
ically designed to be extensible. Thus, it provides a powerful universal frame-
work for the future of logic.
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